THE DIVISOR PROBLEM FOR (k, r)-INTEGERS

BY

M. V. SUBBARAO AND D. SURYANARAYANA

Reprinted from
THE JOURNAL OF THE AUSTRALIAN
MATHEMATICAL SOCIETY
Volume XV, part 4, p.p. 430-440
1973

THE DIVISOR PROBLEM FOR (k, r) — INTEGERS¹

M. V. SUBBARAO AND D. SURYANARAYANA²

(Received 10 June 1971)

Communicated by E. S. Barnes

1. Introduction

Let k and r be fixed integers such that 1 < r < k. It is well-known that a positive integer is called r-free if it is not divisible by the r-th power of any integer > 1. We call a positive integer n, a(k,r)-integer, if n is of the form $n = a^k b$, where a is a positive integer and b is a r-free integer. In the limiting case, when k becomes infinite, a (k,r)-integer becomes a r-free integer and so one might consider the (k,r) integers as generalized r-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that if $\tau_{(r)}(n)$ denotes the number of r-free divisors of n, then for $x \ge 3$,

(1.1)
$$\sum_{n \le x} \tau_{(r)}(n) = \frac{x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r\zeta'(r)}{\zeta(r)} \right) + \Delta_r(x),$$

where $\Delta_r(x) = O(x^{1/r}\delta(x))$ or $O(x^{\alpha})$, according as r = 2, 3 or $r \ge 4$; $\delta(x) = \exp\{-A\log^{3/5}x(\log\log x)^{-1/5}\}$, A being a positive constant and α is the number which appears in the Dirichlet divisor problem

(1.2)
$$\sum_{n \le x} \tau(n) = x(\log x + 2\gamma - 1) + O(x^{\alpha}),$$

where $\tau(n)$ is the number of divisors of n.

It is known that $\frac{1}{4} < \alpha < \frac{1}{3}$ (cf. [1], p. 272). The best result yet proved has been obtained recently by Kolesnik [2], who proved that the error term in (1.2) is $O(x^{(12/37)+\epsilon})$, for any $\epsilon > 0$. There is a conjecture that $\alpha = \frac{1}{4} + \epsilon$. In the formula (1.1), $\zeta(s)$, denotes the Riemann Zeta function and $\zeta'(s)$ its derivative and γ is Euler's constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis that $\Delta_2(x) = O(x^{(2-\alpha)/(5-4\alpha)}\omega(x))$, $\Delta_3(x) = O(x^{(2-\alpha)/(7-6\alpha)}\omega(x))$ and $\Delta_r(x) = O(x^{\alpha})$

¹ This research is partially supported by an NRC Grant.

² On leave from Andhra University, Waltair, India.

for $r \ge 4$, where $\omega(x) = \exp\{A \log x (\log \log x)^{-1}\}$, A being a positive constant. For earlier (weaker) estimations of $\Delta_r(x)$ by various authors, we refer to the bibliography given in [4].

Let us call a divisor d of a positive integer n, a(k,r)-divisor of n if d is a (k,r)-integer. Let $\tau_{(k,r)}(n)$ denote the number of (k,r)-divisors of n. The object of this paper is to prove the following:

THEOREM 1. For 1 < r < k and $x \ge 3$,

$$(1.3) \quad \sum_{n \leq x} \tau_{(k,r)}(n) = \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r\zeta'(r)}{\zeta(r)} + \frac{k\zeta'(k)}{\zeta(k)} \right) + \Delta_{k,r}(x),$$

where $\Delta_{k,r}(x) = O(x^{1/r}\delta(x))$ or $O(x^{\alpha})$, according as r = 2,3 or $4 \le r < k$, the θ -estimates being uniform in k; $\delta(x) = \exp\{-B\log^{3/5}x(\log\log x)^{-1/5}\}$, B being a positive constant and α is the number which appears in (1.2).

THEOREM 2. If the Riemann hypothesis is true, then the error term $\Delta_{k,r}(x)$ in (1.3) has the following improved 0-estimates:

$$\Delta_{3,2}(x) = O(x^{5/11}\omega(x)), \Delta_{k,2}(x) = O(x^{(2-\alpha)/(5-4\alpha)}\omega(x))$$

for $k \ge 4$, $\Delta_{k,3}(x) = O(x^{(2-\alpha)/(7-6\alpha)}\omega(x))$ for $k \ge 4$ and $\Delta_{k,r}(x) = O(x^{\alpha})$ for $4 \le r < k$; where the θ -estimates are uniform in k and $\omega(x) = \exp\{A \log x (\log \log x)^{-1}\}$, A being a positive constant and α is given by (1.2).

It may be noted that in the limiting case when $k \to \infty$, formula (1.3) coincides with (1.1) and the 0-estimates of $\Delta_r(x) = \Delta_{\infty,r}(x)$ obtained in [4] follow as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of Theorem 1 and 2. Throughout the following, x denotes a real variable ≥ 3 . The following elementary estimates are well-known:

(2.1)
$$\sum_{n \le x} \frac{1}{n^s} = O(x^{1-s}) \text{ if } 0 \le s < 1.$$

(2.2)
$$\sum_{n>x} \frac{1}{n^s} = \zeta(s) - \sum_{n \le x} \frac{1}{n^s} = 0 \left(\frac{1}{x^{s-1}} \right) \text{ if } s > 1.$$

(2.3)
$$\sum_{n \le x} \frac{\log n}{n^s} = -\zeta'(s) - \sum_{n \le x} \frac{\log n}{n^s} = 0 \left(\frac{\log x}{x^{s-1}} \right) \text{ if } s > 1.$$

LEMMA 2.1 (cf,. [6]; Satz 3, p. 191).

(2.4)
$$M(x) = \sum_{n \le x} \mu(n) = O(x\delta(x)),$$

where

(2.5)
$$\delta(x) = \exp\{-A \log^{3/5} x (\log \log x)^{-1/5}\},$$

A being a positive constant.

LEMMA 2.2 (cf. [4] Lemma 2.2). For any s > 1,

(2.6)
$$\sum_{n \le x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O\left(\frac{\delta(x)}{x^{s-1}}\right).$$

LEMMA 2.3 (cf. [4], Lemma 2.3). For any s > 1,

(2.7)
$$\sum_{n \le x} \frac{\mu(n) \log n}{n^s} = \frac{\zeta'(s)}{\zeta^2(s)} + O\left(\frac{\delta(x) \log x}{x^{s-1}}\right).$$

LEMMA 2.4 (cf. [5], Theorem 14-26 (A), p. 316). If the Riemann hypothesis is true, then

(2.8)
$$M(x) = \sum_{n \le x} \mu(n) = O(x^{1/2}\omega(x)),$$

where

(2.9)
$$\omega(x) = \exp\left\{A\log x (\log\log x)^{-1}\right\},\,$$

A being a positive constant.

LEMMA 2.5 (cf. [4], Lemma 2.5). If the Riemann hypothesis is true, then for any s > 1,

(2.10)
$$\sum_{n \le x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O(x^{\frac{1}{2} - s} \omega(x)).$$

LEMMA 2.6 (cf. [4], Lemma 2.6). If the Riemann hypothesis is true, then for any s > 1, $\sum_{n \le x} \frac{\mu(n) \log n}{n^s} = \frac{\zeta'(s)}{\zeta^2(s)} + O(x^{\frac{1}{2}-s} \omega(x) \log x).$

Lemma 2.7 (cf. [3], Lemma 2.6). If $q_{k,r}(n)$ denotes the characteristic function of the set of (k,r)-integers, that is, $q_{k,r}(n)=1$ or 0 according as n is or is not a (k,r)-integer, then

(2.12)
$$q_{k,r}(n) = \sum_{a^k b^r c = n} \mu(b).$$

LEMMA 2.8. $\tau_{(k,r)}(n) = \sum_{a^k b^r c = n} \mu(b) \tau(c)$

PROOF. We have $\tau_{(k,r)}(n) = \sum_{d\delta = n} q_{k,r}(d)$, so that by (2.12),

$$\tau_{(k,r)}(n) = \sum_{d\delta = n} \sum_{a^k b^r c = d} \mu(b) = \sum_{a^k b^r c \delta = n} \mu(b)$$

$$= \sum_{a^k b^r \mid n} \mu(b) \sum_{c\delta = (n/a^k b^r)} 1 = \sum_{a^k b^r \mid n} \mu(b) \tau \left(\frac{n}{a^k b^r}\right)$$
$$= \sum_{a^k b^r c = n} \mu(b) \tau(c).$$

Hence Lemma 2.8 follows.

LEMMA 2.9. For $k \ge 3$,

(2.13)
$$\sum_{a^k c \leq x} \tau(c) = \zeta(k)x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) + R_k(x),$$
 where

(2.14) $R_k(x) = O(x^{\frac{1}{2}} \log x)$ or $O(x^{\alpha})$, according as k = 3 or $k \ge 4$, where the second O-estimate is uniform in k

PROOF. We have by (1.2), (2.2) and (2.3),

$$\begin{split} \sum_{a^k c \leq x} \tau(c) &= \sum_{a \leq k\sqrt{x}} \sum_{c \leq x/a^k} \tau(c) \\ &= \sum_{a \leq k\sqrt{x}} \left\{ \frac{x}{a^k} \left(\log \frac{x}{a^k} + 2\gamma - 1 \right) + O\left(\frac{x^\alpha}{a^{k\alpha}} \right) \right\} \\ &= x (\log x + 2\gamma - 1) \sum_{a \leq k\sqrt{x}} \frac{1}{a^k} - kx \sum_{a \leq k\sqrt{x}} \frac{\log a}{a^k} + O\left(x^\alpha \sum_{a \leq k\sqrt{x}} a^{-k\alpha} \right) \\ &= x (\log x + 2\gamma - 1) \{ \zeta(k) + O(x^{-1 + (1/k)}) \} - kx \{ -\zeta'(k) + O\left(\frac{\log x}{x^{1 - 1/k}} \right) \right\} + O\left(x^\alpha \sum_{a \leq k\sqrt{x}} a^{-k\alpha} \right) \\ &= \zeta(k) x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) + O(x^{1/k} \log x) + O\left(x^\alpha \sum_{a \leq k\sqrt{x}} a^{-k\alpha} \right). \end{split}$$

Since $\frac{1}{4} < \alpha < \frac{1}{3}$, we have $k\alpha \le 1$ according as k = 3 or $k \ge 4$. Hence, by (2.1) and (2.2), the last *O*-term in the above is $O(x^{\frac{1}{3}})$ or $O(\zeta(k\alpha)x^{\alpha}) = O(\zeta(4\alpha)x^{\alpha})$ = $O(x^{\alpha})$, uniformly in k, according as k = 3 or $k \ge 4$. Hence Lemma 2.9 follows.

3. Proof of Theorem 1

By Lemma 2.8, we have

$$\tau_{(k r)}(n) = \sum_{a^k b^r c = n} \mu(b) \tau(c).$$

Hence

(3.1)
$$\sum_{n \leq x} \tau_{(k,r)}(n) = \sum_{n \leq x} \sum_{a^k b^r c = n} \mu(b) \tau(c) = \sum_{a^k b^r c \leq x} \mu(b) \tau(c),$$

where the summation on the right being taken over all ordered triads (a, b, c) such that $a^k b^r c \leq x$.

Let $z = x^{1/r}$. Further, let $0 < \rho = \rho(x) < 1$, where the function $\rho(x)$ will be suitably chosen later.

Now, if $a^k b^r c \le x$, then both $b > \rho z$ and $a^k c > \rho^{-r}$ can not simultaneously hold good. Hence from (3.1), we have

(3.2)
$$\sum_{n \le x} \tau_{(k,r)}(n) = \sum_{\substack{a^k b^r c \le x \\ b \le \rho z}} \mu(b)\tau(c) + \sum_{\substack{a^k b^r c \le x \\ a^k c \le \rho^{-r}}} \mu(b)\tau(c) - \sum_{\substack{b \le \rho z \\ a^k c \le \rho^{-r}}} \mu(b)\tau(c)$$
$$= S_1 + S_2 - S_3, \text{ say.}$$

By (2.13), we have

$$(3.3) \quad S_{1} = \sum_{\substack{a^{k}b^{r}c \leq x \\ b \leq \rho z}} \mu(b)\tau(c) = \sum_{\substack{b \leq \rho z}} \mu(b) \sum_{\substack{a^{k}c \leq (x/b^{r})}} \tau(c)$$

$$= \sum_{\substack{b \leq \rho z}} \mu(b) \left\{ \zeta(k) \frac{x}{b^{r}} \left(\log \frac{x}{b^{r}} + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) + R_{k} \left(\frac{x}{b^{r}} \right) \right\}$$

$$= \zeta(k)x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) \sum_{\substack{b \leq \rho z}} \frac{\mu(b)}{b^{r}}$$

$$- \zeta(k)rx \sum_{\substack{b \leq \rho z}} \frac{\mu(b)\log b}{b^{r}} + E_{k,r}(x),$$

where

(3.4)
$$E_{k,r}(x) = \sum_{b \leq \rho z} \mu(b) R_k \left(\frac{x}{b^r}\right).$$

Hence by (3.3), (2.6) and (2.7), we have

$$(3.5) S_1 = \zeta(k)x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)}\right) \left\{\frac{1}{\zeta(r)} + O\left(\frac{\delta(\rho z)}{(\rho z)^{r-1}}\right)\right\}$$

$$- \zeta(k)rx \left\{\frac{\zeta'(r)}{\zeta(r)} + O\left(\frac{\delta(\rho z)\log(\rho z)}{(\rho z)^{r-1}}\right)\right\} + E_{k,r}(x)$$

$$= \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r\zeta'(r)}{\zeta(r)} + \frac{k\zeta'(k)}{\zeta(k)}\right)$$

$$+ O(\zeta(k)\rho^{1-r}z\delta(\rho z)\log z) + E_{k,r}(x).$$

By (2.14) and (3.4), we have

$$E_{k,r}(x) = O\left(\sum_{b \le \rho z} \frac{x^{\frac{1}{\delta}}}{b^{r/3}} \log\left(\frac{x}{b^r}\right) \text{ or } O\left(\sum_{b \le \rho z} \frac{x^{\alpha}}{b^{r/\alpha}}\right),$$

according as k = 3 or $k \ge 4$. Since 1 < r < k, we have r = 2, when k = 3 and since $\frac{1}{4} < \alpha < \frac{1}{3}$, we have by (2.1) and (2.2), the following 0-estimates:

(3.6)
$$\begin{cases} E_{3,2}(x) = O(\rho^{1/3} x^{1/2} \log x) \\ E_{4,r}(x) = O(\rho^{1-r\alpha}z) \\ E_{k,r}(x) = O(\rho^{1-r\alpha}z) \text{ or } O(x^{\alpha}), \\ \text{according as } r = 2, 3 \text{ or } 4 \le r < k; \end{cases}$$

where the 0-estimates are uniform in k. We have

$$\begin{split} S_2 &= \sum_{\substack{a^k b^r c \leq x \\ a^k c \leq \rho^{-r}}} \mu(b) \tau(c) = \sum_{\substack{a^k c \leq \rho^{-r}}} \tau(c) \sum_{\substack{b \leq \sqrt[r]{(x/a^k c)}}} \mu(b) \\ &= \sum_{\substack{a^k c \leq \rho^{-r}}} \tau(c) M\left(\sqrt[r]{\frac{x}{a^k c}}\right) \\ &= 0 \left(x^{1/r} \sum_{\substack{a^k c \leq \rho^{-r}}} \tau(c) a^{-k/r} c^{-1/r} \delta\left(\sqrt[r]{\frac{x}{a^k c}}\right)\right), \end{split}$$

by (2.4). Since $\delta(x)$ is monotonic decreasing and $\sqrt[r]{\frac{x}{a^kc}} \ge \delta z$, we have $\delta\left(\sqrt[r]{\frac{x}{a^kc}}\right) \le \delta(\rho z)$. Also, by (2.1), (2.2) and (1.2),

$$\begin{split} \sum_{a^k c \leq \rho^{-r}} \tau(c) a^{-k/r} c^{-1/r} &= \sum_{a \leq \rho^{-r/k}} a^{-k/r} \sum_{c \leq \rho^{-r} a^{-k}} \tau(c) c^{-1/r} \\ &= O\left(\sum_{a \leq \rho^{-r/k}} a^{-k/r} (\rho^{-r} a^{-k})^{1 - (1/r)} \log(\rho^{-r} a^{-k})\right) \\ &= O\left(\rho^{1-r} \log\left(\frac{1}{\rho}\right) \sum_{a \leq \rho^{-r/k}} a^{-k}\right) \\ &= O\left(\zeta(k) \rho^{1-r} \log\left(\frac{1}{\rho}\right)\right). \end{split}$$

Hence

(3.7)
$$S_2 = O\left(\zeta(k)\rho^{1-r}z\delta(\rho z(\log\left(\frac{1}{\rho}\right))\right).$$

Further, we have by (2.4) and (2.13),

(3.8)
$$S_{3} = \sum_{\substack{b \leq \rho z \\ a^{k}c \leq \rho^{-r}}} \mu(b)\tau(c) = \sum_{b \leq \rho z} \mu(b) \sum_{a^{k}c \leq \rho^{-r}} \tau(c)$$
$$= M(\rho z) \sum_{a^{k}c \leq \rho^{-r}} \tau(c)$$
$$= O(\rho z \delta(\rho z) \zeta(k) \rho^{-r} \log(\rho^{-r}))$$

$$= O\left(\zeta(k)\rho^{1-r}z\delta(\rho z)\log\left(\frac{1}{\rho}\right)\right).$$

Hence by (3.2), (3.5), (3.7) and (3.8)

(3.9)
$$\sum_{n \leq x} \tau_{(k,r)}(n) = \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r\zeta'(r)}{\zeta(r)} + \frac{k\zeta'(k)}{\zeta(k)} \right) + 0(\zeta(k)\rho^{1-r}z\delta(\rho z)\log z) + 0\left(\zeta(k)\rho^{1-r}z\delta(\rho z)\log\left(\frac{1}{p}\right)\right) + E_{k,r}(x).$$

Now, we choose,

(3.10)
$$\rho = \rho(x) = \{\delta(x^{1/2r})\}^{1/r},$$

and write

(3.11)
$$f(x) = \log^{3/5}(x^{1/2r})\{\log\log(x^{1/2r})\}^{-1/5}$$
$$= \left(\frac{1}{2r}\right)^{3/5} U^{3/5} (V - \log 2r)^{-1/5},$$

where $U = \log x$ and $V = \log \log x$.

(3.12) For $V \ge 2 \log 2r$, that is, $U \ge 4r^2$, $x \ge \exp(4r^2)$, we have

$$V^{-1/5} \le (V - \log 2r)^{-1/5} \le \left(\frac{V}{2}\right)^{-1/5}$$

and therefore

$$(3.13) \frac{1}{2} r^{-3/5} U^{3/5} V^{-1/5} \le f(x) \le r^{-3/5} U^{3/5} V^{-1/5}.$$

(3.14) We assume without loss of generality that the constant A in (2.5) is less than 1.

By (3.10), (2.5) and (3.11), we have

$$\rho = \exp -\frac{A}{r}f(x)\}.$$

By (3.12), we have

$$r^{-8/5}U^{3/5}V^{-1/5} \leq \frac{U}{2r}$$

Hence, by (3.13), (3.14), (3.15) and the above,

$$\rho \ge \exp(-A r^{-8/5} U^{3/5} V^{-1/5}) \ge \exp(-r^{-8/5} U^{3/5} V^{-1/5})$$
$$\ge \exp\left(-\frac{U}{2r}\right) = \exp\left(-\frac{\log x}{2r}\right),$$

so that $\rho \geq x^{-(1/2r)}$.

(3.16)
$$\log\left(\frac{1}{\rho}\right) \le \log(\sqrt{z}) = 0(\log x) \text{ and } \rho z \ge x^{1/(2r)}$$
.

Since $\delta(x)$ is monotonic decreasing, we have $\delta(\rho z) \le \delta(x^{1/(2r)}) = \rho^r$, by (3.10), so that by (3.13) and (3.15), we have

(3.17)
$$\rho^{1-r}\delta(\rho z) \leq \rho \leq \exp\left\{-\frac{A}{2}r^{-8/5}U^{3/5}V^{-1/5}\right\}.$$

Hence, by (3.16) and (3.17), the first and second 0-terms of (3.9) are

$$O(\zeta(k)x^{1/r}\exp\{-\frac{A}{2}r^{-8/5}U^{3/5}V^{-1/5}\}\log x)$$

$$= O(\zeta(r+1)x^{1/r}\exp\{-\frac{A}{2}r^{-8/5}U^{3/5}V^{-1/5}\}\log x), \text{ since } k \ge r+1$$

$$= O(x^{1/r}\exp\{-\frac{A}{2}r^{-8/5}U^{3/5}V^{-1/5}\}\log x, \text{ uniformly in } k.$$

Hence, if $\Delta_{k,r}(x)$ denotes the error term in the asymptotic formula (3.9), then we have

(3.18)
$$\Delta_{k,r}(x) = O(x^{1/r} \exp\{-\frac{A}{2}r^{-8/5}U^{3/5}V^{-1/5}\}\log x) + E_{k,r}(x),$$

where the 0-estimate is uniform in k.

Case k = 3. In this case r must be = 2. By (3.6) and (3.17), we have

$$E_{3,2}(x) = O(x^{1/2} \exp\left\{-\frac{A}{6}(2)^{-8/5} U^{3/5} V^{-1/5}\right\} \log x),$$

so that by (3.18),

(3.19)
$$\Delta_{3,2}(x) = O(x^{1/2} \exp\{-B \log^{3/5} x (\log \log x)^{-1/5}\}),$$

where B is a positive constant $\left(0 < B < \frac{A}{6}(2)^{-8/5}\right)$.

Case k=4. In this case r=2 or 3. Since $\frac{1}{4}<\alpha<\frac{1}{3}$, we have $0<1-r\alpha<1$. By (3.6) and (3.17), we have

$$E_{4,r}(x) = O\left(x^{1/r} \exp\left\{-\frac{A(1-r\alpha)}{2} r^{-8/5} U^{3/5} V^{-1/5}\right\}\right).$$

Again, since $0 < 1 - r\alpha < 1$, the first 0-term in (3.18) is also of the above order of $E_{4,r}(x)$. Hence

(3.20)
$$\Delta_{4,r}(x) = O(x^{1/r} \exp\{-B \log^{3/5} x (\log \log x)^{-1/5}\}),$$

where B is a positive constant.

Case $k \ge 5$. In this case r = 2,3 or $4 \le r < k$. When r = 2 or 3, by (3.6) and (3.17), we have

$$E_{k,r}(x) = O\left(x^{1/r} \exp\left\{-\frac{A(1-r\alpha)}{2} r^{-8/5} U^{3/5} V^{-1/5}\right\}\right),\,$$

so that by (3.18),

(3.21)
$$\Delta_{k,r}(x) = O(x^{1/r} \exp\{-B \log^{3/5} x (\log \log x)^{-1/5}\}),$$

where B is a positive constant and the 0-estimate is uniform in k.

When $4 \le r < k$, by (3.6), $E_{k,r}(x) = O(x^{\alpha})$ and the first O-term in (3.18) is $O(x^{1/r})$, so that we have

$$\Delta_{k,r}(x) = O(x^{\alpha}),$$

where the 0-estimate is uniform in k.

Hence, by (3.9), (3.18)-(3.22), Theorem 1 follows.

4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that

$$(4.1) \quad \Delta_{k,r}(x) = O\left(\rho^{1/2-r}z^{1/2}\omega(\rho z)\log z\right) + O\left(\rho^{1/2-r}z^{1/2}\omega(\rho z)\log\left(\frac{1}{\rho}\right)\right) + E_{k,r}(x),$$

where the 0-estimates are uniform in k and $E_{k,r}(x)$ is given by (3.6).

Case k=3. In this case r must be =2. Choosing $\rho=z^{-3/11}$, we see that $0<\rho<1, \frac{1}{\rho}< z$, so that $\log\left(\frac{1}{\rho}\right)<\log z$, and

$$\rho^{1/2-2}z^{1/2} = \rho^{1/3}z = x^{5/11}.$$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z) < \omega(z)$. Hence, by (4.1), (3.6) and the above, we have

(4.2)
$$\Delta_{3,2}(x) = O(x^{5/11}\omega(x^{1/2})\log x) + O(x^{5/11}\log x)$$
$$= O(x^{5/11}\omega(x)).$$

Case k=4. In this case r=2 or 3. Choosing $\rho=z^{-1/(1+2r(1-\alpha))}$, we see that $0<\rho<1,\frac{1}{\rho}< z$, so that $\log\left(\frac{1}{\rho}\right)<\log z$, and

$$\rho^{1/2-r}z^{1/2} = \rho^{1-r\alpha}z = x^{2-\alpha/(1+2r(1-\alpha))}.$$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z) < \omega(z)$. Hence by (4.1), (3.6) and the

above, we have

(4.3)
$$\Delta_{4r}(x) = O(x^{2-\alpha/(1+2r(1-\alpha))}\omega(x^{1/2})\log x)$$
$$= O(x^{2-\alpha/(1+2r(1-\alpha))}\omega(x)).$$

Case $k \ge 5$. In this case r = 2,3 or $4 \le r < k$. When r = 2 or 3, we have by (3.6), $E_{k,r}(x) = O(\rho^{1-r\alpha}z)$. Choosing $\rho = z^{-(1/(1+2r(1-\alpha))}$, as in the case k = 4, we get that

(4.4)
$$\Delta_{k,r}(x) = O(x^{(2-\alpha)/(1+(2r(1-\alpha))}\omega(x)),$$

where the O-estimate is uniform in k. When $4 \le r < k$, by (3.6), we have $E_{k,r}(x) = O(x^{\alpha})$. We have $\omega(x) = O(x^{\epsilon})$ and $\log z = O(x^{\epsilon})$ for every $\epsilon > 0$. We assume that $0 < \epsilon < 1$. Hence, by (4.1), we have

(4.5)
$$\Delta_{k r}(x) = O(\rho^{1/2-r+\varepsilon} z^{1/2+2\varepsilon}) + O\left(\rho^{1/2-r+\varepsilon} z^{1/2+\varepsilon} \log\left(\frac{1}{\rho}\right)\right) + O(x^{\alpha}).$$

Now, choosing $\rho = z^{-(2r\alpha - 1 + 4\varepsilon)/(2r - 1 - 2\varepsilon)}$, we see that $0 < \rho < 1, \frac{1}{\rho} < z$, so that $\log\left(\frac{1}{\rho}\right) < \log z = O(z^{\varepsilon})$ and

$$\rho^{1/2-r+\varepsilon}z^{1/2+2\varepsilon}=x^{\alpha}.$$

Hence, by (4.5), we have

$$\Delta_{k,r}(x) = O(x^{\alpha}),$$

where the O-estimate is uniform in k. Hence, by (4.2), (4.3), (4.4) and (4.6), Theorem 2 follows.

REMARK. In the case $4 \le r < k$, we may choose the function $\rho = \rho(x)$, which tends to zero as $x \to \infty$ to be a function which tends to zero more rapidly than that chosen above. In such a case, although the first and second O-terms in (4.5) are $0(x^{\beta})$, where $\beta < \alpha$, but because of the third 0-term in (4.5), we again get $\Delta_{k,r}(x) = O(x^{\alpha})$. Hence we can not improve the result that $\Delta_{k,r}(x) = O(x^{\alpha})$ for $4 \le r < k$, even on the assumption of the Riemann hypothesis.

References

- [1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers Fourth edition, (Oxford, 1965).
- [2] G. A. Kolesnik, 'An improvement of the remainder term in the divisor problem,' Mat. Zametki 6 (1969), 545-554 = Mathematical Notes of Sciences of the USSR 6 (1969), 784-791.

- [3] M. V. Subbarao and D. Suryanarayana, 'On the order of the error function of the (k, r)-integers', J. Number theory (to appear).
- [4] D. Suryanarayana and V. Siva Rama Prasad, "The number of k-free divisors of an integer", Acta Arithmetica, 17 (1971), 345-354.
- [5] E. C. Titchmarsh, The Theory of the Riemann Zeta function (Oxford, 1951.)
- [6] A. Walfisz, Weylsche Exponentialsummen in der neueran Zahlentheorie (Berlin, 1963).

Department of Mathematics University of Alberta Edmonton, Canada