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A REMARK
ON THE PRODUCT PARTITION
OF INTEGERS INTO ¢ PARTS

I. Katai (Budapest, Hungary)
M.V. Subbaraof

Abstract. Let fi(n) be the number of solutions of the equation n =

= Mmymsa... Mg in integers (2 =)m; < mg < ... < mg. The authors
analyze the question how > fi(n) can be estimated with good remainder
n<z

terms by using known result.

1. Let k € Z be an integer, fix(n) be the number of solutions of the
equation
n=mms...mMy,
in integers (2 <)m; < mg < ... < my.
Let

Ft,s) = ﬁ (1+%).

n=2
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Then
o tk i1 [ o= 1
logF(t,s):Zz-(—l) ans =
k=1 n=2
%  1yk—1k
=3 P Tk -1 =

e _1)}C—ltk

a(t,s) = Z -(—k——(g(ks) -1

It is clear that for |t| < v/2, the function a(t, s) as a function of s is regular
and bounded in Re s > 3 + 6 where 4 is an arbitrary positive constant.

Let

Fi(s) = Z fk(").
n=1

nS

We have e t72(55) = by(s) + by (s)t + ba(s)t2 + ..., bo(s) = 1, where b, (s)
1 .
are bounded in ¢ > 3 + 6, they are polynomials of ((2s),...,((vs) for every
v. The explicit form of them can be computed.

Let 1 =logz, z2 =logzy,... .

Since -
F(t,s) =1+ Y tFF(s),
k=1
o k
etC(S) — Z i]:!)—tk,
k=0
therefore
b, (s) —v
(1.1) Fk(s):;:%(k,y)!(k (s).

‘We would like to estimate

Se(z) = > fe(n).

n<zg
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Since
v 0 k—1)mikm
e (L SR (S FX5 - o07).
k=2 \m=
therefore
by (s)
(1.2) o = B Gi(9) 4+ By Gyls),
where the general form of G;(s) can be written as
(1.3) G(s) = (™ (a15) ... (" (ags)
where (2 <)a; < ... < aq, m1,...,m, are positive integers, and
miay + ...+ meaq < v
Let
D(s) = D(s|G) =
(1.4) n=t
B(y) = (B(yl®) = Z
n<y
From (1.3) we have
(1.5) Bly)= > dm(m1)...dm,(ng).
nil..n <z
Lemma 1. We have
(16) Bl < Cotear e (2) ¢ (2)
ay ay

forq>2, and

(1.7) B(y) < Czt/aig™=1 4f g=1.




46 1. Katai and M.V. Subbarao

Proof. Since

x
dodn(m = 3 > TS
ne <z wy..um <xl/e UL Um 1 Sxl/e
m—1
<o 21 <
< " <
u<zl/e
1 m—1
< gl/e <—xl + c> ,
a
therefore the assertion is true for ¢ = 1.
Let ¢ > 2. Assume that the assertion is true for ¢ — 1.
Then
Z dm1 (nl) s qu (TLq) = Z dmg (nQ) T qu (qu) an g
ni‘l.,,n‘;"gz n;"’“.n:"gz R
Z = Z dm, (n1) < cx/orgT 1. v
[P ey m1 - 1 ngz/ﬂl . _ngq/al ?
n1<(-————a—-"02 In q)
2 q
and so
a myp—1 a my—1
(1.8) B(y) < cz'/uz ¢ (—2> ¢ (—") .
) ai a
Lemma 2. Let
Dy(z) = Z di(n) = 2Qi—1(logz) + Ag(x),
n<z
Qr_1(logz) := Relsms'lqk(s)s_l‘
S=
) 1
Let ap < a3 < ... be such a sequence for which oy > 3 and for each
>0,

Ag(z) = O (z™*F)

holds. Possible value of oy can be found in [1}, Theorem 13.2.
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2. Let us estimate

(2.1) E(@| G kv)= > glm)di_,(n),

mn<z

where G is a function of form (1.3).

Then
E(z | G k,v) = Y g(m)Di_(z/m) =
m<z
T T T\ %kte
= ¥ atm) {ZQu s (e Z) +0 ((2)"7)} =
ot m m m
- gy (g 2) 0 (s Y
mes m TRERTE
Since ag_, > 1/2, therefore
g(m)
Z makA,pFE < 0.
Let
k—v—1
Qe-v1W) = D ey
u=0
Therefore
g(m) k—v—1 k—v—1
> 2 ewle—(logm) = 37 olUi(a),
m<z n=0 h=0
k—v—1-1 g(m)
Up(z) = Z dn Z——-(logm)l.
h=0 m<z m
Let
(2.2) o= g(m) (logm)*.
m
Since
logm)* . [tog(2tz)}
5 om (B Sl o
m>zx m t=0 2tr<m<2ttiy

o~ (log 2'z)" mi—1 oy . (logz)¥
<<§ N> (logz)™~1¢(2)" < NG
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holds with a suitable large K, therefore

k—yv—1-1

Uh(l’) = Z dh,l"]l + 0 (Z—1/2+E> s

h=0
€ > 0 is an arbitrary small positive integer. Let us observe furthermore that in
(1.1) bo(s) = 1.
We proved the following

Lemma 3. For (2.1) we have
E(a’: I Gk, V) = CCQk_U_l(IOgJ;) +0 (mazd—s) )

From Lemma 3 the following assertion follows.

Theorem 1. Let k > 2 be an arbitrary integer. Then
Si(x) = 2Py-1(log x) + O (z*7¥€),

where Py_1(y) = me—1 ¥* "1 + ... + 7 is a polynomial, the leading coefficient

. 1
Te_1 satisfies mp_1 = Pk

Remarks.

1. AF. Lavrik [2] counted the coefficients of the polynomials Q_; in
Lemma 2. By his method and by counting the coefficients of the expansions

b,(s) = b + b,(,l)(s — 1)+ ..., one can determine the coefficients of P,_; in
Theorem 1.

2. A.A. Karacuba [3] proved, by using the method of .M. Vinogradov,
that
Z di(n) = zPr-1(z1) + O (zl_m+6)

n<z

uniformly as k/zs < g,, where e, — 0 arbitrarily, e > 0, ¢ > 0, the constant
implied by the error term is absolute, Px_1 is a polynomial of degree k — 1, the
leading term of which is 1.

By using his theorem we can deduce that Theorem 1 remains valid

k c
i L < i =1 = e
uniformly as s €z, with ap =1 w27
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