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1. Introduction

Let k and r be fixed integers such that 1 < r < k. It is well-known that a
positive integer is called r-free if it is not divisible by the r-th power of any integer
> 1. We call a positive integer n, a (k,r)-integer, if n is of the form n = a‘b,
where a is a positive integer and b is a r-free integer. In the limiting case, when k
becomes infinite, a (k,r)-integer becomes a r-free integer and so one might con-
sider the (k,r) integers as generalized r-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that
if 7(,(n) denotes the number of r-free divisors of n, then for x = 3,

_ X PR AO)
(1.1) ngxr(,)(n) = Z),(r)(logx+2y 1 G

where A(x) = O(x'"8(x)) or O(x%), according as r = 2,3 or r = 4;
8(x) = exp{— Alog¥°x(loglogx)~"/>}, A being a positive constant and o
is the number which appears in the Dirichlet divisor problem

X

)+ 849,

(1.2) 2 t(n) = x(logx + 2y — 1) + 0(x%),
nsx
where ©(n) is the number of divisors of n.

It is known that <« <3 (cf. [1], p. 272). The best result yet proved
has been obtained recently by Kolesnik [2], who proved that the error term
in (1.2) is 0(x"#37*%), for any ¢ > 0. There is a conjecture that « = } + &.
In the formula (1.1), {(s), denotes the Riemann Zeta function and {’(s) its de-
rivative and vy is Euler’s constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis
that Ay(x) = O(x2~VC~*)gp(x)), Ay(x) = O(x ?~7~8%p(x)) and A(x) = O(x*)

1 This research is partially supported by an NRC Grant.
2 On leave from Andhra University, Waltair, India.
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for r = 4, where w(x) = exp {Alogx(loglogx)~'}, 4 being a positive constant,
For earlier (weaker) estimations of A,(x) by various authors, we refer to the
bibliography given in [4].

Let us call a divisor d of a positive integer n, a (k,r)-divisor of n if d is a
(k,r)-integer. Let 74,,(n) denote the number of (k,r)-divisors of n. The object
of this paper is to prove the following:

THEOREM 1. For 1 <r < kand x = 3,
{(k)x )
) @ T ey ) T et

where A, (x) = O(x'"5(x)) or O(x*), according as r = 2,3 or 4 < r < k, the
O-estimates being uniform in k; 3(x) = exp{ — Blog*°x (loglogx)™'/*}, B being
a positive constant and o is the number which appears in (1.2).

() | kLK)

(1.3)  Z g0 = (logx +2y—1-—

THEOREM 2. If the Riemann hypothesis is true, then the error term A (x)
in (1.3) has the following improved O-estimates:

Ay o(x) = O™ x(x)), Ag,z () = O(x*T/C ™ o(x))

for kz 4, As(x) = OxP TN (x)) for k=4 and A, (x) = O(x%) for
4 = r < k; where the U-estimates are uniform in k and w(x) = exp{Alogx
(loglogx)~1'}, A being a positive constant and o is given by (1.2).

It may be noted that in the limiting case when k — o0, formula (1.3) co-
incides with (1.1) and the O-estimates of A (x) = A, ,(x) obtained in [4] follow
as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of
Theorem 1 and 2. Throughout the following, x denotes a real variable = 3. The
following elementary estimates are well-known:

1

(2.1) z — = o' ™ if0<s< 1.
1 1 1.
(2.2) ,Z‘x = =1 —nézx == O(F) if s> 1.
1
(2.3) )3 Ongs” - ) — 3 leen 0(1;%?) if s> 1.

LeMMA 2.1 (cf,. [6]; Satz 3, p. 191).
(2.4) M(x) = >53 u(n) = O(xé(x)),
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where
2.5) 5(x) = exp{ — Alog*/*x(loglog x)~*/*},
A being a positive constant.

LeMMA 2.2 (c¢f. [4] Lemma 2.2). For any s > 1,

pm) _ 1 d(x)
(2.6) ngx T = Io) + O(xs_l).
LemMa 2.3 (¢f. [4], Lemma 2.3). For any s> 1,
p(mlogn _ {'(s) d(x)log x
(2.7) é‘.x o = 20 + 0( o1 )

LemMMA 2.4 (cf. [5], Theorem 14-26 (A), p. 316). If the Riemann hypoth-
esis is true, then

(2.8) M(x) = X u(n) = O(x"2w(x)),
where B
2.9 w(x) = exp{Alogx (loglogx)~1},

A being a positive constant.

LemMA 2.5 (c¢f. [4], Lemma 2.5). If the Riemann hypothesis is true, then
for any s> 1,

2 M 1 + 0(x*™* w(x)).

(2.10) T =)

LemMA 2.6 (cf. [4], Lemma 2.6). If the Riemann hypothesis is true, then

for any s > 1, /
u(nylogn _ £'(s)
(10 D €0

+ O0(x*™* w(x)logx).

LemMA 2.7 (¢f. [3], Lemma 2.6). If g, ,n) denotes the characteristic
function of the set of (k,r)-integers, that is, qi,(n) = 1 or 0 according as n is or
is not a (k,r)-integer, then

(2.12) G )= X wb).

akbrc=n
LEMMA 2.8. Ty (1) = Zgpre=n M(b)T(0)-
ProOF. We have 7, (1) = Xy5=,9x.(d), so that by (2.12),

Taen() = z X ub) = > u(b)

dé=n akbTc=d akbred =n
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= X ub) X 1= X ubr (%)

akbr|n ¢d =(n/a¥*b") akb’|n
= X pb)(o).
akbre=n

Hence Lemma 2.8 follows.

LEMMA 2.9. For k = 3,
(2.13) kZ (¢) = {(k)x (logx +2y—1+ k—é%?) + Ry(x),
where )

(2.14) R(x) = O(x? logx) or O(x%), according as k = 3 or k = 4, where the
second O-estimate is uniform in k

Proor. We have by (1.2), (2.2) and (2.3),

2 1) = X z o)

akcsx ask/x csSx/ak
X X x*
= aég;{ﬁ(loga—" +2y— 1) +0 (a—k-;)}
1
= x(logx +2y~1) X ——kx X —l—g‘f—a+ O(x“ p3 a"‘“)
askyx @ askyx @ agkyx

= x(logx + 2y — D{{(k) + O 1Ty — kx{ — ¢'(k)

log x u —ka
+0 () | +o(x 2 o)
k{'(k)
{(k)
Since } <« < %, we have ka S 1 according as k =3 or k = 4. Hence, by (2.1)

and (2.2), the last O-term in the above is O(x¥) or O({(kw)x*) = O({(4x)x*)
= 0(x*), uniformly in k, according as k = 3 or k = 4. Hence Lemma 2.9 follows.

= {(k)x (logx +2y—1+ ) + O(x”"logx)+0(x°‘ = _a“"”‘).

agkyx

3. Proof of Theorem 1

By Lemma 2.8, we have

Tan(n) = . Z p(b)(c).

akbre=n

Hence




434 M. V. Subbarao and D. Suryanarayana [5]

(3.1 2 Tan(M) = 2 ka u(b)t(c) = Z u(b)w(e),
where the summation on the right being taken over all ordered triads (a, b, ¢) such
that a*b’c < x.

Let z = x'/". Further, let 0 < p = p(x) < 1, where the function p(x) will be
suitably chosen later.

Now, if a*b’c < x, then both b > pz and a*c > p~" can not simultaneously
hold good. Hence from (3.1), we have
(3.2) § T = X ubnEe)+ X pdue)— Z ub)()

akb"c<x akb'csx bs< pz
b<pz akcLp~T akcsp™T

= 8,4+ S, —S;, say.
By (2.13), we have
B3 S;= X wpho= T ub) X c)

a’;bs’céx b<pz akeS(x/b7)
~ K'K)
- b;pzu(b){ak) - (log xey-1+ 80 )+R ( )}
~ LK) e a0)
= C(k)x(logx+2y 14 C(k)) bszpz b
~torx T MR L E (0,
Spz
where
G4 B = T uoR(5)

Hence by (3.3), (2.6) and (2.7), we have

(3.5) Sy ={k)x (logx +2y-14 kcc(/(cl;)) {C(r) ¥ 0(([)52();: i)‘) }

' d(pz)log(pz)

-t (g + oG+ Bt
ke ) KR
= U (“’g"”y = * C(k))

+ 0((k)p* ~"z8(pz)10g 2) + Ej (%)-
By (2.14) and (3.4), we have

xa
E (x) = O(béijz 57T log(b ) or 0( épz W)’
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according as k = 3 or k = 4. Since 1 <r <k, we have r = 2, when k = 3 and
since 1 < a < 4, we have by (2.1) and (2.2), the following O-estimates:

E32(x) = O(p'/® x/? log x)
(3.6) E4.r(x) = 0(p1 - "'12)
E,.(x) = O(p'~"z) or O(x7),

accordingasr =23 or4 £ r < k;

where the 0-estimates are uniform in k. We have

S; = X uby(e)= X ooy X p(b)

rpr % -
oS EL ST ps  (takey
S =
= E T(C)M( —k—)
akc§p" \ ac

— 1r —kfr —1/r r_x_
O(x akci_rt(c)a c 6(\/a"c)>’

,—
by (2.4). Since d(x) is monotonic decreasing and \/ E)ECE 2 0z, we have

5( 4 —ff-) < &(pz). Also, by (2.1), (2.2) and (1.2),

a'c
X w)aMreTr = % a2 (o)
ake<p-r aso-"" cSp~ra~k
— O ( E a—k/r(p— a—k)l—(l/r)log(p—ra—k))
asp-rjk

]

1
o(otriog(5) )
(p log p aézp:-'/"a

0 (g(k)p’"log (2) )
Hence

3.1 S, = O(C(k)pl"zé(pz( log (7}) )

Further, we have by (2.4) and (2.13),

(3.8) S3= X ubr)= X ub) X ()
kb%pz . bs<pz akesp-r
ake<p-

f
2
he)
N
S~
[\
-
~~
)
~

O(pzd(p2){(K)p~"log (p~")
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- o<z:(k)p1-'z6<pz)log(;,1—)).

Hence by (3.2), (3.5), (3.7) and (3.8)

i IO
2 (™ = 05 (“g"”y =70t C(k))
(3.9) +0((k)p* ~"28(pz) log 2)

+o<c(k)p1"z5(pz) log (51—)) + Ey ()

Now, we choose,

(3.10) p = p(x) = {512},
and write
(3.11) f(x) = log*3(x?"){loglog (x1/?")} /3

1 3/5
= (5) U3V —1og2.)~ 13,

where U = logx and V = loglogx.
(3.12) For V = 2log2r, that is, U = 4r%, x = exp(4r?), we have

~1/5
yoUs < (v —log2r)P < (—Z-)

and therefore
(3'13) %r—3/5U3/5V_1l5 _S_ f(x) é r—3/5U3/5V_1/5.

(3.14) We assume without loss of generality that the constant 4 in (2.5) is less
than 1.

By (3.10), (2.5) and (3.11), we have
A
(3.15) p=exp ——f(x)}
By (3.12), we have U

P8ISSy -US <
2r

Hence, by (3.13), (3.14), (3.15) and the above,

p = exp(—A r 85UNSY=US) > exp(— r THSUMIY 1)

U logx
eXp{ — 2_7“ = €Xp{ — —Z—r—‘ ,

x (12,

v

so that p

[\
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(3.16) log (%) < log(4/z) = O(logx) and pz = x!/V

Since §(x) is monotonic decreasing, we have §(pz) < §(x'/?") = p”, by (3.10),
so that by (3.13) and (3.15), we have

3.17) pl"8(pz) £ p Sexp {—gr"s/sU”sV'”s}.

Hence, by (3.16) and (3.17), the first and second O-terms of (3.9) are
O({(k)x " exp { — gr“8/5U3/5V"”5} log x)

O((r + 1)x/"exp { —;ir"a/sU”SV‘”s}logx), since k = r + 1
= O(x'Texp{ —%r‘B/SU:‘”V‘”S}Iogx, uniformly in k.

Hence, if A, (x) denotes the error term in the asymptotic formula (3.9), then
we have

(3.18) A (x) = O(x'exp{ — gr‘s/s U3V =15} 1ogx) + E, (x),
where the O-estimate is uniform in k.
Case k = 3. In this case r must be = 2. By (3.6) and (3.17), we have
E; o(x) = O(x"?exp { ~ £(2)= 9505 =113} og ),
so that by (3.18),
3.19) A; 5(x) = O(x'?exp { — Blog®*x (loglogx)=1/%}),
where B is a positive constant ( 0<B< -‘2—(2)‘8/ 5.)

Case k = 4. Inthiscaser = 2or3.Since3 <a<%,wehave0 < 1 — ra < 1.
By (3.6) and (3.17), we have

Eq (x) = O(xl/’exp { - ﬂg—_ﬂr 8/503/5 ~1/5 } )

Again, since 0 < 1 — ra < 1, the first O-term in (3.18) is also of the above order
of E, .(x). Hence

(320) Aun(x) = O(x'/"exp { — Blog**x (loglog.x)~1/5}),

where B is a positive constant.
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Case k= 5. Inthiscase r =2,30r4 £r < k. Whenr = 2 or 3, by (3.6)
and (3.17), we have

Ek ,.(x) = o(xllrexp { _11(1__;_'.;_“) r—8/5U3/5V_1/5}),
so that by (3.18),
(321 A (x) = O(x!/"exp{ — Blog*/*x(loglogx)™/*}),

where B is a positive constant and the 0-estimate is uniform in k.
When 4 < r < k, by (3.6), E,(x) = O(x*) and the first O-term in (3.18) is
0(x''"), so that we have

(3.22) A, (%) = O(x%),
where the 0-estimate is uniform in k.
Hence, by (3.9), (3.18)~(3.22), Theorem 1 follows.
4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making
use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that

4.1) A (x) = O(pl/z“’zllza)(pz)log z)) + O(pllz"'z”zw(pz)log (%))
\ + E; (%),
whare the O-estimates are uniform in k and E, (x) is given by (3.6).
Case k = 3. In this case » must be = 2. Choosing p = z~%/*1, we see that

i
O0<p<l, -; < z, so that log(%) < log z, and
pli2=27112 = pl3z = x311,

Since w(x) is monotonic increasing, w(pz) < w(z). Hence, by (4.1), (3.6) and the
above, we have

(4.2) As (%) = O(x*"w(x"*)logx) + O(x%/11ogx)
= O(x*w(x)).
Case k = 4. In this case r =2 or 3. Choosing p = FUA+n=a) | ye

1
seethat0<p <1, _;17 < z, so that log (7) < logz, and
p1/2—rZI/2 —_ pl-raz = x2—a/(1+2r(l—a)).

Since w(x) is monotonic increasing, w(pz) < o(z). Hence by (4.1), (3.6) and the
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above, we have

4.3) Aqi(x)

1/2

O(x2—a/(1+2r(l—a)w(x )logx)

= O(x 2—a/(1+2r(1 —a)w(x)).

Case k = 5. Inthiscase r = 2,3 0r4 < r < k. When r = 2 or 3, we have
by (3.6), E..(x) = O(p' ™™ z). Choosing p = z~M/U+2r1=a) " 4¢ in the case
k = 4, we get that

(4.4) A (x) = O (xR Cri=agy ),

where the O-estimate is uniform in k. When 4 < r < k, by (3.6), we have
E, (x) = O(x*). We have w(x) = O(x*) and logz = O(x®) for every ¢ > 0. We
assume that 0 < € < 1. Hence, by (4.1), we have

(45) Ak r(x) —_ O(p 1/2-r+e Zl/2+2+:)
I 0(p1/2—r+az 12+e 150 (%)) + O(x).

) P - 1
Now, choosing p = z ~(re~1¥4a/(2r=1=2¢) e gee that 0 < p < 1, > < z, so that

log (71)—) <logz = 0O(z%) and

"4

- +
1/2 r+eZ 1/2 23= x*.

p
Hence, by (4.5), we have

(4.6) Ap(x) = O(x),

where the O-estimate is uniform in k. Hence, by (4.2), (4.3), (4.4) and (4.6),
Theorem 2 follows.

ReMARK. In the case 4 < r < k, we may choose the function p = p(x),
which tends to zero as x — o to be a function which tends to zero more rapidly
than that chosen above. In such a case, although the first and second O-terms
in (4.5) are 0(x*), where B < a, but because of the third O-term in (4.5), we again
get A, (x) = O(x*). Hence we can not improve the result that A, (x) = O(x*) for
4 £ r < k, even on the assumption of the Riemann hypothesis.
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