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1. Introduction.
Let K be a totally real agebraic number field of degree n. Let K ® (1 < 1 < n) be the
conjugate fields of K. For v € K, we denote by ~® (1 € i < n) the conjugates of vy and

n
N@H) = H 49 the norm of . Let 4; (1 < < n) be numbers of K and z; (1 <4< n) be

=1

n ) n )
real numbers. We set £ = ) z;v; and define M) =3 :t,vyg-') (1 € ¢ < n). We use the
=1 =1
notations
n

ligl = max €9, (&) = €9 and E(€) = exp(27iS(¢))-

i=1
where exp(z) = . A number 7 of K is called totally nonnegative if A >0(1<i<n).
It was Siegel [5,6] who succeeded in dealing with Waring’s problem in an arbitrary
algebraic number field by his generalized circle method, and obtained the result corre-
sponding to Hardy-Littlewood’s estimation on G(k).
Ayoub [1] gave an extension of Siegel’s theorem, namely to replace the kth powers by
polynomial summands for totally real algebraic number fields. Let v, a, o (1 < i< k— 1)

be nonzero totally nonnegative integers of K and k > 2. Consider the polynomial
$(8) = at* + a1 &7+t
and the equation

1) v=9(&1) + -+ 6(&)-
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Canada.
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" Let A(v) be the number of solutions of (1) in totally nonnegative integers &;,..., &, satis-

fying N(&) < N(v)/* (1 < i < s). Ayoub established that if s > n(2* + n) + 1, then

I(1+%)

@) A(v) = DY20-9) g(v) (F—(JW

) N (@)™ Nw) ™+ (1 + o(1))

where D is the absolute value of the discrimant of K and S(v) the singular series of (1).

It is our object to give a natural extension of Ayoub’s theorem, namely to replace the
¢(¢) by different polynomials of degree k, and to give a slight improvement on the lower
bound for s to max(4kn,2* + 1). In addition, it seems that there is a gap in his proof of
(2) (See Remark in §6).

Consider the polynomials
(3) $i(A) = a ¥ ey AR 4 a), 1<i<s
and the equation
(4) v=2¢1(A1) + -+ ds(As),

where v and g (1 < 1 < s) are given nonzero totally nonnegative integers and
a;i(1 <j<k—1,1<1iX<s) are integers. Let B(r) be the number of solutions of (4) in

totally nonnegative integers A!"(l <t < s) satisfying N(A\;) < N (u)l/ E1<i<s).

THEOREM. If s > max(4kn,2* + 1), then
B(v) = 6'J N(v)™ /% (1 + 0(1))

where &' and J denote the singular series and singular integral of (4) respectively. (See

§5).

2. The generalized circle method.
Let wy,...,wy be an integral basis of K and 6 the different of K. We can choose a

basis py,...,pn of 6! such that
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1, ifi=y,
0, ifi#j.

Storsw) = {

Set £ = z,p1 +--*+ Tpnpy and 7 = y1w; + - -+ + Yawy where z; and y; (i < ¢ < n) are
n n

real numbers. We denote by dz = [] dz;, dy = [] dy; P(T) the set of y = (y1,...,¥a)
=1 =1 =

satisfying 0 < () < T (1 <i<n)and Y  asum where A runs over all integers such
AeP(T)

that 0 < A} < T (1 <i < ).
Let Q denote the rational number field and U, the n-dimensional unit cube {g =
(z1,-.-,Zn}:0<2; <11 K8 < n)} Let h and ¢ be real numbers satisfying A > 2Dt and

t > 1. For any v € K, we can determine uniquely two integral ideals Ap, £ such that
¥ =L[A, (A4,L)=1.
We write v — A. Let I'(t) be the set consisting of v = z1p1 + « -+ + Tapn satisfying
z€Un:z; € Q1 <i<n), vy Aand N(A) <.

For every 4 € I'(t) subject to vy — A, we define the basis domain B, by

z:z€U,, 1_"1 max(h|£®) — '7((,') [,t™') < N(A)™* for some 4o = y(mod §71).
We can show that if 4; and v, belong to I'(t) and v; # 2, then

B, NB, =4¢.

(See, Siegel [5,6] or Wang [9]). We set

B:UB,

7€r(t)

and define the supplementary domain S of B with respect to U, by
S=U,—B.

This division of Uy, into B and S depends on (h,t). We shall call this division the Farey

division of U, with respect is (h,t).
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Let
Si(6T)=5:(€) = Y E(#i(v)¢) and S(¢,T) = [ 5i(e)
A€P(T) i=1
Since for any integer
E(at)dz = { L i a=0,
U, 0, if as#0,

the number of solutions of (4) in totally nonnegative integers )\;(1 < i < s) satisfying

Al < T(1 <4< s) is equal to

20) = [ s(eT)E(-ve)ds = [ stenE(-vedz+ [ stenEved

(5) =21+ 2,

say.

3. Asymptotic expansion for S,(¢).
Denote by
1

__1 __ ml—a _ mk—1+a
a_4+4kn’t_T and h=T

where T' > 1. For any v € I'(t), let £y = (e, ..., a147) be the ideal generated by

ke, .-, ayY and A, denote the denominator of £,6. We use the notations

€=7=¢ Gil1) = N(A)™ 3 E@eN)y) and (s,7) = [ Eluln)o)ay,
A(Ae) P(T)

where Y. denotes a sum in which X runs over a complete residue system mod A,. We
A(4e)
use En to denote the whole n-dimensional Euclidean space.

LEMMA 1. (Hua [3]). For any given € > 0,
Gelv) < N(Ag)= %,

hereafter the constants implicit in “&«” or “O” may depend on ¢ and K. (Note that ai;’s

are given integers of K).

LEMMA 2. (Vinogradov [8]). Let f(z) = vxz* + --- + 41z be a polynomial with real
coeflicients. Then
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1 .
/ exp(2nif(z))dz < min(l, ]fyl|_1/" eens |'7k|_1/k )
o

LEMMA 3. (¢, T) < ﬁ min(T, |¢() |-1/F).
=1

PROOF: Let n(j) = Tuj, 1 £ j < n. Then the Jacobian of y,...,y, with respect to

u3,...,U, is equal to D~Y/2 7" Therefore by Lemma 2,

n 1 n
L(¢,T) = D21 ] / exp(2mipe(4;T)¢W )du; < [ min(T, |¢0)|1/4),
j=1 70 j=t

and the lemma is proved.

LEMMA 4. Ifs <k, then

/ H min(T, |¢®|"V* )2 dz < T(=Fn
E,

=1

PROOF: Let ¢() = vj,1 < 7 < n. Then the Jacobian of zy,...,z, with respect to

Uly...,VUn IS DY? . Therefore

/ H min(T, [g(j) I_l/" )dz < D2 H / min(T‘,vJ-_"/k )dv;
B =1 j=1 Y

T* o) n
< (/ T*dv +/ vk dv) < Tl=hn
0 T-*

and the lemma is proved.

LEMMA 5. Let u be an integer. Then

Y. E(pe(A +n)g) + N(A) ™ Lel¢, T) + O(N(A) ' T*7°).

'1+#§II;(T)

PROOF: The proof is similar to the proof for the sum of E(a(X + u)¥¢) (See, Siegel [5,6]
or Wang [9]). We give the proof here, for the sake of completeness.
Determine positive numbers 6() (1 < § < n) such that
n
(6) 60 max(hjs¥,¢) = D/** [] max(hic],e71)" N(40)"/
=1

then
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19 = D2 N4y,
=1

and it follows by Minkowski’s linear form theorem that there exists o € A; such that
(7 0<o? <o, 1<i<n.
Hence 0.4[1 = L is an integral ideal and

N(L) = IN@IN(M) < [[00 N4 = VD

=1
Therefore £, belongs to a finite set depending on K only. Let oy,...,0, be a basis of

L;'. Then A, = 0L;! has a basis
5 =00;, 1<i<n.

By (6), (7) we obtain
=l = Ollell) = o(liél)) = o).
Expressing A in terms of 7;’s we have
A=gim +- -+ gnTn,

where g;’s are rational integers. Let U()) denote the unit cube
S:T=81T1+ -+ 8aTn, gi <8 < g +1(1 <P < n)

n
and ds = [] ds;. Then by (6) we have

=1
Eloed+0)5) = [ Bloelr +w)ds
U
< I =)l + 57" + A+ o] +1)
< |6¢|IT*! < h T « T

Since the number of integers A with A¢ | A and A + u € P(T) is O(N(A,) "1 T"), we have

> EleA )= ) / E(pe(r + p)¢)ds
MueP(T) MueP(T) TUR)
Ae|A Ae[A

+ O(N(A)1T™*)




On a Generalized Waring’s Problem 271

[ o [ Elodts + w)e)ds + 0N (A T0).
0<ul) +r0) <T

Let 7 + 4 = 5. Since the Jacobian of s;’s with respect to y;’s is Dl/2|de1:(';'_,,(~"))|“l =

N(A)™?, the lemma follows.
LEMMA 6. Si(€) = Ge(v)Ie(s, T) + O(T™°).

PROOF: By Lemma 5,

5:€) = Y E(@elw)r) Y, E(S(h+ p))

#{Ae) ¢\+[4;z€£1':(T)

= Y E(e(m))(N(Ae) " Le(¢, T) + O(N (A) ' T*))
w(Ae)

= G Iels, T) + O(T™*).

The lemma is proved.

4. Basic domains.
Set G(7) = I_Il Gi(r), S(&,T) = [11 5:(¢) and I(¢,T) = 1_11 L(.T).

LEMMA 7. Ifs > 4kn, then

[ senECvgis= 3 ctBC) [ 16 TIB-v)de + 0Tt ),
B ~1€X(e) By

PROOF: Let v — A. Since A;|A|an ... oy A;, we have
NA) T« NA T < NMA) T, 1<i<s.
By Lemma 1, 3 and 6, we have
S(6,T) = G5, T) + O(T** max (T, 1G5 () L6, T)))' ™)
= G(MI(¢,T) + O(T™ 9 ) + O(T™* (N (A)/k+e/e f[ min(T, [¢®)|71/k y+-1).
=1

Since the number of v € I'(t) such that v+ — A is O(N(A)) and the number A such that
N(A) = m is O(m®), we have
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®) PIRUCREIE D DE I S
7€l(Y) mstn

a.ndbyLemma4anda=%+;{7,

[ sEDEvae= 3 GeEw) [ 16T)ECvd
B B,

~€r(t)

+o(Tt) )+O(T"‘“ 3 N(A)TR / T min(T, s |75 )" dz)
~€ET(t) B =1

= G(E(-vv) | I(¢, T)E(—v¢)dz + O(T7Hm=2 )
'16%:‘) / B,

The lemma is proved.

LEMMA 8. Ifs > 4kn, then

/ S(6,T)E(-ve)dz= > G(v)E(-v) / I(¢,T)E(—v¢)dz + O (T B ),
B 7€T(e) En

PROOF: By Lemma 7, it suffices to show that
W= ) GME(-w) / I(¢, T)E(—w¢)dz = (T 42 ).
7€T(t) En—By
If z € E, ~ B, then there is at least one index ¢ such that hi¢0)| > N(A)Y™. Hence by
Lemma 3

ve)dz T wmin (T, (O |-/*
‘/E”_B1 I(s, T)E(—1¢)dz < /E,.—B., [ min(z?, 1c® |7*/* )dz

i=1
o] 0 —
</ u'/"du(/ min(T',v_‘/" )dv)n !
A1 N(4)-1/n )

< B N(g) s (&) pleB)-)

By Lemma 1, we have

S N « 3 Na)EE ot
2610 =)

Therefore
W< T(a—k)n—(f;—1)(1—a)+2(1—u)n < T(c——k)u—a i
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The lemma is proved.

5. Some more lemmas.

Set
J,-(g,T):/ E(amn*)dy(1<i<s) and J(¢,T) =[] (s, T).
P(T) =1

Since
E(¢i(n)¢) — E(ewin*¢) < ST,
we have for 8 = —k + 1

n+l1?

[ ) - 36, 1) B(-vs)iz < [, WD) - 36 Tidz
E, lsli<T®

n
+3 [ T) I Tldo = B + 55, say.
=1 7 Is® >T°
By Lemma 3, we have
7" 10 n n
Z</ / T*1 Zv,-H min(T,v‘!/")'_ldvl...dv,.
1 Y Y =1 i=1

< T(s—1)n+k—1+(n+1)8 < T(s—k)n—n
and for s > 4kn,

oo n—1
Iy« / otk dv/ H min(T, vj_l/k Y dvy ... dvns
0 o

< T(—2/k+1)8+(s—k)(n~1) < T(a—k)n—(n/k—l);_h— < T{s—k)n—1 .
By (8) and Lemmas 1 and 8, we have

LEMMA 9. Ifs > 4kn, then

/B S(ET)E(-vE)dz = Y G(v)E(-vv) /E.. J(¢, T)E(—v¢)dz

7€)

+ O(T(l—k)n—a )

Let n' = ghwr + -+ + ypwa, ¢ = zip1 + -+ Zhpp, dY = dy}...dy},, d =
dzi...dz},, n = Tn' and ¢ = T*¢'. The Jacobian of y;,...,yn and zi,...,z, with
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respect to ¢,,...,y, and z},...,z}, are T" and T™*" respectively. Then
arn®¢ = aun'’®¢'.
Write ' and ¢/ by n and ¢ again. Then

(9) /E” J{¢, T)E(—v¢)dz = TCH® J(y),

where p = vT~% and

T =J = /E, (TT % 1)) E(-g)ez.

=1

J is called the singular integral which is absolutely convergent by Lemma 3 if s > k.

Similar to Siegal [5,6] or Tatuzawa [7], Wang [9], we have

n
J = DY k= N(ayy ...en)* [ Fe,
=1

where

s
1_
F¢=/ we ldw
11

=1
.

8—1
in which dw = [] dw; and W, denotes the domain
i=1
0 <w; Saﬁ) 1<i<s), w0 — — s —w, =0.

By Lemma 1 we have for s > 4kn

Y. GME(-vn) < Y. NA)E* <109
A

44 T
N(A>" N(A)>t»
and thus
(10) Y GE(-v7) =& +o(T -9
7€I(t)
where

&' =) GME(-v)
T

in which 4 runs over a complete residue system of (.116)‘l , mod §71, &’ is called the
singular series.

By Lemma 9. (9), (10) and (11), we have

LEMMA 10. Ifs > 4k™, then
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/B 5(¢,T)E(-vé)dz = &'J TEH (1 4 o(1)).

8. Proof of the theorem.

Let 8 be a number satisfying 0 < 8 < (1 — a)2l"‘ .

LEMMA 11. Ifz € S, then

Si(¢) <« T

where the constant implicit in < depends on 0.
This can be proved a a Siegel’s lemma [5,6] on the diophantine approximation for

£(z € S) and a theorem of Mitsui [5]. See, Tatuzawa [7], p. 54.

LEMMA 12. If1<j <k, then

/ |S€(5)|2jd:z: < T@-inte
Un

This is a generalization of Hua's inequality [2] in algebraic number fields. See, Ayoub

(1], p. 447.

LEMMA 13. Ifs> 2F +1, then

/ S(¢,T)E(—ve)dz < TCH?
S

PROOF: Put

Then

0<6, <(1—a)2'*.

By Lemmas 11 and 12 we have

/S (S:()]* dz < T2 )n—01) /U IS:(€)[* dz

< T(s—z")(n—al)+(2* ~Bntd—0 o ple-kn-d
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Therefore by Holder’s inequality,
d . 1/s
/S S(6.T)E(~v€)dz < /S iste.iée < ]] ( /S |5:(6)1*dz)

< T(a—k)n—0 .

The lemma is proved.
Proof of Theorem. Set T = N(v)/** . Out main theorem follows from Lemmas 10

and 13 and (5).

Remarks. 1.) We have not discussed the singular series.

2.) In Ayoub’s proof of his Theorem 5.3 ([1], p. 443), the estimation

Z S(ldi—l ) < Tk+u—l N(l‘)_l h—l N(ﬂ)_l/n
A+pe¥
A

is used. Since from the definition of ¢ ([1], p. 441), i.e.
N(max(hl¢|,t™') < N(4)™

or

f[ max(kj¢® [,+71) < N(4)7T,
i=1

if n > 1, i.e. if K is not rational field it seems that we cannot derive that for all 1,
hl¢O | < N(4) "

or

S(lel) < AN ().

Another thing he used is that A(v) = A(vn*) ([1], p. 449). This seems not trivial
when ¢(€) # at*.
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