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1. Introduction

In 1922, G. H. Harpy and J. E. LitTLEwWooD [4] in paper I1I of
their celebrated series of papers entitled “Partitio Numerorum” made a
number of conjectures. Two of these (conjectures A and L, p. 609 and
p. 611 of [4]) are as follows: (a) Every large number is either a square or
the sum of a prime and a square (b) Every large number is either a cube or
the sum of a prime and a (positive) cube. In each of these conjectures,
they have stated the asymptotic expressions also for the number of re-
presentations.

The above two conjectures are still open and are made on the basis
of the extended Riemann Hypothesis (e.R.H.), namely that every zero
of every Dirichlet’s function

z xq (m)

L(s,x) = Z

where y,(m) is a character (mod ¢) has a real part which does not ex-
ceed 1/2 for all ¢ and all ,. However, it has been shown by C. HooLEY [3]
in 1957 that every large integer is the sum of a prime and two squares
(cf. [4], conjecture J, p. 610) assuming the e.R.H. and by Ju. V. LINNIK
(cf. [7], also cf. [8], ch. VII) in 1960 without any hypothesis. In 1929, it
has been shown by G. K. STANELY (cf. [13], Theorem G) that every large
integer is the sum of two primes and a square assuming the e.R.H. and
by T. ESTERMANN [2] in 1937 without assuming any hypothesis. In 1968,
R. J. MicH [9] has shown that “nearly every” integer n is expressible in
the form n = p+ m2. For a precise statement of his result we refer to [9).

The problems corresponding to (a) and (b) above involving 4th or
higher powers have not received much attention. The utmost that is
known in this direction is the result of L. K. Hua (cf. [6], p. 179), namely
that every large integer can be expressed as the sum of a prime and s k-th
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powers of integers if s = s, ~ (3k log k)/2. In this connection, we might
also mention the following result proved quite recently by K. Pracuar
[12]: Given a positive integer, [, there exist constants » > I and § > 0
such that for large N at least 6N of the positive integers up to N are not
expressible in the form p+ m/, where p is a prime and m is a positive in-
teger not exceeding 7 log N.

In a different direction, T. ESTERMANN [1] established in 1931 that
every sufficiently large integer n can be expressed as the sum of a prime
and a square-free integer and that the number T'(n) of such representations
is given asymptotically by

where the product is extended over all primes p which do not divide n and
n

Lin:/ df .
log ¢

2

In 1935, A. PaGE (cf. [11], theorem 111) established an asymptotic formula
for T(n) with an O-estimate for the error term, namely

T(my= ]I [i——1 Aiinvo [L (log log n)® log log log n].
n L -1 log®
pin

This O-estimate has been further improved in 1936 by A. WaLFisz [17] to

0 [__n_]’ where H = 0.
logH n

Let r be any integer > 1. It is trivial after ESTERMANN’s [1] result
that every sufficiently large integer can be expressed as the sum of a prime
and a r-free integer (that is, a positive integer which is not divisible by the
r-th power of any integer > 1), since every square-free integer is a r-free
integer. In 1949, L. Mirsky [10] obtained the following asymptotic for-
mutla for the number T(r; n) of representations of n as the sum of a prime
and a r-free integer:

- 3 ‘_1__\ N n ]
(1.1) T(rin) _,,]i’{{l pp—1) ]Fln+0[log”n]’

where H is any positive number and the O-estimate depends at most on
rand H.

In this paper, we are concerned with the following problem: Let k
and r be integers such that 1 <r<#; and let us define an integer n to be a
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(k, r)- integer, if it is of the form n = a*b, where a is a positive integer and
b is a r-free integer. Clearly, a (k, r)-integer is a cross between a k-th power
of a positive integer and a r-free integer; and the set Q. , of all (k, r)-integers
includes the set S, of all k-th power integers and the set Q, of all r-free in-
tegers. Since every large integer is the sum of a prime and a r-free integer,
it is trivial, that every large integer is the sum of a prime and a (k, r)-inte-
ger. However, let us define a proper (k, r)-integer as a (k, r)-integer
which is not a r-free integer; these are integers of the form n = a*b, where
a = 1 and b is a r-free integer. The set Qi , of such integers includes the
set S;, but excludes the set Q,. The problem with which we are concerned
in this paper is as follows: Is every sufficiently large integer n be expressible
as the sum of a prime and a proper (k, r)-integer.

We answer this problem in the affirmative. In fact, we obtain an
asymptotic formula for the number T*(k, r; n) of representations of n
as the sum of a prime and a proper (k, r)-integer, with an error term,

0] [”V], where H=0.

logH n

Let T(k, r; n) denote the number of representations of n as the sum
of a prime and a (k, r)-integer. We establish an asymptotic formula
for T(k, r; n), which yields (1.1) as a particular case. Further, we improve

the O-term in the asymptotic formula for T(k, r; n) from O[ | ’L J
S oghn
to O(ne—BV‘Og”), where B is an absolute positive constant and to

9 1

O[n 10 Jog® n], assuming what we call the page hypothesis (stated below)
and the e.R.H., respectively. We obtain the consequent improvements in
the O-term of the asymptotic formula for T*(k, r; n).

Page Hypothesis (cf. [11], p. 117 ). The greatest real zero o possessed
by Dirichlet’s L-functions with modulus ¢ satisfies the inequality o <

, where A is an absolute positive constant.

< 1—

log g

A. PacEe believes that this hypothesis is very likely to hold (see [11],
p. 117) and in fact, he has shown that there is at most one real primitive
character which does not satisfy this hypothesis.

2. Prerequisites. The function %, (r) introduced by one of the authors
and V. C. HARrIs [14] in some other connection, plays an important role
in our present context. 4, ,(n) is a multiplicative function defined for
powers of an arbitrary prime p as follows:

[ 1, if «=0 (mod k)
(2.1) heoAp?) = =1, if «=r (mod k)
' 0, otherwise.
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For brevity, we here after write A(n) for 2, (). It should be noted that
Ay, A1) is different from the well-known Liouville’s function, which is also
generally represented by the same symbol.

It has been shown (cf. [14], Theorem 3) that

(2.2) dZ/’H Md) = g, (n),

where ¢, (1) = 1 or 0 according as neQy,, or n¢Q, ..
REMARK 2.1. We note for a later use that A(n) = 0, unless n is of the
form n = a"¥’, in which case A(n) = u(b), where 4 is the Mébius function.

We now prove the following:
LEmMMA 2.1. For x=1,n=1,

ey i(d_):]]{l___lq.i’:ﬂ}_m(c[ﬁlﬁ‘%),

d=x (P(d) p r
d,n pin

where the O-constant is independent of n, k and r, (s) being the Riemann Zeta

function defined by [(s) = 3 n-s for s>1 and @ (n) is the Euler totient
n=1

JSunction.

Proor. Let e(m) = 1 or 0 according as m = 1 or m > 1. Then the se-

s A@)e((d,n)

2> .

d=1 ¢ (d)

We have by Remark 2.1 and the fact (cf. [3], theorem 327) that
3

ries in (2.3) would become

d(n) > Cn* for all n=1 (C being a suitable positive constant),

2he@m)| 5 1L ey
d=m @ (d) dor=m @ (a"b) ¢ k:’rb

o2 (27) )

Hence the series g M

is absolutely convergent.
d=1 ¢ (d)

Further, j(d) = (@@ n)

7 is a multiplicative function of d and f(1)=1.
4
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Hence the series can be expanded into an infinite product of Euler type
(cf. [3], Theorem 286), so that by (2.1) we have

M _ o {1+ Ap)e(pam) |, AP e(p )

.
=IO ?(p) ?(p?) /
1 i 1 1
= 1 + - - — b=
If { PR o) e }
fpp b
U Ty I —p

A
pin
[ f(l— -1) pff’f(ll— —1>+’”]}:
1

_ 7 11 N W N U

o l—p‘1 Pt 1—pk l—p‘1 p }
I3 l 1—P_1 ko
pin

3
Also, by Remark 2.1 and ¢ (n) > Cn* for all n=1, we have

Ad 1 1 5
2 L - — < — 2 a 4 b 4
isx 9@  dVsx @(@b)  C av

(d,n)=1 a" b’ >x
|- o . 3k T
. Z 4 2 b 4 :0 2 a 4 (r xa_k) 4 —
C a= bV xak a=1
(13 . & ey L-3
— xr 4 a r =0 C[_]xr 4 .
K a=1 r
Since
A(d) R (1)) A(d)
3 Sor= 3 Tee 3 S
d=x (P(d) d=1 (P(d) d>x (P(d)
d, =1 d,n)=1

lemma 2.1 follows.

Let z(x; u, v) denote the number of primes p=x, p = v (mod u)
and (u,v) = 1. The it is well-known that

—{w(x; u,v)—~

Lixl—»Oasx» oo
o (1) J

uniformly with respect to u and v.
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Suppose that
2.4) w(x;u,v) = L Li x4+ O(x o (x)),
¢ (1)

where w(x) is a monotonic decreasing function tending to zero as x— oo,
and the O-constant is independent of u and v.

There exist explicit expressions for m(x) in the literature. As a conse-
quence of SIEGAL—WALFIsz (cf. [17], Hilfssatz 3, p. 5398) theorem, we have
the following result which is due to vAN DER CORPUT:

LEmmA 2.2, (cf. [16], Footnote 4, pp. 279—280). Let H be any positive
number, then ;

{2.5) a(x;u,v) =

Li x+0[~-——~x ]
¢ (1) log> x
where the O-constant dependes only on H.

LEmma 2.3. (cf. [11], (33), p. 135). If the Page hypothesis is true, then

Li x+0(xe=3BVoex),

(2.6) w(x;u,v) =
o (u)

where B is an absolute positive constant and the O-constant is independent

of uand v.

LEmMMA 2.4. (cf. [15], Theorem 6, p. 427). If e.R.H. is frue, then for
U<Xx, '

1
(2.7) m(X; u,v) = L Lix+0(x2 logx],
¢ (u)
where the O-constant is independent of u and v.

3. Main Results. First we prove the following:

THEOREM 3.1. If T(k, r; n) is the number of representations of n as
the sum of a prime and a (k, r)-integer, then for n— oo,

—r _ pn—k 1
@) Thrmy=qli-—1 PP a0 :[ﬁ]n[w(n)]5 ,
p L 1=pt 1—pt | r
pin
where the O-constant is independent of n, k, r and w(x) is the function which
appears in the O-term of (2.4).
PRroOF. Let y denote a certain function of n, to be chosen later, which

tends to infinity with n. The O-notation below refers to the passage 11— .
We have by (2.2),

@2) Tkriny= 2 g, (m= 2 2Zid= 2 id)=
P 4 dé=m P

p+m=n p+m=n p+dé=n
= 2D+ 22 Ad)=2+2
p+dé p+dé=n

d=y d>y
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say. Now, ' .
(3.3) 21 = = 2d 2 1=
p+ddé=n d=y p<n
d=y p=n(mod d)
= Z Z(d) 2 1+ 2 Z(d) 2 1 = 211+212»
a=y p<n d=y p<n ;
(d,n)=1 ~ p=n(mod d) (d,n)>1 p=n(mod d)

say. We now estimate >,. Since (d, n) > 1 and n = p +d b, we have
(d, n) = p. It is obvious that the number of d’s = y with (d, n) = p for
some prime p, is certainly =y. Hence '

(3.4) 2= 2 > 1= 5 Hd)=0(@)

=y p<n p+dé=
d, ny=>1 p=n(mod d) d=y
Next, by (2.4),
(3.5)
s - s o 3 1= 3 - Lin+omem! =
d=y __p<n d=y l @ (d) [
(d, n)=1 p=n(mod d) (d, my=1
=Lin 2 @) +O(ny w(n)).
d=y @ d)
d, n=1

Hence, by lemma 2.1, we have

(3.6)
N 1 3
= [1 ! p_r—p_lein—kO C[k} T_TLin
= - . A — +O0(nyw(n)).
S A r) (nye(m)
pin '
Also, by Remark 2.1,
@.7) 12:l=1 2 A=
p+dé=n
d>y
n
3 oami= 3 1= 3 1= 3 I
p+ape=n p+afp o=n a* v é<n d ooy A<l
ak b'>y a/c br>y al{ b'>y
—nSat 3 b= O[n ga—k(fW)l—'J -
a=1 b>r}/;a-j‘ a=1

_l.__] oo __’i k _1__1
=O(ny' > a r)zO(C[—]ny' )
a=1 r
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Hence by (3.2), (3.3), (3.4), (3.6) and (3.7), we have

1 p7'—p7),.
3.8 Tkyryn)y=J7|1- . Lin+
( ) ( ) » [ l_p-1 l_p—k J
pin

+0 (C {—l;—]y%_%Li n) +0(nyw(n))+0(y)+0 (C (lr{-]y%_l) .

4

Now, choosing y = [w(n)]_?, we see that y— o as n— , since w(n)-0
as n- . The first O-term is (3.8) becomes

o[ (%) [w(n)l—%e—%)m):o(g [g]n[wm)ﬁ),

. . n . . .
since Li n ~ - = 0(n), o (n) is monotonic decreasing and r = 2.

logn

It jis clear that the second and third O-terms in (3.8) are each

1
O(n[w(n)] 5]. The fourth O-term in (3.8) is

o(c[é] e (n)}’g(%")) - o(c[é]n[wm)ﬁ),

since o(n) is monotonic decreasing and r=2.
Hence theorem 3.1 follows:

REMARK 3.1 In the evaluation of 2, above, we argued that
dg’y A(d)-O(nw(n) = O(ny »(n)).
d,n)=1

This argument holds, provided the O-constant is independent of d. This
is indeed true, in virtue of (2.5), (2.6) and (2.7) with

w(x) =— !

log®! x () = emoRr

and
_L
o) =x * log x
respectively in (2.4).

In view of the above Remark and C[i] = C[ r+! ], we have the
r r

following:
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COROLLARY 3.1.

1 P =P\ n
3.9 T(k,r;n) = 1-- . Lin+O0|———|,
@0 Trm = 1= A o
pin
where the O-constant depends at most on r and H.

CoROLLARY 3.2. If the Page hypothesis is true, then

1 —r_ n—k
(3.10) T(k,r;n)= ]]fl— P p lLin—i—O(ne‘B“Og"),
p | 1—p=t 1-p* j
pin
where B is an absolute positive constant and the O-constant depends at most
onr.
COROLLARY 3.3. If the e.R.H. is true, then

1 1 pT—p7FY . Tgo %
(3.11) T(k,r;ny= J[31~ - Lin+0\n " log” n),
p L 1—pt 1—p*
pin
where the O-constant depends at most on r.
REMARK 3.2. We note that in the limiting case k- , a (k, r)-integer
becomes a r-free integer.
Hence, by taking limits of (3.9), (3.10) and (3.11) as k— o, we obtain
the following:

(3.12) T(r;ll)zﬂ{l—;—l—lLin+0[- " ]
N p~ip—1J log" n

(3.13) T(r;n) = ]p]{lnm}u n+ 0(ne—BYiogn),
pin

(3.14) T(r;n)zﬂ{l——r—_z—l—}Lin—kO[nlO 10g5 n].
o2 pip—1)

REMARK 3.3. It may be noted that (3.12) is the same as (1.1). Howe-
ver, (3.13) and (3.14) give better O-estimates on the assumption of the Page
hypothesis and on the e.R.H. respectively.

CoroLLARY 3.4. If T*(k, r; n) is the number of representations of n
as the sum of a prime and a proper (k, r)-integer, then for n— o,

(3.15) T*(k,r;n) =
1 p"—p7*) 1 . n
— 1— . — | ——————4Lin+0 )
L]f]{ I—p=' 1-p7* | ,,1;{ pPp— 1)}] [log”n]

where the O-constant depends at most on r and H.
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Proor. This follows by (3.9) and (3.12), since
T*(k,r;n) =Tk, r;ny—T(r; n).
COROLLARY 3.5. The O-term in (3.15) can be replaced by O(ne~BVicgn)

9 1

and by O(rziB log? n), on the assumption of the page hypothesis and on the
e.R.H. respectively.

THEOREM 3.2. Every sufficiently large integer can be expressed as the
sum of a prime and a proper (k, r)-integer.

Proor. Let

Y e 1
alk,rip)=1-—— TP and Brip)=1——
(k,r;p) P g B(r;p) ST

It is clear that «(k, r; p) = B(r; p). By (3.15), we have
(316) Tk rin) = [ 1 s D= 1] /3(r;p)] Liwro( ),
r

p logf n
pin prn

where the O-constant depends at most on r and H.
Since the main term in (3.16) is positive for every n, it is sufficient,
if we prove the following: As 11— =,

3.17) T*(k,r;n) ~ |:]] alk,r;p)— JT ﬁ(r;p):iLi n.

p p
pin pin
Let
pripy = 2Oy
B(r;p)
we have
Bryps)-yk,r;p) = olk,r;p)—p(rip) =
_ 1 o p—r_phk _ 1 'Vpr_l >(_1—
p-p)  (I—p™-(=p™  p(-p™) p=1  2p"
since p'—1 = —p~, v > 1 and L > —1
2 i _p—l pk_ 1 pk
1
Hence y(k,r; p) > —————, so that
B(r;p) 2p"

alorp) _ 1+9y(k,rip) = 1+—17.
B(r;p) 2p*

We note that JJB(r; p), the product being extended over all primes p, is

p
a convergent infinite product, and we denote it by §,.
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We have
[T ok, rip)y— [ B(r; p) =
Pfﬂ pfn
. a(b,rip) 4| . [1+1]—1:
]p]ﬁ(r,p)[é] 30 p) ] ]p]ﬂ(r,p)[]p] o
pin pin pin prn
]]ﬁ(r p) : |
= —1|=8 I+ -11,
Hﬁ(r p) [{a]{ 2p"] ] g []p][ 2p"] }
pln - pin
since JJ B(r;p) = L.
pin
Hence
[T 2k rip)= [ BGCip) =B+
2p

p p
ptn ptn
where the p on the right is any prime not dividing n.

As a simple consequence of the prime number theorem in the form
2 log p~x, we see that for every sufficiently large n, there is a prime p

=X

such that p=2log n and p{n. Hence for all sufficiently large n, we have

LB
2k log"* n 26=1logh

T arip)— [ BGip) =
p p 2
pin pin
This together with (3.16) gives

T*(k, r; n) _ 1+0[ no 2"Tllog n logn]
[]] a(k,r; p)— [ B(r; p) Li ”] loghn B, n

p p
pin pin
1
- 1 + O [’v ] ,
(log m)H k-1

where the O-constant is independent of n.

Hence, if H=k+ 1, then (3.17) follows. Since the number H in lemma
2.2 is an arbitrary positive number, we can take H such that H=k+1
for any fixed k.

Thus theorem 3.2 follows.

REMARK 3.4. On the assumption of the Page hypothesis or on the
e.R.H. also, the conclusion of theorem 3.2 follows. This is rather more im-
mediate in view of Corollary 3.5. However, we have the improved O-
estimates in the asymptotic formula for T*(k, r; n) on the assumption of
these hypotheses.
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We have
[« rsp)— [ B(r; p) =
pin pin
= ; M._] = : [1+ 1 ]__1 =
]p]ﬁ(r’p)[]p] B p) ] ]p]ﬂ(r’p)[]p] 2
pin pin pin pin
11 8(r;p) . .
=7 — 1+ —-11=5 I+ — 11,
[18(r;p) []p][ 2p“] \! g [{,][ 2p"] ]
pln pin 2t pin
since [ B(r;p) = 1.
pln
Hence

1
[T «Grspy= [ BUrsp) =B -——>
p p 2p
ptn ptn

where the p on the right is any prime not dividing n.
As a simple consequence of the prime number theorem in the form
> log p~x, we see that for every sufficiently large n, there is a prime p

=X

such that p=2log n and pfn. Hence for all sufficiently large n, we have
3, 1 B,
a(k,r;p)— r;p) = . = .
],,] ( P) ],,] Al p) 2 2Kloghn 2fk+1logk n
ptn pin
This together with (3.16) gives

T*(k’r;’},)_ _ 1—}—0[*4&_. 2/\’Tllogkn.lggll]:
[]] alk,r;p)— [T B(r;p) Li”] log"n B, n
p

p
ptn pin

i
=140,
[(logn)“*"’*l ]

where the O-constant is independent of n.

Hence, if H>=k+ 1, then (3.17) follows. Since the number H in lemma
2.2 is an arbitrary positive number, we can take H such that H=k+1
for any fixed k.

Thus theorem 3.2 foilows.

REMARK 3.4. On the assumption of the Page hypothesis or on the
e.R.H. also, the conclusion of theorem 3.2 follows. This is rather more im-
mediate in view of Corollary 3.5. However, we have the improved O-
estimates in the asymptotic formula for T*(k, r; n) on the assumption of
these hypotheses.
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As particular cases of theorem 3.2, we have the following:

COROLLARY 3.6. (r = 2). Every sufficiently large integer can be expressed
as the sum of a prime and an integer of the form a*b, where a=1 and b is
a square-free integer; k being any given integer =3.

CoroOLLARY 3.7. (k = 3, r = 2). Every sufficiently large integer can be
expressed as the sum of a prime and an integer of the form a®b, where a= 1
and b is square-free.
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