ON A THEOREM OF ERDŐS AND SZEKERES

M. V. Subbarao

The theorem of Erdos and Szekeres [1] referred to in the title may be stated as follows.

THEOREM A. Given a sequence of r distinct real numbers such that the number of terms of every decreasing subsequence is at most m, then there exists an increasing subsequence of more than n terms, where n is the largest integer less than r/m.

An extremely simple and elegant proof of the theorem was given by A. Seidenberg [2]. This note is intended to point out that a result analogous to the above holds under a more general setting.

Let S be a finite sequence of elements, $S = \{a_1, a_2, \ldots, a_r\}$ on which a binary relation R is defined such that, for every distinct pair a,b of elements of S, exactly one of the relations a R b, b R a holds. We do not require R to be transitive - that is, a R b and b R c may hold, but not a R c.

A subsequence $\{b_1, b_2, \ldots, b_s\}$ of S is said to be an ascending R - subsequence with first term b_1 provided either s=1, or s>1 and b_i R b_{i+1} holds for $i=1,2,\ldots,s-1$. It is said to be a descending R - subsequence with last term b_1 if either s=1, or if s>1 and b_i R b_{i-1} holds for $i=s, s-1,\ldots,2$. Thus only single term subsequences are both ascending and descending R - subsequences. Finally, the "length" of a subsequence is defined to be the number of its elements.

We now have

THEOREM B. Let S be a finite sequence of r abstract elements, on which a binary relation R is defined such that for distinct elements a, b in S, exactly one of the properties a R b, b R a holds. If every ascending R - subsequence of S has a length not exceeding m, then there exists a descending R - subsequence of length not less than r/m.

The proof, which is essentially similar to Seidenberg's proof of Theorem A, is as follows:

To each element a_i of S we associate an ordered pair of positive integers (m_i, n_i) where $m_i(n_i)$ is the largest of the lengths of all ascending R - subsequences with first term a_i (descending R - subsequences with last term a_i). These integers m_i , n_i exist for all

i (i = 1,2,...,r) and are \geq 1. Further, for any two distinct elements a_i, a_j of S, the corresponding ordered pairs (m_i, n_i) and (m_j, n_j) are distinct, for if i < j and if a_i R a_j holds, we have $m_i \geq m_j + 1$, while, if a_j R a_i holds, we have $n_i \geq n_j + 1$. The total number of ordered pairs is then r, the number of elements in S. Let $t = \text{Max } n_i$. Since Max $m_i \leq m_i$ it follows that the number of all the possible $1 \leq i \leq r$ ordered pairs (m_i, n_i) is $\leq m_i$, and hence $r \leq m_i$. Thus, $t \geq r/m$ and the theorem is proved.

REFERENCES

- 1. P. Erdős and G. Szekeres, A combinatorial problem in geometry. Composite Math. 2 (1935) 463-470.
- 2. A. Seidenberg, A simple proof of a theorem of Erdős and Szekeres. J. London Math. Soc. 34 (1959) 352.

University of Missouri University of Alberta