THE DIVISOR PROBLEM FOR \((k, r)\)-INTEGERS

BY

M. V. SUBBARAO AND D. SURYANARAYANA

Reprinted from
THE JOURNAL OF THE AUSTRALIAN
MATHEMATICAL SOCIETY
Volume XV, part 4, p.p. 430-440
1973
THE DIVISOR PROBLEM FOR \((k, r) - \text{INTEGERS}\)

M. V. SUBBARAO AND D. SURYANARAYANA

(Received 10 June 1971)
Communicated by E. S. Barnes

1. Introduction

Let \(k\) and \(r\) be fixed integers such that \(1 < r < k\). It is well-known that a positive integer is called \(r\)-free if it is not divisible by the \(r\)-th power of any integer > 1. We call a positive integer \(n\), a \((k, r)\)-integer, if \(n\) is of the form \(n = a^k b\), where \(a\) is a positive integer and \(b\) is a \(r\)-free integer. In the limiting case, when \(k\) becomes infinite, a \((k, r)\)-integer becomes a \(r\)-free integer and so one might consider the \((k, r)\) integers as generalized \(r\)-free integers.

It has been shown by one of the authors and V. Siva Rama Prasad [4] that if \(\tau_{(r)}(n)\) denotes the number of \(r\)-free divisors of \(n\), then for \(x \geq 3\),

\[
\sum_{n \leq x} \tau_{(r)}(n) = \frac{x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r \zeta'(r)}{\zeta(r)} \right) + \Delta_r(x),
\]

where \(\Delta_r(x) = O(x^{1/r} \delta(x))\) or \(O(x^\varepsilon)\), according as \(r = 2, 3\) or \(r \geq 4\);
\(\delta(x) = \exp \{ - A \log^{3/5} x (\log \log x)^{-1/5} \}\), \(A\) being a positive constant and \(\varepsilon\) is the number which appears in the Dirichlet divisor problem

\[
\sum_{n \leq x} \tau(n) = x(\log x + 2\gamma - 1) + O(x^\varepsilon),
\]

where \(\tau(n)\) is the number of divisors of \(n\).

It is known that \(\frac{1}{2} < \varepsilon < \frac{1}{3}\) (cf. [1], p. 272). The best result yet proved has been obtained recently by Kolesnik [2], who proved that the error term in (1.2) is \(O(x^{(12/37)^+})\), for any \(\varepsilon > 0\). There is a conjecture that \(\varepsilon = \frac{1}{4} + \varepsilon\). In the formula (1.1), \(\zeta(s)\), denotes the Riemann Zeta function and \(\zeta'(s)\) its derivative and \(\gamma\) is Euler's constant.

It has also been shown in [4] on the assumption of the Riemann hypothesis that \(\Delta_3(x) = O(x^{(5 - 4\varepsilon)/(5 - 4\varepsilon)} \omega(x))\), \(\Delta_3(x) = O(x^{(7 - 6\varepsilon)/(7 - 6\varepsilon)} \omega(x))\) and \(\Delta_4(x) = O(x^{\varepsilon})\)

1 This research is partially supported by an NRC Grant.
2 On leave from Andhra University, Waltair, India.
for \(r \geq 4 \), where \(\omega(x) = \exp \{ A \log x (\log \log x)^{-1} \} \), \(A \) being a positive constant. For earlier (weaker) estimations of \(\Delta_r(x) \) by various authors, we refer to the bibliography given in [4].

Let us call a divisor \(d \) of a positive integer \(n \), an \((k,r)\)-divisor of \(n \) if \(d \) is a \((k,r)\)-integer. Let \(\tau_{(k,r)}(n) \) denote the number of \((k,r)\)-divisors of \(n \). The object of this paper is to prove the following:

Theorem 1. For \(1 < r < k \) and \(x \geq 3 \),

\[
\sum_{n \leq x} \tau_{(k,r)}(n) = \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{r\zeta'(r)}{\zeta(r)} + \frac{k\zeta'(k)}{\zeta(k)} \right) + \Delta_{k,r}(x),
\]

where \(\Delta_{k,r}(x) = O(x^{1/r}\delta(x)) \) or \(O(x^r) \), according as \(r = 2, 3 \) or \(4 \leq r < k \), the \(\theta \)-estimates being uniform in \(k \); \(\delta(x) = \exp \{ -B \log^{3/5} x (\log \log x)^{-1/5} \} \), \(B \) being a positive constant and \(\alpha \) is the number which appears in (1.2).

Theorem 2. If the Riemann hypothesis is true, then the error term \(\Delta_{k,r}(x) \) in (1.3) has the following improved \(\theta \)-estimates:

\[
\Delta_{3,2}(x) = O(x^{5/11} \omega(x)), \quad \Delta_{4,2}(x) = O(x^{(2-s)/(5-6s)} \omega(x))
\]

for \(k \geq 4 \), \(\Delta_{k,3}(x) = O(x^{(2-s)/(7-6s)} \omega(x)) \) for \(k \geq 4 \) and \(\Delta_{r}(x) = O(x^s) \) for \(4 \leq r < k \); where the \(\theta \)-estimates are uniform in \(k \) and \(\omega(x) = \exp \{ A \log x (\log \log x)^{-1} \} \), \(A \) being a positive constant and \(\alpha \) is given by (1.2).

It may be noted that in the limiting case when \(k \to \infty \), formula (1.3) coincides with (1.1) and the \(\theta \)-estimates of \(\Delta_r(x) = \Delta_{\infty,r}(x) \) obtained in [4] follow as a particular case.

2. Prerequisites

In this section we prove some lemmas which are needed in the proofs of Theorem 1 and 2. Throughout the following, \(x \) denotes a real variable \(\geq 3 \). The following elementary estimates are well-known:

\[
\sum_{n \leq x} \frac{1}{n^s} = O(x^{1-s}) \text{ if } 0 \leq s < 1.
\]

\[
\sum_{n > x} \frac{1}{n^s} = \zeta(s) - \sum_{n \leq x} \frac{1}{n^s} = 0 \left(\frac{1}{x^{s-1}} \right) \text{ if } s > 1.
\]

\[
\sum_{n < x} \frac{\log n}{n^s} = -\zeta'(s) - \sum_{n \leq x} \frac{\log n}{n^s} = 0 \left(\frac{\log x}{x^{s-1}} \right) \text{ if } s > 1.
\]

Lemma 2.1 (cf., [6]; Satz 3, p. 191).

\[
M(x) = \sum_{n \leq x} \mu(n) = O(x\delta(x)),
\]
where
\[\delta(x) = \exp \{-A \log^{3/5} x \log \log x \}^{1/5} \],
\[A \text{ being a positive constant.} \]

\textbf{Lemma 2.2 (cf. [4] Lemma 2.2).} For any \(s > 1 \),
\[\sum_{n \leq x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O \left(\frac{\delta(x)}{x^{1+\epsilon}} \right). \]

\textbf{Lemma 2.3 (cf. [4], Lemma 2.3).} For any \(s > 1 \),
\[\sum_{n \leq x} \frac{\mu(n) \log n}{n^s} = \frac{\zeta'(s)}{\zeta^2(s)} + O \left(\frac{\delta(x) \log x}{x^{s-1}} \right). \]

\textbf{Lemma 2.4 (cf. [5], Theorem 14-26 (A), p. 316).} If the Riemann hypothesis is true, then
\[M(x) = \sum_{n \leq x} \mu(n) = O(x^{1/2} \omega(x)), \]
where
\[\omega(x) = \exp \{ A \log x (\log \log x)^{-1} \}, \]
\[A \text{ being a positive constant.} \]

\textbf{Lemma 2.5 (cf. [4], Lemma 2.5).} If the Riemann hypothesis is true, then for any \(s > 1 \),
\[\sum_{n \leq x} \frac{\mu(n)}{n^s} = \frac{1}{\zeta(s)} + O(x^{1-s} \omega(x)). \]

\textbf{Lemma 2.6 (cf. [4], Lemma 2.6).} If the Riemann hypothesis is true, then for any \(s > 1 \),
\[\sum_{n \leq x} \frac{\mu(n) \log n}{n^s} = \frac{\zeta'(s)}{\zeta^2(s)} + O(x^{1-s} \omega(x) \log x). \]

\textbf{Lemma 2.7 (cf. [3], Lemma 2.6).} If \(q_{k,r}(n) \) denotes the characteristic function of the set of \((k,r)\)-integers, that is, \(q_{k,r}(n) = 1 \) or 0 according as \(n \) is or is not a \((k,r)\)-integer, then
\[q_{k,r}(n) = \sum_{a^b c^r = n} \mu(b). \]

\textbf{Lemma 2.8.} \(\tau_{k,r}(n) = \sum_{a^b c^r = n} \mu(b) \).

\textbf{Proof.} We have \(\tau_{k,r}(n) = \sum_{d \mid n} q_{k,r}(d) \), so that by (2.12),
\[\tau_{k,r}(n) = \sum_{d \mid n} \sum_{a^b c^r \mid d} \mu(b) = \sum_{a^b c^r \mid n} \mu(b) \]
\[\sum_{a^k b^r c = n} \mu(b) \frac{\sum_{c \in (a^k b^r)} 1}{\sum_{a^k b^r | n}} = \sum_{a^k b^r c = n} \mu(b) \tau \left(\frac{n}{a^k b^r} \right) \]

\[= \sum_{a^k b^r c = n} \mu(b) \tau(c). \]

Hence Lemma 2.8 follows.

Lemma 2.9. For \(k \geq 3 \),
\[\sum_{a^k c \leq x} \tau(c) = \zeta(k) x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) + R_k(x), \]
where
\[R_k(x) = O(x^{\frac{1}{k}} \log x) \text{ or } O(x^\gamma), \]
according as \(k = 3 \) or \(k \geq 4 \), where the second \(O \)-estimate is uniform in \(k \).

Proof. We have by (1.2), (2.2) and (2.3),
\[\sum_{a^k c \leq x} \tau(c) = \sum_{a \leq \sqrt{x}} \sum_{c \leq x/ak} \tau(c) \]
\[= \sum_{a \leq \sqrt{x}} \sum_{c \leq x/ak} \left(\frac{x}{a^k} \left(\log \frac{x}{a^k} + 2\gamma - 1 \right) + O \left(\frac{x}{a^k} \right) \right) \]
\[= x(\log x + 2\gamma - 1) \sum_{a \leq \sqrt{x}} \frac{1}{a^k} - kx \sum_{a \leq \sqrt{x}} \frac{\log a}{a^k} + O \left(x^\gamma \sum_{a \leq \sqrt{x}} a^{-ka} \right) \]
\[= x(\log x + 2\gamma - 1) \left(\zeta(k) + O(x^{-1+1/k}) \right) - kx \left(- \zeta'(k) \right) \]
\[+ O \left(\frac{\log x}{x^{1-1/k}} \right) + O \left(x^\gamma \sum_{a \leq \sqrt{x}} a^{-ka} \right) \]
\[= \zeta(k) x \left(\log x + 2\gamma - 1 + \frac{k\zeta'(k)}{\zeta(k)} \right) + O(x^{1/\gamma} \log x) + O \left(x^\gamma \sum_{a \leq \sqrt{x}} a^{-ka} \right). \]

Since \(\frac{1}{k} < x < \frac{1}{k}, \) we have \(kx \leq 1 \) according as \(k = 3 \) or \(k \geq 4 \). Hence, by (2.1) and (2.2), the last \(O \)-term in the above is \(O(x^\gamma) \) or \(O(\zeta(kx)x^\gamma) = O(\zeta(4x)x^\gamma) = O(x^\gamma) \), uniformly in \(k \), according as \(k = 3 \) or \(k \geq 4 \). Hence Lemma 2.9 follows.

3. Proof of Theorem 1

By Lemma 2.8, we have
\[\tau_{(k, r)}(n) = \sum_{a^k b^r c = n} \mu(b) \tau(c). \]
Hence
\[\sum_{n \leq x} \tau_{(k,r)}(n) = \sum_{n \leq x} \sum_{a^{b}b^{c} = n} \mu(b) \tau(c) = \sum_{a^{b}b^{c} \leq x} \mu(b) \tau(c), \]

where the summation on the right being taken over all ordered triads \((a, b, c)\) such that \(a^{b}b^{c} \leq x\).

Let \(z = x^{1/r}\). Further, let \(0 < \rho = \rho(x) < 1\), where the function \(\rho(x)\) will be suitably chosen later.

Now, if \(a^{b}b^{c} \leq x\), then both \(b > \rho z\) and \(a^{c} > \rho^{-r}\) can not simultaneously hold good. Hence from (3.1), we have

\[\sum_{n \leq x} \tau_{(k,r)}(n) = \sum_{a^{b}b^{c} \leq x} \mu(b) \tau(c) + \sum_{a^{b}b^{c} \leq x} \mu(b) \tau(c) - \sum_{a^{b}b^{c} \leq x} \mu(b) \tau(c) \]

\[= S_1 + S_2 - S_3, \text{ say.} \]

By (2.13), we have

\[S_1 = \sum_{b \leq \rho z} \mu(b) \tau(c) = \sum_{b \leq \rho z} \mu(b) \sum_{a^{c} \leq x/b^{r}} \tau(c) \]

\[= \sum_{b \leq \rho z} \mu(b) \left(\zeta(k) \left(\frac{x}{b^{r}} \right) \log \left(\frac{x}{b^{r}} \right) + \frac{k_{r}^{(c)}(k)}{\zeta(k)} \right) \]

\[+ R_{k} \left(\frac{x}{b^{r}} \right) \]

\[= \zeta(k)x \left(\log x + 2 \gamma - 1 + \frac{k_{r}^{(c)}(k)}{\zeta(k)} \right) \sum_{b \leq \rho z} \frac{\mu(b)}{b^{r}} \]

\[- \zeta(k)rx \sum_{b \leq \rho z} \frac{\mu(b) \log b}{b^{r}} + E_{k,r}(x), \]

where

\[E_{k,r}(x) = \sum_{b \leq \rho z} \mu(b) R_{k} \left(\frac{x}{b^{r}} \right). \]

Hence by (3.3), (2.6) and (2.7), we have

\[S_1 = \zeta(k)x \left(\log x + 2 \gamma - 1 + \frac{k_{r}^{(c)}(k)}{\zeta(k)} \right) \left[\frac{1}{\zeta(r)} + O\left(\frac{\delta(\rho z)}{(\rho z)^{r-1}} \right) \right] \]

\[- \zeta(k)rx \left[\frac{\zeta'(r)}{\zeta(r)} + O\left(\frac{\delta(\rho z) \log(\rho z)}{(\rho z)^{r-1}} \right) \right] + E_{k,r}(x) \]

\[= \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2 \gamma - 1 - \frac{r \zeta'(r)}{\zeta(r)} + \frac{k_{r}^{(c)}(k)}{\zeta(k)} \right) \]

\[+ O(\zeta(k)\rho^{1-r}z \delta(\rho z) \log z) + E_{k,r}(x). \]

By (2.14) and (3.4), we have

\[E_{k,r}(x) = O \left(\sum_{b \leq \rho z} \frac{x^{b}}{b^{r+3}} \log \left(\frac{x}{b^{r}} \right) \right) \text{ or } O \left(\sum_{b \leq \rho z} \frac{x^{b}}{b^{r+3}} \right), \]
according as \(k = 3 \) or \(k \geq 4 \). Since \(1 < r < k \), we have \(r = 2 \), when \(k = 3 \) and since \(\frac{1}{2} < x < \frac{1}{2} \), we have by (2.1) and (2.2), the following 0-estimates:

\[
\begin{align*}
E_{a,2}(x) &= O(\rho^{1/3} x^{1/2} \log x) \\
E_{a,r}(x) &= O(\rho^{1-r} x^r) \\
E_{k,r}(x) &= O(\rho^{1-r} x^r) \text{ or } O(x^r),
\end{align*}
\]

(3.6)

where the 0-estimates are uniform in \(k \). We have

\[
S_2 = \sum_{a^b c \leq x, a^b \leq \rho^{-r}} \mu(b) \tau(c) = \sum_{a^b \leq \rho^{-r}} \tau(c) \sum_{b \leq \sqrt{x/(a^b c)}} \mu(b)
\]

\[
= \sum_{a^b \leq \rho^{-r}} \tau(c) M \left(\frac{\sqrt{x}}{a^b c} \right)
\]

\[
= 0 \left(x^{1/r} \sum_{a^b \leq \rho^{-r}} \tau(c) a^{-k/r} c^{-1/r} \delta \left(\frac{\sqrt{x}}{a^b c} \right) \right).
\]

by (2.4). Since \(\delta(x) \) is monotonic decreasing and \(\sqrt{x} \leq z \), we have

\[
\delta \left(\frac{\sqrt{x}}{a^b c} \right) \leq \delta(\rho z) . \text{ Also, by (2.1), (2.2) and (1.2),}
\]

\[
\sum_{a^b \leq \rho^{-r}} \tau(c) a^{-k/r} c^{-1/r} = \sum_{a \leq \rho^{-r}} a^{-k/r} \sum_{c \leq \rho^{-r} a^{-k}} \tau(c) c^{-1/r}
\]

\[
= O \left(\sum_{a \leq \rho^{-r}} a^{-k/r} \rho^{-r} a^{-k} \log(\rho^{-r} a^{-k}) \right)
\]

\[
= O \left(\rho^{1-r} \log \left(\frac{1}{\rho} \right) \sum_{a \leq \rho^{-r}} a^{-k} \right)
\]

\[
= O \left(\zeta(k) \rho^{1-r} \log \left(\frac{1}{\rho} \right) \right).
\]

Hence

(3.7)

\[
S_2 = O \left(\zeta(k) \rho^{1-r} \log \left(\frac{1}{\rho} \right) \delta(\rho z) \right).
\]

Further, we have by (2.4) and (2.13),

(3.8)

\[
S_3 = \sum_{b^c \leq \rho z, a^c \leq \rho^{-r}} \mu(b) \tau(c) = \sum_{b \leq \rho z} \mu(b) \sum_{a^c \leq \rho^{-r}} \tau(c)
\]

\[
= M(\rho z) \sum_{a^c \leq \rho^{-r}} \tau(c)
\]

\[
= O(\rho z \delta(\rho z) \zeta(k) \rho^{-r} \log(\rho^{-r})).
\]
\[= O \left(\zeta(k) \rho^{1-r} z \delta(\rho z) \log \left(\frac{1}{\rho} \right) \right). \]

Hence by (3.2), (3.5), (3.7) and (3.8)
\begin{equation}
\sum_{n \in \pi} \tau_{k,r}(n) = \frac{\zeta(k)x}{\zeta(r)} \left(\log x + 2\gamma - 1 - \frac{\zeta'(r)}{\zeta(r)} + \frac{k\zeta'(k)}{\zeta(k)} \right) + 0(\zeta(k) \rho^{1-r} z \delta(\rho z) \log z) + 0 \left(\zeta(k) \rho^{1-r} \delta(\rho z) \log \left(\frac{1}{\rho} \right) \right) + E_{k,r}(x).
\end{equation}

Now, we choose,
\begin{equation}
\rho = \rho(x) = \left(\delta \left(x^{1/2r} \right) \right)^{1/r},
\end{equation}
and write
\begin{equation}
f(x) = \log^{3/5} \left(x^{1/2r} \right) \left(\log \log \left(x^{1/2r} \right) \right)^{-1/5}
= \left(\frac{1}{2r} \right)^{3/5} U^{3/5} (V - \log 2) \left(\frac{V}{2} \right)^{-1/5},
\end{equation}
where \(U = \log x \) and \(V = \log \log x \).

(3.12) For \(V \geq 2 \log 2r \), that is, \(U \geq 4r^2, \ x \geq \exp(4r^2) \), we have
\[V^{-1/5} \leq (V - \log 2r)^{-1/5} \leq \left(\frac{V}{2} \right)^{-1/5} \]
and therefore
\begin{equation}
\frac{1}{2r} r^{-3/5} U^{3/5} V^{-1/5} \leq f(x) \leq r^{-3/5} U^{3/5} V^{-1/5}.
\end{equation}

(3.14) We assume without loss of generality that the constant \(A \) in (2.5) is less than 1.

By (3.10), (2.5) and (3.11), we have
\begin{equation}
\rho = \exp \left(-A \frac{f(x)}{r} \right).
\end{equation}
By (3.12), we have
\[r^{-8/5} U^{3/5} V^{-1/5} \leq \frac{U}{2r}. \]
Hence, by (3.13), (3.14), (3.15) and the above,
\[\rho \geq \exp \left(-A r^{-8/5} U^{3/5} V^{-1/5} \right) \geq \exp \left(- r^{-8/5} U^{3/5} V^{-1/5} \right) \]
\[\geq \exp \left(- \frac{U}{2r} \right) = \exp \left(- \frac{\log x}{2r} \right), \]
so that \(\rho \geq x^{-(1/2r)} \).
(3.16) \(\log \left(\frac{1}{\rho} \right) \leq \log(\sqrt{2}) = o(\log x) \) and \(\rho z \geq x^{1/(2r)} \).

Since \(\delta(x) \) is monotonic decreasing, we have \(\delta(\rho z) \leq \delta(x^{1/(2r)}) = \rho' \), by (3.10), so that by (3.13) and (3.15), we have

\[
(3.17) \quad \rho^{1-r} \delta(\rho z) \leq \rho \leq \exp \left\{ - \frac{A}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\}.
\]

Hence, by (3.16) and (3.17), the first and second 0-terms of (3.9) are

\[
O(\zeta(k)x^{1/r} \exp \left\{ - \frac{A}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \log x)
\]

\[
= O(\zeta(r+1)x^{1/r} \exp \left\{ - \frac{A}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \log x), \text{ since } k \geq r + 1
\]

\[
= O(x^{1/r} \exp \left\{ - \frac{A}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \log x), \text{ uniformly in } k.
\]

Hence, if \(\Delta_{k,r}(x) \) denotes the error term in the asymptotic formula (3.9), then we have

\[
(3.18) \quad \Delta_{k,r}(x) = O(x^{1/r} \exp \left\{ - \frac{A}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \log x) + E_{k,r}(x),
\]

where the 0-estimate is uniform in \(k \).

Case \(k = 3 \). In this case \(r \) must be \(= 2 \). By (3.6) and (3.17), we have

\[
E_{3,2}(x) = O(x^{1/2} \exp \left\{ - \frac{A}{6} (2)^{-8/5} U^{3/5} V^{-1/5} \right\} \log x),
\]

so that by (3.18),

\[
(3.19) \quad \Delta_{3,2}(x) = O(x^{1/2} \exp \left\{ - B \log^{3/5} x (\log \log x)^{-1/5} \right\}),
\]

where \(B \) is a positive constant \(\left(0 < B < \frac{A}{6} (2)^{-8/5} \right) \).

Case \(k = 4 \). In this case \(r = 2 \) or \(3 \). Since \(\frac{4}{3} < r < \frac{5}{2} \), we have \(0 < 1 - rz < 1 \). By (3.6) and (3.17), we have

\[
E_{4,r}(x) = O\left(x^{1/r} \exp \left\{ - \frac{A(1 - rz)}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \right).
\]

Again, since \(0 < 1 - rz < 1 \), the first 0-term in (3.18) is also of the above order of \(E_{4,r}(x) \). Hence

\[
(3.20) \quad \Delta_{4,r}(x) = O(x^{1/r} \exp \left\{ - B \log^{3/5} x (\log \log x)^{-1/5} \right\}),
\]

where \(B \) is a positive constant.
Case $k \geq 5$. In this case $r = 2, 3$ or $4 \leq r < k$. When $r = 2$ or 3, by (3.6) and (3.17), we have

$$E_{k,r}(x) = O\left(x^{1/r} \exp \left\{ -\frac{A(1 - rz)}{2} r^{-8/5} U^{3/5} V^{-1/5} \right\} \right),$$

so that by (3.18),

$$\Delta_{k,r}(x) = O(x^{1/r} \exp \{ -B \log^{3/5} x (\log \log x)^{-1/5} \}),$$

where B is a positive constant and the O-estimate is uniform in k.

When $4 \leq r < k$, by (3.6), $E_{k,r}(x) = O(x^{a})$ and the first O-term in (3.18) is $O(x^{1/r})$, so that we have

$$\Delta_{k,r}(x) = O(x^{a}),$$

where the O-estimate is uniform in k.

Hence, by (3.9), (3.18)–(3.22), Theorem 1 follows.

4. Proof of theorem 2

Following the same procedure adopted in the proof of theorem 1 and making use of (2.10) and (2.11) instead of (2.6) and (2.7) we get that

$$\Delta_{k,r}(x) = O\left(\rho^{1/2 - rz/2} \omega(\rho z) \log z \right) + O\left(\rho^{1/2 - rz/2} \omega(\rho z) \log \left(\frac{1}{\rho}\right) \right) + E_{k,r}(x),$$

where the O-estimates are uniform in k and $E_{k,r}(x)$ is given by (3.6).

Case $k = 3$. In this case r must be 2. Choosing $\rho = z^{-3/11}$, we see that $0 < \rho < 1$, $\frac{1}{\rho} < z$, so that $\log \left(\frac{1}{\rho}\right) < \log z$, and

$$\rho^{1/2 - rz/2} z^{1/2} = \rho^{1/2} z = x^{5/11}. $$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z) < \omega(z)$. Hence, by (4.1), (3.6) and the above, we have

$$\Delta_{3,2}(x) = O(x^{5/11} \omega(x^{1/2}) \log x) + O(x^{5/11} \log x) = O(x^{5/11} \omega(x)).$$

Case $k = 4$. In this case $r = 2$ or 3. Choosing $\rho = z^{-1/(1 + 2r(1 - s))}$, we see that $0 < \rho < 1$, $\frac{1}{\rho} < z$, so that $\log \left(\frac{1}{\rho}\right) < \log z$, and

$$\rho^{1/2 - rz/2} = \rho^{1 - rz} z = x^{2-s/(1+2r(1-s)).}$$

Since $\omega(x)$ is monotonic increasing, $\omega(\rho z) < \omega(z)$. Hence by (4.1), (3.6) and the
above, we have
\[(4.3)\]
\[\Delta_k(x) = O(x^{2-a(1+2r(1-a))} \omega(x^{1/2}) \log x) = O(x^{2-a(1+2r(1-a))} \omega(x)).\]

Case \(k \geq 5\). In this case \(r = 2, 3\) or \(4 \leq r < k\). When \(r = 2\) or \(3\), we have by (3.6), \(E_{k,r}(x) = O(\rho^{1-r} x)\). Choosing \(\rho = z^{-((1+2r(1-a))} \), as in the case \(k = 4\), we get that
\[(4.4)\]
\[\Delta_{k,r}(x) = O(x^{(2-a)/(1+(2r(1-a))} \omega(x)),\]
where the \(O\)-estimate is uniform in \(k\). When \(4 \leq r < k\), by (3.6), we have \(E_{k,r}(x) = O(x^a)\). We have \(\omega(x) = O(x^a)\) and \(\log z = O(x^a)\) for every \(\varepsilon > 0\). We assume that \(0 < \varepsilon < 1\). Hence, by (4.1), we have
\[(4.5)\]
\[\Delta_{k,r}(x) = O(\rho^{1/2-r+\varepsilon} z^{1/2+2t}) + O\left(\rho^{1/2-r+\varepsilon} z^{1/2+\varepsilon} \log \left(\frac{1}{\rho}\right)\right) + O(x^a).\]

Now, choosing \(\rho = z^{-(2a-1+4\varepsilon)/(2r-1-2\varepsilon)}\), we see that \(0 < \rho < 1\), \(\frac{1}{\rho} < z\), so that
\[\log \left(\frac{1}{\rho}\right) < \log z = O(x^a)\] and
\[\rho^{1/2-r+\varepsilon} z^{1/2+2t} = x^a.\]

Hence, by (4.5), we have
\[(4.6)\]
\[\Delta_{k,r}(x) = O(x^a),\]
where the \(O\)-estimate is uniform in \(k\). Hence, by (4.2), (4.3), (4.4) and (4.6), Theorem 2 follows.

Remark. In the case \(4 \leq r < k\), we may choose the function \(\rho = \rho(x)\), which tends to zero as \(x \to \infty\) to be a function which tends to zero more rapidly than that chosen above. In such a case, although the first and second \(O\)-terms in (4.5) are \(O(x^a)\), where \(\beta < \alpha\), but because of the third \(O\)-term in (4.5), we again get \(\Delta_{k,r}(x) = O(x^a)\). Hence we can not improve the result that \(\Delta_{k,r}(x) = O(x^a)\) for \(4 \leq r < k\), even on the assumption of the Riemann hypothesis.

References

Department of Mathematics
University of Alberta
Edmonton, Canada