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SOME CLASSES OF COMPLETE SEQUENCES AND
APPROXIMATIONS IN NORMED LINEAR
SPACES @
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1. Introduction. Let X denote a real or complex normed linear space,
and X* its conjugate space. The closed linear manifold ¥ of X is said to
be spanned or generated by the sequence {f,} of elements of X if every g
in V is the limit of a sequence of linear combinations of the elements of {fn}.
This means that to every arbitrary ¢ > 0 there corresponds a finite integer
n = n(e) and a set of scalars a,s such that

g— vg'l o || < e

It is well known that a necessary and sufficient condition that a sequence
{fa} of vectors span the closed linear manifold ¥ of X is that every ¢ in X*
which is orthogonal to every f, is orthogonal to the entire manifold V. This
result furnishes the essential tool for obtaining the so-called closure theorems
for various normed linear spaces. If the sequence of elements {f,} in X
spans the whole space X, it is said to be ‘complete’ (also called sometimes
‘total’ or ‘closed’). Thus the sequence {f,} is complete if and only if, for
any ¢ in X*, the relation ¢(fs) =0 (n=1, 2,...) implies ¢ = 0.

Philip Davis and Ky Fan [1] introduced the following special classes of
complete sequences.

(i) ‘{an}-complete sequences’: Given a sequence {a} of non-negative
numbers (real or complex according as X is real or complex) & sequence {fn}
of elements in X is said to be {an}-complete if, for a ¢ in X*, ¢(fa) <an
(n=1,2,...)implies ¢ = 0.

(ii) Given p > 1, {fu} is said to be complete of order p if, for a ¢ in X*,
the convergence of the series X'| ¢(fx)]? implies ¢ = 0.

In [6] Suryanarayana introduced and studied other classes of complete
sequences.

Davis and Fan obtained approximation properties which characterize
these classes of complete sequences. For example, they showed ([1],
Theorem 1) that a sequence of elements in X is {as}-complete if and only

(1) This research was supported by a National Science Foundation (United States) grant
No. GP 1222.
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if, for any element g in X and for any positive number ¢, there exists a finite
number of coefficients ¢4, ¢s, . . ., ¢m such that

m
lg—cafull < e lecn]an< €.
N =

Thus the {an}-complete sequences are examples of classes of complete
sequences which can be obtained by imposing some restriction on the co-
efficients ¢y, €s, . . . , cm, like the second inequality above.

In the first few sections of this paper we shall introduce, using this
method of imposing a restriction on the coefficients, a very general class of
complete sequences (called E-complete sequences) and characterize it in terms
of linear continuous functionals on X. The classes of complete sequences
considered by Philip Davis and Ky Fan and Suryanarayana are shown to be
special cases of our class.

2. E-completeness. Throughout what follows X is a normed linear
space with norm || ||, E a locally convex linear topological metric space with
a countable basis {us} (n=1,2,...) and with metric d(z, y) satisfying
d(z, y) = d(x—y, 0). We write p(x—y) for d(z—y, 0). In particular E may
be a normed linear space with a countable basis. Its norm will then be
denoted by | |lz. E* as usual denotes the conjugate of K.

DrriniTION. A sequence {fp} in X is said to be ‘E-complete’ if, given
any e > 0 and any g in X, there exist coefficients c¢;, ¢y, . . ., ¢m such that

We have the following basic result suggested by [2], Theorem 2.
THEOREM 1. A sequence {fn} is E-complete if and only if the following
property holds:

Given a ¢ in X*, there exists a  in E* satisfying (un) = —&(fn)
(n=1,2,3..)ifandonlyif 6 = 0. .. .. .. .o (2.2)

Proof. Consider the direct sum space XDE of elements of the form
{9, v} with g and » in X and E respectively, and with the invariant metric
pil{g, v}, 0) =] g[|+p(v). Let X; denote the closed linear subspace of XOF
formed by all pairs of the form {g, 0}. Let Y be the closed linear subspace of
X@DE spanned by the sequence of elements f; = {fn, un}. The property
(2.1) holds if and only if ¥ D X,. The latter is equivalent to the property
that every linear continuous functional on X®E which vanishes on Y must
also vanish on X ; that is, for ¢ in X and ¢ in E, the equations ¢(fn)+3(un) = 0
(n=1,2,...)imply ¢ = 0. This is easily seen to be equivalent to property
(2.2).

As will be shown in detail in the next section, the {a,}-complete se-
quences, and sequences complete of order p introduced in [1] are special

<e p( z cnun) <e R -5 )
n=1

m
g=— 2 cufu
n=1
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cases of E-complete sequences. One can see that Theorems 1 and 2
proved in [1] are indeed special cases of our Theorem 1. In fact, many of the
results in [1] can be generalized with appropriate changes for E-complete
sequences. As an example, we mention the following.

THEOREM 2. Suppose {fu} and {ga} are two sequences of elements in X,
and X is a number satisfying 0 <A < 1, and

<A

{:1 culfo—0n)

m
2 cufn
n=1

for any finite set of coefficients ¢y, co, ..., ¢m. Then, if {fn} is E-complete, so
also is {gn}.
3. Special cases.

3.1. Taking F =1, ¢g>1, we get completeness of order p (Where

+% = 1) (Theorem 2 of [2]).

RS

3.2. Taking F to be the space of elements = = (z;, ¥, ...) where
%3, g, . . . aTe real or complex numbers for which

o0
e = _21ailxi]< o0,
i=

where {a;} (¢ =1, 2,...) is a given sequence of positive numbers, we see
that E* consists of sequences (y;, #s,...) of complex numbers for which
| yn|lan is bounded (=1, 2,...). We now obtain {as}-completeness ([2],
Definition 1, Theorem 1).

3.3. Let E be the normed linear space of all sequences x = (z;, @3, ...)
for which, for a given r > 0,

[2e]
lzllz = lexn]n’< 0.
" =

Then the corresponding completeness is the E,-completeness of [6], Defini-
tion 2.

3.4. If F is the normed linear space of sequences x = (x;, @,,...) for
which
f[2]lg = Lub.|zy,]/nr < o0

for a given r > 0, we get Fy-completeness ([6], Definition 3).
3.5. We obtain R-completeness (B > 0) ([6], Definition 4) on taking E to
be the space of elements x = (z, z,, . . .) for which

]l = Lub. |z, ]/Br < co.

3.6. Let M be a given linear manifold and [M, d;] a sequence of locally
convex linear topological spaces metrized by di¢(, ) (¢ = 1, 2,...) such that
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any two members of the sequence have comparable topologies.® Let [M, d]
denote the lLu.b. topology of the sequence [M,d;] and [M, di}*, [M, d]*
respectively the set of linear continuous functionals of the spaces [M, ds]
and [M, d]. It is known that [M, d] is metrizable by the usual sigma metric

d(z, y) where d(z, y) = d(z—y, 0) is given by d(z, 0) = 2’ F(di(x))/2¢, where
i=1
F(u) = u/(1+u). Also ([3], [6]) we have [M,d]* = U[M, d¢]*. Let (Uan)

(n=1, 2,...) be a basis for [M, d]; it.is then a basis for [M, dq] for all .
Theorem 1 now shows that

3.6.1. A sequence {fn} is [M, d)-complete in X if and only if, for a given
& in X*, there exists a  in E* with P(un) = —¢(fa) (n =1, 2,...) if and only
if ¢ = 0.

We shall give two simple applications of this result.

3.7. lpy-completeness. A sequence {fn}in X is defined to be lp,-complete
(p > 1) if, given any ¢>0 and any g in X, there exists a finite number of
coefficients ¢y, . .., ¢, such that

m 1
“g— Zlcnfn <e; (Zlep|nr<e

for every g > p.

Applying the result 3.6.1 we see that

3.7.1. {fa} is lpsy-complete if and only if, for a ¢ in X* for which
Z | d(fn)|?-€ < o0 for some e > 0, we have ¢ = 0.

3.8. I-complete sequences. Using the notation and results obtained in
[2], we are led to the class of complete sequences given by the following

DEFINITION. A sequence {fz} (n=10,1,2,...) in X is said to be I-
complete if, given any g in X and any positive ¢, there exists & finite number
of coefficients ¢, ¢y, . . ., Cm Such that

<e; lub.{cl [ea] (n=1,...,m)} <e

- 5,

Applying the result 3.6.1 and the theorems obtained in 2], we obtain

the following.
THEOREM 3. A necessary and sufficient condition for {fn} to be I'-complete
is that the only ¢ in X* for which Lu.b. | ¢(fa)|/R® < oo for some B> 0 is ¢ = 0.

4. c¢,-completeness and Egi-completeness. There are some other
types of complete sequences which are better studied directly than as special

cases of E-completeness.

(2) Two topologies are said to be comparable if one of them is finer (also called weaker
sometimes), i.e. its ring of open sets contains that of the other. The Lu.b. topology of a given
family of topologies defined on M is the finest of the family.
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One of them is ¢y-completeness introduced in [6] and defined as follows.
A sequence {fy} of elements in a normed linear space X is said to be ¢y,-complete
if ¢ = 0 is the only member of X* for which {¢(fs)} is a null sequence.

Some interesting properties of this class of complete sequences are ob-
tained in [6]. We shall introduce here a sub-class of c¢,-complete sequences,
and obtain some results concerning the same.

41. D=rFiNiTION. A sequence {f,} of elements in a space X is said to be
Ey,-complete if ¢ = 0 is the only member of X* for which {¢(fa)/n?} is a
null sequence for every a > 0.

It is obvious that a sequence {f,} which is F,-complete is also ¢y-complete
(and hence complete in the usual sense). The following example shows that
co-completeness need not always imply Hj.-completeness.

Taking X to be the space I (p > 1), consider the sequence of elements
fn = dZ[,' ugfd (n =1, 2,...) where uy = (3is) Where 8y is the Kronecker 8. The

"

sequence {fp} is ¢,-complete in I, as can be seen, for example, by using [6],
Theorem 2. But it is not Fj,-complete, since for ¢ = (1, 0, 0,...) in l;
we have ¢(fs) =1 (n=1, 2,...). Thus, {¢(fs)/n?} is a null sequence for
every a > 0 while ¢ 54 0.

The construction of Ey-complete sequences in a normed vector space X is
no more difficult than that of ¢y,-complete sequences. For example, we have
the following simple result.

4.2, If {fa} is co-complete, then, for any a > 0, {nfy} is By -complete.

This follows very easily, since, if for a ¢ in X*, the sequence {$(nafs)/n’}
is null for every b > 0, then {¢(fs)} must be null (on taking b = @) and hence
¢ = 0. A less trivial result is

THEOREM 4. Let {fu} be a cy-complele sequence, with ||fa] =1, in a
normed linear space X. Let a, k be any (real or complex) numbers #£ 0. Let
{bn} be amy bounded sequence of nwmbers. Then the sequence {gn} given by
gn=2~F n“f,,—l—dlZ Jabya (n=1,2,...) 18 Eyy-complete in X.

Proof. It is sufficient to consider ¢ in X* for which [|¢||<1. Let
{$(gn)/n?} be & null sequence for every e > 0. If #(n) denotes the number of
divisors of n, it is well known that {t(n)/n€} is a null sequence for every e > 0.
Hence, if B = L.u.b. b, < o, we have

¢( Zfa b,,,d) / ne < D||$[1 2| falln®
din
< BdZ 1/ne = B t(n)/n®
|

—0 as n-—>o0 for every e > 0.

Hence, if {¢(gn)/n¢} is a null sequence for every e > 0, so also is {$(n2f,)/ne}.
Hence {¢(fx)} is null and hence ¢ = 0, completing the proof of the theorem.,
13
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The following theorem gives a mnecessary and sufficient condition for
E,,-completeness in a normed linear space X.

THEOREM 5. A given sequence {fn} of elements in X is H,-complete if and
only if, for any g in X, any € > 0, any ¢ > 0 and any null sequence {an}, there

exists a finite number of coefficients ¢y, ¢, ..., cm (real or complex depending
on X) such that

This follows by an application of ([6], Theorem 1) or ([1], Theorem 1).

5. Construction of c,-complete sequences. The following two
theorems demonstrate some methods which can be used to construct cy-complete
sequences. The first of these (Theorem 6) is a wide generalization of ([6],
Theorem 2) and ([6], p. 328, Corollary).

THEOREM 6. Let {gn} be a complete sequence in X, such that the sequence
{ll gn |I} 7s bounded. Let {an} be a null sequence with non-zero terms. Let k() be
any (real or complex valued) bounded arithmetic function for which k(1) 0.
Let r be any integer > 1. Forn=1,2,...,let fo = d%’ aq ga k((dr, n/dr)) where

in

” m
g— 2 cafnll<e; 2 |en|lan|nt<e.
n=1 n=1

(m, n) denotes as usual the greatest common divisor of m and n. Then {fa} is
co-complete in X.

Proof. We proceed as in the proof of [6], Theorem 2. Let {¢(fn)} be a
null sequence with ¢ in X*. It is sufficient to take only those ¢ for which
¢l <1. Since fpr = a; g1 k(1) +ap, gp, k(1), we have

k(1) [ay | l¢(91)l<l¢ (fp;)lﬂ%,.lk(l) I8 ||92a |

-0 asn—> o0,

since ||gp, | is bounded and {@p,} and {qS(fpr)} are null sequences. Thus
n

#(g1) = 0. We now proceed by induction and assume that ¢(g:)=10
(¢t=1,2,...,m—1). Take pn > m and consider the null subsequence

(7o)

W) = Zou 00 1@ morjo)
+m $(gm) B+ Z aap, $(Gap,) K(pd"> mrjdm))
= am $(gm) K1)+ Z dap, $(gap,) k(d", m[d")).

‘We have

As n—>oo, the left member and each term in the summation in the right
member tend to zero, giving ¢(gm) = 0. Thus, ¢(gs) = 0 for all n and hence
¢ =0, completing the proof.

13B
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TaeorREM 7. Let {an} be a null sequence of non-zero numbers and {bn} o
bounded sequence for which the subsequence {bp"} (where pp s the nth prime)
converges to a limit 7 —b;. Let {gn} be a complete sequence in X. Define

f'n= ) ad gd bd (n=1,2,...).

dydz|n

Then {fn} is co-complete.
Proof. Let for a ¢ in X*, |||/ <1 and {¢(fs)} be null. Since

fo, = a191(b1+bp,)+ap 9p, b1

we get, on equating the values of ¢ at the elements on either side of this rela-
tion and letting # — oo, that ¢(g;) = 0. As before, we shall proceed by induc-

tion and assume that ¢(g;) = ... = ¢(gm-1) = 0. Taking py > m,
= Xaq E  beta Z bet- X z
fmp” 4 dgdel(mpnld) ot mgmelpn e+d1m o, iz, ¢l (m/d) be.

The induction hypothesis gives

(fmv,) = am $gm)(br-+bp,) + & dap, #(9ap,) 7 be-

Since the left member and every term in the summation on the right separately
tend to zero as m—>co, we obtain

G $(gm) (b2 +1im by, ) = 0
giving ¢(gm) = 0, thus completing the proof.
6. Examples. First we introduce some arithmetic functions.

Let n= pflh, . .pzk be the prime power representation for n > 1. Let ox(n),

o;(n), oy (n) and J(n) be defined by
al) =oy(l) =0, (1) =Jx(1) =1,
and for n > 1 with the above factorization into primes,

ox(m) = [I(14+p;+ - - . +p*),
oy (n) = [I(1+2f*%),

o (n) = ITe(p%)
1
where
NS 14pr+p2t ... 4%, 0<a<4,

W) = g petippt,  a>4,

and
1

Tetm = 1T (1— ?).
The arithmetic interpretations for these functlons are that o,(n) represents
the sum of the kth powers of the divisors of n; ak(n) represents the sum of
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the kth powers of the ‘unitary’ divisors of », namely those divisors ¢ of =
which are prime to their conjugates; az*(n) represents the sum of the kth
powers of those divisors d of n whose greatest common divisor with the corre-
sponding conjugate divisor n/d is square-free. Finally, if k& is a positive in-
teger, Ji(n) is the Jordan’s generalization of Euler’s totient function, which
stands for the number of ordered sets of k positive integers whose greatest
divisor is prime to =, or, alternately, J(n) represents the number of integers
in a complete residue system modulo n* whose greatest common divisor
with n* is k-power free (ignoring the trivial k-power 1).

Let I'(R), R > 0, denote the normed linear space of all power series a(z)
given by

<«
a(z) = 2 a,z»
n=0

for which N (oc R) = Z‘ [an[R" < o0, with N(e; R) as the norm of a(z). This
space is easily seen to be complete and its dual I'*(R) consists of functionals
¢ = (b, by, by, . ..) such that Lu.b. || /R! < oo, and ¢(a(z)) = Zbsas. Conver-

gence in I'(R) is uniform convergence over the circle |zi| = R
It is known that the sequence «x(2) given by

%n(z) = 14 z (1— E)P/pz n=1,2,..)

=0
is a complete sequence in I'(1) ([4], Theorem 3).
Let s > 0 be fixed and let %4() denote any one of the functions os(n), a:(n),
o."(n) and Js(n). Forn=1,2,..., we define

©
fn = Qp, 1+p§1an, D41 Z"/pz (6.1)

where, foreachn (n =1, 2,...) and each p (p =10, 1, 2,...), we let

i, piz = z( ¢ ()hm (m)n,

p) being the usual binomial coefficient and ( ) defined to be unity.

‘We then have the result that
6.2 The sequence {nt fn} is Eoy-complete in I'(1) for all t > —s.
To show this, we use Theorem 6 setting, in its statement, r =1, gp = ay
and
(i) an = pm)/ns, k(n)=1 in the case hs(n) = Js(n)

(ii) a, = 1/ns, En)=1 if hs(n) = o35(n)

(iil) @, = 1/ns, k(n) = [1/n] if hg(n) = o (n)

(v) an=1/ms,  k(n) =|p()]| if hy(n) = 0, (n).
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Here p(n) stands for the well-known Mébius arithmetic function and [a]
denotes as usual the largest integer not exceeding a.
We observe that the sequence {ax} is bounded in norm since

Nlon, 1) = 14 i (1_ %)P/pz
p=1

< 142 1/p2 = 1472/6.

From Theorem 6 it follows that the sequence {B.} = {Ba(2)} is cy-complete
in I'(1), where
fu=Z daral(d, njd) (n=1,2,..)

= fuln®

where f, is given by (6.1).
Applying the result 4.2 for the sequence {f,/n%}, we obtain 6.2.
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