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ON SIERPINSKI’S CONJECTURE
CONCERNING THE EULER TOTIENT

M. V.SUBBARAO AND L. W. YIP

ABSTRACT.  If @;(n) denotes the Schemmel totient (so that @, (n) becomes the Euler
totient) we conjecture that for each k > 1 and any given integer n > 1 there exist
infinitely many m for which the equation ®,(x) = m has exactly n solutions. For the
case k = 1, this gives Sierpinski’s conjecture.

We prove that on the basis of Schinzel’s Hypothesis H, our conjecture holds for any
k > 3 of the form p§ — 2 where po is an odd prime and @ € N. In 1961 Schinzel proved
the case k = 1 assuming his Hypothesis H.

1. Introduction. Let ¢(n) denote, as usual, the Euler totient representing the num-
ber of natural numbers not exceeding » and relatively prime to n. This function has been
generalized in several directions. Here we will concern ourselves with the generalization
known as the Schemmel totient @, (for a fixed natural number k). ®; is defined as fol-
lows: ®(1) = 1, ®i(n) = 0if n contains a prime factor not exceeding k, and if all the
prime factors of n are greater than k, then

O(n)= [ p* "0 - k),
Pl

where p?||n means p®|n and p®*! f n.

More than thirty years ago, W. Sierpinski (see [3]) made the following conjecture:

For any given integer n > 1, there exist infinitely many m for which the equation
@(x) = m has exactly n solutions.

A. Schinzel [4] showed that his Hypothesis H (quoted in Section 2) implies the truth
of Sierpinski’s conjecture.

The purpose of this paper is to make a similar conjecture for the function ®;, and
prove that for a certain type of integers k, this conjecture follows also from Hypothesis
H. However, we are unable to settle this conjecture for an arbitrary k even on the basis
of Hypothesis H.

2. Preliminaries. Denote by N the set of all natural numbers.

Let Ni(m) denote the number of solutions of the equation ®x(x) = m. We write N(m)
for Ny(m). It is easy to see that Ny(m) = O whenever k and m (> 1) are of same parity.
Similar to Sierpinski’s conjecture, we make the following:
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CONJECTURE 2.1. Let k be a fixed natural number (including 1). For any given in-
teger n > 1, there exist infinitely many m such that Ny(m) = n.

REMARK 2.2. We exclude the case n = 1 because of the still unproved conjec-
ture of Carmichael ({1], [2]) which says that N(m) is never equal to 1. Incidentally, the
Carmichael conjecture can be extended to Ni for some even natural numbers k (see [6]
or [7]).

We now state Schinzel’s Hypothesis H ({4], [5]) in two equivalent forms.

2.3. Lets € N. Let fi(x), ... ,f;(x) be irreducible polynomials with integral coeffi-
cients, and for each polynomial the leading coefficient is positive, and there is no integer
d > 1that is a divisor of each of the numbers f;(x)-f2(x) - - - f;(x), x being an integer. Then
there exist infinitely many natural values of x for which the numbers f1(x), /2(x), . . . . fs(x)
are all primes.

24. Let fi(x),fr(x),....fs(x), g1(x),g2(x),...,8(x) be irreducible integer-valued
polynomials of positive degree with positive leading coefficients. If there does not ex-
ist any integer > 1 dividing the product fi(x) - f2(x) - - - fs(x) for every x € N, and if
g(x) # fix) for all i < 5,j < t, then there exist infinitely many positive integers x such
that the numbers fi(x), f2(x), . . . ,.fs(x) are primes and the numbers g1(x), g2(x). . .., 8:(x)
are composite.

REMARK 2.5. We wish to point out that while Hypothesis H implies Sierpinski’s
conjecture, it is an open problem whether it also implies the truth of the Carmichael
conjecture.

3. The main result. We prove the following:

THEOREM 3.1. Letk 2 3 be of the form p§ —2, where pg is an odd prime and a € N.
Then Hypothesis H implies that for any given integer n > 1, there exist infinitely many
integers m such that Ny(m) = n.

PROOF. Let go denote the smallest prime factor of k + 4, and let r = M¥M

SetA={a€N:(po—1) fa} = {a),a2,a3,...} ,wherel =gy < @y < a3 < ...
(note that a; < 2i for all i since A contains all odd numbers).

For any given n > 1, consider the irreducible polynomials defined by

fix) =2 +k, fri@=2""%+k, i=12,...,n fruax)=x

The irreducibility of 2x* + k follows from Eisenstein’s criterion.

EISENSTEIN'S CRITERION. Let / be a unique factorization domain. If f(x) is a poly-
nomial f(x) = ap + aix + - - -axx" in I[x] such that for a prime element pin I, a, # 0
(mod p), Gp—) = Gp2 = -~ =ap =0 (modp)butag Z (mod p?) then f(x) is
irreducible over the field of quotients of I.

Note that since k is odd, the criterion is applicable to 2x* + k with p = 2. Note also
that m — a, > ap, so that f,,:(x) (1 < i < n) is distinct from fi(x), . . ., fa(X).
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We have [12"}! fi(1) = p2°". Let u be a primitive root modulo po. Observe that 2u° +
k=0 (mod po) if and only if (po — 1)|a. Since, by the definition of A, (po—1) [ ai
and (po — 1) J (rm— a;) for all 1 < i < n, we conclude that po J 124! fi(uw). Therefore,
the condition of Hypothesis H is satisfied.

Define by < by < ... < by-2), in such a way that

{bl,bz,...,b(,_z),.} = {l,2,...,m}\ :L_Jl{a;,m—ai},

and define
g =22 +k j=12,...,0=2m

By Hypothesis H (2.4), there exist infinitely many integers xo—which we may obvi-
ously assume to be different from go—such that all the fi(xo) (1 < i < 2n+ 1) are prime
and all the g;(xo) (1 <jL<(@r—-2);n+ 1) are composite (in particular, 2xg" +kand 4x7' +k
are composite).

Also 4xJ' + k is composite when x is a prime different from go. This follows from
Fermat’s theorem since (go — 1) divides r and the fact that go divides k+4.

Consider, for such an xo withxg > k +4, the equation

3.2 Di(y) = 47

If y is a solution of (3.2), then obviously y can have at most two distinct prime factors,
ie. y is of the form p? or p°¢® (p,q denote primes). If a > 1, then p(p — k)|4xT, so
p = xo and (xo — k)|4xg', which is impossible since xo > k + 4. Similarly we must have
b = 1 in the latter case. If y = p, thenp — k = 4, i.e. p = 4x3 +k, contradicting the
compositeness of 4xg’ + k. Now we conclude that y = pq for some distinct primes p, g,
and we may write (3.2) as

p—k _g-—k
‘ (—2—)(-—2—') =x5. ‘7

Both factors on the left-hand side are greater than 1 (otherwise we would get a con-
tradiction to the compositeness of 2x7' + k). It follows that { P.q} = {fio(x0):fario(x0)}
for some 1 < ip < n, i.e. y = fig(x0Mfasio(X0)-

Obviously, for any i € {1,2,... ,n}, fi(xo)fnsi(xo) is @ solution of (3.2). Thus (3.2)
has exactly n solutions. This completes the proof.

REMARK 3.3. [Itis shown elsewhere that forany odd k > 1, there are infinitely many
integers m for which Ny(m) = 1 (see [6] or [7)). That is why we exclude the case n = 1
in the above theorem. In a certain sense, this theorem is an extension of Schinzel’s work
on Sierpinski’s conjecture. We would expect that this theorem holds for any k as stated
in Conjecture 2.1. However, it seems to be extremely difficult to settle this problem.
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