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MATHEMATICS

AN ARITHMETIC FUNCTION AND AN ASSOCIATED
PROBABILITY THEOREM

BY

M. V. SUBBARAO

(Communicated by Prof. H. D. KLoOSTERMAN at the meeting of May 28, 1966)

1. The Theorem: Throughout this note, £ and ¢ denote natural numbers
satisfying k>1 and 0<g<k. We will prove the

TaeorEM: The probability that the greatest common divisor of two
natural numbers has its &t power free part ¢th power free is ((2k)/{(2qg),
where {(s) is Riemann’s Zeta function.

Note that the kth power free part of a natural number n becomes n
itself when % is infinity, and that when ¢g=1 the statement that » is g*
power free implies n=1.

Corollary 1: The probability that two integers be relatively prime
is 6/n2. This is a well known result (see, for instance [1, theorem 332]
and follows when k=oco and g=1.

Corollary 2: The probability that the greatest common divisor of
two natural numbers be gth power free is 1/Z(2¢) (McCARTHY [2, theorem 4]).
This follows on taking k=oo.

Corollary 3: The probability that the greatest common divisor of
two natural numbers is a kth power integer is 67(2k)/n2. In particular,
the probability that the greatest common divisor is a perfect square is
72/15. We have only to take ¢=1 in the theorem.

9. The Function: @iqn). Let ggq(n) denote the number of integers
m(mod n) such that (m,n) has its k2 power free part ¢ power free,
with @gg(1)=1.

Let n>1 have the canonical form
(21) n=p1% P22 ... PrPr.
It is not difficult to see that
1 1 1 1
=nTl(1- —+— — —— + — — ...
Pr,a(m) g( pid | piE pite erimc )

where the expansions terminate with the terms whose denominators are
the largest factors of n of the forms pii# or pt*+e. Let Aiq(n) be the




94

multiplicative function defined for prime powers p? as follows:

1,6 = 0 (mod k)
Ak, q(p?) = —1,a =g (mod k)
0 otherwise.

We easily observe that
(2.2) Pi,o(n) = % Ar,q(d) (n]d).

Since one can verify that

(2.3 520 _ rik)etas)
we have
2.9 > 2™ g5 1) t(k)c(gs)-

It is also of interest to note the following other defining properties
Of (pk,q(n).

(2.5) Pr,o(n) = ‘;; p(n/d)

des

where s is the set consisting of unity and all natural numbers n>>1 in
whose canonical representations given by (2.1) none of the exponents a;
satisfies any of the k—g¢ congruences

a; =t (mod k), t=q,q+1, ..., k—1.

Also
(2.6) Pr,(n) Egml'
(r,n)es

Finally we note without proof that gg,q(n)

may also be defined as the number of those arithmetic progressions
r (mod n) (r=1, 2, ..., n) which contain an infinity of terms whose greatest
common divisors with n have their ktt power free parts ¢t power free.

The functions gi¢(n) and Az q(n) were considered in a recent paper of
V. C. Hagrris and the author [3].

3. Proof of the Theorem: We follow the method of Hardy and Wright
and McCarthy. Since the number of pairs of natural numbers (a, b) for
which >0 and 0<a<b<n is n(rn+1)/2, and the number of such pairs
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for which the greatest common divisor (a, b) has its kth power free part
gt power free is '

3 gralr)

r=1
the theorem follows from the

Lemma:
> Pr,o(r)=3n2C (2k)[C (29) + 0 (n log n).

r=1
To show this, we make use of the relation (2.2) and familiar arguments.
We have
n n
lek,q(f) =2 2 M

m=1dd’ =m

LS = 3l S
4

dd’ <n =1 d’=1

I

12 3 HA)n/dNIn/d] +1)

I

22 SAQ)BR—n2 S Md)/d?
d=1 d=n+1

n O(né:ll /)
— 1/202¢(2k)/E(29) + O(n) + O(n log n).
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