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Abstract

Let ¢(z) be the Euler totient and ®x(z) be the Schemmel totient
(a generalization of p(z)). In this paper, we first review some results
‘concerning the number N(m) of solutions of ©(z) = m, and in partic-
ular the celebrated conjecture of Carmichael that there is no integer
m for which N(m) = 1. Later in the paper we consider for the first
time in the literature, the analogue of Carmichael’s conjecture for
®;(z). If Ni(m) denotes the number of solutions of ®x(z) = m, we
prove that for each odd integer k > 1 there exist infinitely many m
for which Ni(m) = 1. We conjecture that there is no z for which
Nz(®2(z)) = 1, and prove that if such an integer z exists, then
z > 10129000 Some other related conjectures are also given.

Preliminaries

We write, as usual, ¢(n) for the Euler totient representing the number
of natural numbers not exceeding n.

A generalization of ¢ is the Schemmel totient $;(n) introduced in 1869
(see [4], p. 147). It is a multiplicative function of n, with ®,(1) = 1, and

for primes p, ‘
' 0 ifp<k
ay __ — H
D (p*) = {,,a—l(p —k) ifp>k.
The arithmetic interpretation of ®)(n) is that it gives the number of sets
of k consecutive integers not exceeding n each of which is relatively prime
to n.
At the end of the paper, we briefly refer to the unitary totient function
©*(n) which is a multiplicative function with o*(p?) = p* — 1. ©*(n) gives
the number of natural numbers not exceeding n and unitarily prime to n.
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_(An integer m is said to be unitarily prime to n if the largest divisor of
m which is a unitary divisor of n is unity — a unitary divisor of n being
defined as a divisor d of n which is relatively prime to n/d.)

We write N(m) (respectively Ni(m)) for the number of solutions of
o(z) = m (respectively ®(z) = m). N*(m) has an analogous meaning
for p*(z) = m. Also p,p1,p2,.--,q1, 42, - - - always denote primes. We write
p® ||  to mean that p® | z but p**1 fz.

¥(z,y) denotes the number of integers n < z free of prime factors
exceeding y, and II(z, y) denotes the number of primes p < z so that p—1
is free of prime factors exceeding y. Also x(z) denotes the number of primes
<z

Finally, c,cy,... stand for positive constants, not necessarily the same
at each occurrence.

1. The distribution of values of N(m)

There are many interesting problems connected with N(m), one of the
oldest of these being Carmichael’s conjecture that N(m) never takes the
value 1 (which P. Erdds thinks is a very deep problem). The behaviour of
the function N(m) is very erratic. For instance, N(1438) = 2, N(1440) =
72 while N(1442) = N(1444) = 0. It is therefore of interest to obtain
an asymptotic estimate for A(z;9) = ) N(m) = the number of positive

m<z

integers n with 1 < ¢(n) < z (and similar estimates for the functions Nz(m)
and N*(m)). Erdés (8] proved that Jim A(z;p)/z exists. R.E. Dressler

[6] not only gave a completely elementary proof of the Erdos result, but
also evaluated the limit. Once the existence of the limit is known, it is
comparatively easy to evaluate it, for example, by an abelian argument:

i Alme) _ ¢(2)¢(3)
2 g ¢(6)

)

where ¢ denotes the Riemann zeta function.
In 1972; Bateman [1] gave an estimate for the error term involved, and
proved that

(L1) Alzie) = 5%%25_3) T+ O(:cexp{ -(1- 5)(% log z log log x)1/z}),

and conjectured that the error term is

(1.2) O(z exp{—(log z)17¢})
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and holds for every positive €. As far as we know, the conjecture is still
open. Erdos thinks that possibly the absolute value of the error term is
often as big as z exp(—clog z/ log log z) for some positive constant ¢. Some
more on this later in Section 2. A. Ivi¢ [13] generalized Bateman’s result to
cover a number of other arithmetic functions — with a better estimate for
the order of the error term. However, Ivié’s general result is not applicable
to such well known arithmetic functions as o,(n) (sum of the r-th powers
of the divisors of n), Ji(n) (the Jordan totient of order k) and ®;(n) (the
Schemmel totient of order k). This defect was rectified very recently in a
paper by one of us and R. Sitaramachandrarao [24], wherein a very general
asymptotic formula with an error term is obtained for

A(z;f) = Z Am,

1<m<z

where

am = number of solutions of the equation f(n) = m,

or equivalently,
A(z; f) = number of natural numbers n with 1 < f(n) < =z.

The functions f to which this formula is applicable include the Schemmel
totient, the Jordan totient and their unitary analogues, among others.
For the Schemmel totient we have

A(z; ®) = A(®k)z + O(=(8(2))°),

where

k 1.1
A®) = #g‘(l—;ﬁ-;—k),

6(z) = exp(—(log a:)(3/8)_‘),

and c is any positive constant.
For the unitary totient *, the corresponding result is

A(z;0") = A(p")z + O(2(8(2))°),
where

4 =Tl -1+ X 6" - 1),

p
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Results for the upper and lower bounds for N(m) are given in the next
section.

Sierpinski conjectured that for each integer k > 1, there exist infinitely
many m such that N(m) = k. Erdds [9] showed that if there is one such m,
then there are infinitely many. This is true even for k = 1, so that if
Carmichael’s conjecture that N(m) # 1 fails for one m, then it fails for
infinitely many m. A. Schinzel [22] showed that Sierpinski’s conjecture
follows from his hypothesis H. We do not know if Carmichael’s conjecture
also follows from hypothesis H.

For the convenience of the reader, we quote Hypothesis H below.

Hypothesis H. Let s be a natural number. Let f(z),..., fs(z) be irre-
ducible polynomials with integral coefficients, and for each polynomial the
leading coefficient is positive, and there is no natural number d > 1 that
15 a divisor of each of the numbers P(z) = fi(z)f2(2)... fs(z), T being an
integer. Then there exist infinitely many natural values of x for which each
of the numbers fi(z), f2(z),. .., fs(z) is prime.

2. Upper and lower bounds for N(m): the results
of Erdos and Pomerance

There are infinitely many m, such as m = 2 .79 for all a > 0, for which
N(m) = 0. One can therefore ask: how many integers m < z are there for
which N(m) > 0. If f(z) denotes this number, S.S. Pillai showed that

f(2) < cx/(log z)U8 /e,
Erdds (7] improved this to
f(z) = O(z/(log z)'~*)

for every positive € and every z > zg(c). He utilized his result on the
normal order of prime factors of p — 1 and a classical result of Hardy and
Ramanujan on the number of integers < z having exactly k& distinct prime
factors. He also noted that Brun’s method gives

f(z) > cz(loglog z)*/ log z, for every k.

This has been further improved by Pomerance and Maier-Pomerance
[21], wherein it is proved that

f(z) =

T

Togz exp ({c + o(1))(log log log )?)
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for a certain explicit constant c.

We next ask for the upper and lower bounds for N(m).

Pomerance [18] gave what he believes is the best possible upper bound,
namely

N(m) < mexp( — (1 + o(1)) log mlogloglog m/ log log m).

He has a heuristic argument that the above result is best possible in that
there are infinitely many m for which equality holds. The essence of this
argument is as follows. In a forthcoming paper of Canfield, Erdos and
Pomerance it is proved that

(2.1) % ¥(z, exp(logz)'/?) = exp(—(1 + 0(1))2"(log z)!/? log log z).

Now it is reasonable to expect that
1
n(z)

In particular, they conjecture that this holds for y = exp(log x)l/ ?, Based
on this conjecture the above result (2.1) gives

i V(z,y) ~ M(z,y) for z>yandy— oco.

I(exp((log log 2)2)_, log z) = exp((log log z)*—(1+0(1))(log log z) log log log z).

With the help of this, Pomerance proves that the upper bound for N(m)
is actually attained for infinitely many m.

Next, regarding the lower bound for N(m), probably the first result is
due to S.S. Pillai who showed ([7]) that there are integers m for which

N(m) > c(log m)°82/e,
Erdés ([7]) improved this by showing that Brun’s method gives
(2.2) N(m) > m® for infinitely many m.

Actually, as pointed out by Pomerance ([18], Theorem B) one can extract
from the paper [7] of Erdés much more than this; namely, suppose there is
an € > 0 such that II(z,z%) > ex(z) for all large z. Then there are infinitely
many integers m; < my < ... such that N(m;) > m!~* for each 1, and in
fact logm;y1/logm; — 1 as ¢ — oo.

What is the least upper bound C for the values of ¢ for which (2.2)
holds? Erdos conjectures that C = 1, and this is still open. Recently there
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is a succession of improvements to the value of ¢ in (2.2), beginning with
Wooldridge’s (see [25]) that

C > 3— 22~ 0.17157

(where he used Selbergs’ upper bound sieve) to the latest published results
of Pomerance [18] that C > 0.55655 and to the further improvement [20]
that

C >0.68

contained in his recent private communication to the first author dated
June 16, 1987.

There is still a wide gap between this result and Erdos conjecture that
C =1
: Remark 2.3. Erdos’ result (2.2) shows that the error term in (1.1) is
# o(z°) for the same c as in (2.2). After Erdos’ conjecture that C = 1,
Bateman makes the weaker conjecture that the error term in (1.1) is # o(z?*)
for any A < 1.

3. The Carmichael conjecture: on finding a counter-
example

Several authors worked on the Carmichael conjecture, especially, in try-
ing to find a counter-example to it. These include V.L. Klee ([14], [15]),
H. Donnelly [5], E. Grosswald [11], C. Pomerance ([17], [18]), A. Schinzel
[22], P. Erdds [9], P. Masai, A. Valette [16], besides of course Carmichael
himself ([2], [3]).

Most of these authors tried to find a lower bound for a counter-example
to the Carmichael conjecture by examining the structure of the integer z
for which N(p(z)) = 1. Klee [14] showed that such an z must be greater
than 10%0; the best lower bound so far known is p(z) > 101%0% dye to
P. Masai and A. Valette [16]. The technique used to get a lower bound for
the counter-example z is to find more prime factors of z if we already know
some, and is based on the ideas of Carmichael and Klee in their papers and
may be summarized as follows.

Theorem 3.1. Let z = []p]* (A being the range of i) be the intended

counter-ezample = to Carmichael’s conjecture. Find a prime p such that
p—1= Hp:-"'—l(p.- —1)[1p{*, where B and C are disjoint, possibly empty,
B C

subsets of A, such that c; < a; — 1 for i in C. Then p | z. Further, if B
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18 such that for any j in B any prime divisor of p; — 1 also divides z, then.
p? | z. In particular, this is true when B is empty.

The proof is simple and is found in [16].

Using simple arguments, we see that 22 and 32 divide z. These two
factors can be used as a starting point to apply the theorem to get more
and more prime factors of z, such as 7, 43 etc. If one has the patience and
computer money, one can go on almost endlessly on improving the lower
bound, because it is likely that we can build an endless sequence of primes
p dividing z using the theorem.

4. The Pomerance theorem and conjectures

Instead of working on numerical estimates for z for which N(p(z)) =1,
Pomerance [17] gave an interesting and elegant sufficient condition for such

‘an z to exist, as follows.

Theorem 4.1. Suppose z i3 a natural number such that for every prime p,
(p— 1) | p(z) implies p* | z. Then N(p(z)) = 1.

However, no such z is likely to exist. He showed that such an z does
not indeed exist if the following conjecture of his holds:

Conjecture 4.2 (Pomerance). If p; denotes the i-th prime, then for k > 2,
k-1
- (e = 1) | I pi(pi — 1)
=1

If there is an z which satisfies the condition of the theorem, then 22 | z;
and then the use of this conjecture gives successively that 32 | z, 52 | z,...
for each of the succeeding squares of primes. This being impossible, there
is no such z.

As Pomerance noted, his conjecture fails if there is a prime ¢ such that
the smallest prime which is = 1(mod ¢) is also = 1(mod ¢?).

However, there is no such prime ¢ if Schinzel’s hypothesis Hy ([23],
p. 207) is true. It is quoted below for convenience.

Hypothesis Hy. If for a natural number n (> 1) the numbers 1,2,3,...,n?
are arranged in ascending order in n rows, n numbers in each row, then if
(k,n) =1, the k-th column contains at least one prime number.

We see in the next section that these results and conjectures have their




CARMICHAEL’S CONJECTURE AND SOME ANALOGUES 935

_analogues in connection with our own conjecture for the Schemmel totient
®,(z), namely that there is no integer z for which Na(®2(z)) = 1.

5. Conjectures and results relating to ®,(z)

Recalling the definition of ®2(z) given in Section 1, we see that ®2(z) =
0 for all even z. Of course, ®2(z) does not take all odd values. For example,
for any odd prime p for which p+ 2 is not a prime, the equation ®,(z) = p
has no solution. We recall that N3(m) denotes the number of solutions of ~
@2(13) =m. ‘u\\\y’{")”ﬁ ¢ P
Let A(\ 7~ :

(51) q1,92,93,- .-

be a sequence of primes defined as follows: g1 = 3, and for each n > 1,
gn+1 is the smallest prime > g, for which (gn+1 —2) | (9192 .. ¢n)-

We used a computer to calculate the first 10000 terms of this sequence.
We got

10000 = 4873801,

this being the 340256-th prime in the sequence of primes 2,3,5,7,11,- - .
We make the following

1
Conjecture 5.2. The sequence (5.1) of primes g, is infinite.

Remark 5.3. The corresponding sequence of primes in the case of o(z)
would be

ry =2,r2,r3,74,...,

where r, 1 is the smallest prime > r, for which r,1 — 1 divides riry ... 7,

(n > 1). However this sequence has only four terms: 2, 3 = 2+ 1,

7=2-34+1and 43 =2-3:7+ 1. Note that the possible candidates for

the next term are 15 =2-7+1, 87 =2-43+1, 259 =2-3-43+ 1,

603 =2-7-43+1 and 1807 =2-3-7-43+1, and all these are composite.
The importance of the sequence (5.1) arises from the following

Theorem 5.4. If there is an integer m for which ®2(z) = m has a unique
solution, then £ = O(mod ¢2) for each n.

Proof. We argue along familiar lines and we give a proof for the sake of
completeness.
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We have 3 | z, for otherwise ®;(3z) = ®3(3)P2(z) = ®2(z), contradict-
ing Na(m) = 1. Next 32 | z, for otherwise 3 || z and so ®2(z/3) = ®,(z),
again a contradiction.

Now svppose that ¢ | z for all 1 < ¢ < n. Then if go41 ) 7, let
gn+t1 — 2 = Gn,qn, - - - gn,, Where ny,nz,...,n, are distinct integers < n, we
have ®3(¢n+1(2z/(gn, - - - @n,))) = P2(z), contradicting N(m) = 1. Finally,
if gnt1 || z, then ®2(zgn, ... gn, /gn+1) = P2(z), a contradiction.

Thus qﬁ | z for alln. 1

Evidently Conjecture 5.2 implies the following

Conjecture 5.5. There is no integer m for which N3(m) = 1.

In support of this conjecture, we have
Theorem 5.6. If No(®2(z)) = 1, then z > 1012000,

Proof. By taking the first 10000 terms of the sequence, we get

(9192 - - - q10000)? | =

Our conclusion follows from the fact that log;4(192 - - - g10000) = 60341.9.. ..
|

The first few terms of the sequence ¢, are

3,5,7,17,19,23,37,53,59,61,71,73,97,107,109,113,
163,179,181,257,293,. . ..

A complete list of the first 2000 terms of the sequence is available with
the authors.

Renuark 5.7. We could have easily constructed primes other than the ¢;’s
that divide z as in the method used by Carmichael and Klee (described
earlier in Section 3), but felt no need for them as there is an abundance of
the ¢;’s available.

Analogous to the Pomerance results and conjectures we have the fol-
lowing

Theorem 5.8. If there is a natural number = such that for every odd
prime p, (p — 2) | ®2(z) implies p? | z, then N2(P2(z)) = 1.

The proof is similar to that of Pomerance for his theorem in [17] and is
therefore omitted.

There is no such integer z described in the theorem if the following
conjecture holds.
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_Conjecture 5.9. Let p; denote the i-th odd prime. Then for k > 2,
k-1
(e —2) | I] pipi - 2).
=1

Remark 5.10. As Pomerance stated about his conjecture in [17], we wish
to note that our conjecture 5.9 fails if there is a prime p such that the
smallest prime which is = 2(mod p) is also = 2(mod p?). I Schinzel’s
hypothesis H; holds, then there is no such p.

Remark 5.11. One might be tempted to make a more general conjecture,
namely, that for the sequence of primes p; =2, p2 = 3,...,

(Pa+1 — k) | T pilms — ).
i<n
] pi>k
However, this can be false in general. For instance, it is false for k = 3
(take ppt1 = '{7) and k = 4 (take pp4+1 = {7)

i i

6. The case ®y(z), k> 2

We first prove the following

Theorem 6.1. For any given odd integer k > 1, there are tnfinitely many
integers m for which Ni(m) = 1.

Proof. Take any odd prime p > k which satisfies

_ )} 1(mod 4) if k= 3(mod 4),
P=1 3(mod 4) if k=1(mod 4),

as well as
p = (k+1) (mod(2k + 1)).

We note that there are infinitely many such p, in view of (k+1,2k+1) =
1 on utilizing Dirichlet’s theorem for primes in an arithmetic progression
and Chinese remainder theorem.

Take m = p? — kp. Then the equation ¢(z) =.m has the solution
z = p*. We claim that this is the only solution.

Suppose zj is a solution to ®,(z) = m = p(p — k).

By our choice of p, 2 || p(p — k) = ®x(z0). Thus =z is divisible by only
one prime, say zo = ¢*, ¢ being an odd prime. It remains to show that
¢ = p (note that this implies a = 2 immediately).
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If ¢ # p, then p | (¢ — k), and so ¢ > p. Furthermore, if a > 2, then

@k(fqg_) _ ‘Pkgzo) _ P(Pq— k)

>

which implies ¢ | p(p — k), but this is impossible since ¢ > p > p — k. Hence

a = 1, and consequently ¢ — k = ®;(z0) = p(p — k), and this implies that

¢ = p(p — k) + k = 0(mod(2k + 1)) by our choice of p. This is possible only

if g=2k+1. But then k+1 =g~k = p(p—k) > 2(k+1), a contradiction.
Thus we have shown that ¢ = p, and the theorem is proved. &

We may have Ni(m) = 1 for certain even values of k also, as seen from
the following

Theorem 6.2. Let p,q be odd primes with p > q, p # 2q — 1 such that

(6.3) p—q+1 is also a prime,
(6.4) 29— 1 is not a prime, and
(6.5) g(p—qg+1)+q—1 is not a prime.

Then Ny_1(q(p — ¢+ 1)) = 1, the unigque solution being ¢*p.

Proof. Clearly, z = ¢’p is a solution of ®,_1(z) = ¢q(p — ¢ + 1). The
conditions (6.3)-(6.5) ensure that there is no other solution. For instance,
if we drop (6.4), then z = (2¢ — 1)p is another solution, and if we drop
(6.5), then z = q(p — ¢+ 1) + ¢ — 1 would provide a solution. §

Example 6.3. The only solution of ®4¢(z) = 47 -7 = 329 is z = 472 - 53.

7. Concluding remarks

The analogue of Carmichael’s conjecture for the unitary totient ¢* is
false, for if 2° — 1 is a Mersenne prime, then N*(27 — 1) = 1. Pomerance
noted in a private communication to the first author that N*(4(2° —-1)) =1
provided 27 — 1 is a prime with p = 1(mod 4) (though this primality
condition may not be necessary). The determination of all the n for which
N*(n) = 1 is an open problem. For some other results concerning the
equation ¢*(z) = m, we refer to [10].

The truth of the Carmichael conjecture implies that:

(7.1) The equation ©(p(z)) = m (for a given m) has either no solution
or at least two solutions. Is the reverse implication also true?
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We wish to remark that for certain values of m, the equation p(p(z)) =
m has exactly two solutions. For instance, when m = 10 we have

plp(z)) =10 => p(z) =11 or 22,

and this implies £ = 23 or 46. More generally, we have the following:
(7.2) Let m be an even integer such that 2m and m + 1 and 2m + 3
are all prime. Then the equation

p(p(z)) =m

has exactly two solutions, namely, £ = 2m + 3 and 4m + 6.

Another observation that we would like to make is the following. There
may be certain even integers k > 2 for which the analogue of Carmichael’s
conjecture may hold. We may use here reasoning similar to that employed
in section 5. Let g1 = k+1, g2 = 2k+ 1 be both prime and let g, +1(n > 2)
be the smallest prime greater than g, for which (gn+1—k&)|(q192 - .-gn). The
analogue of theorem 5.4 holds, namely, if ®x(z) = m has a unique solution,
then ¢2 divides z for each n. Hence if the sequence of prime, qi,¢2,...
is infinite, we would have Ni(m) # 1 for any m. The matter is being
investigated further and we plan on submitting a separate paper later on.

The authors thank the referee for many useful suggestions.
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