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1. Introduction

In 1923 Nagell [4] studied the totient function 8(m,n) for
positive integers m, n defined as the number of positive integers z <
n for which (z,n) =1 = (m — z,n). Several interesting properties
and applications of the same were studied.

We shall denote by (mod®n;m), the set of all positive integers
z < n for which (z,n) = 1= (m — z,n) and call it an RRS (Re-
duced Residue System) (modn;m). Note that (mod® n;n) is sim-
ply a reduced residue system modn, and is denoted by (mod®n).
As usual we shall denote a Complete Reduced System (CRS) modn
by simply writing {modn). In general, we define for r > 2,
6(my,my,...,my;n) as the number of positive integers z < n
for which (z,n) =1 = (my-2z,n), ¢ = 12,...,r, where my,
i = 1,2,...,r are positive integers, and denote analogously this
RRS (mod®n : my,ma,...,m,). As the referee suggested, in or-
der not to confuse this with a congruence relation, for example, say
z = n{mod m), we simply write r = n modm, omitting parenthe-

‘ses. In this paper, we study the function 6(m;,m;...,m.;n) and
obtain some of ite arithmetical properties and identities that appear
to be new. For the sake of simplicity we restrict ourselves mostly to

.the case r = 2. As an application of this function, we construct the
Ramanujan Sum analogues sssociated with this function and study
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their properties. We obtain alsc some results involving an aseociated
zeta function analogue, and obtain applications to certain restricted
relative partitions mod N.

2. Preliminaries
Let u(nj denote the well known Mdbius function given by -

) (-1)* ifnis a product of k distinct primes (k > 0)
u(n) =
0 otherwise.

We recall that an arithmetic function f is said to be multiplicative
if

f(mn) = f(m)f(n) whenever (m,m)=1.

We say that f is completely muitiplicative if this multiplica-
tive property holds for all m,n.

Further, if
en(z) ) exp {27iz/n}
then
n if n|d;
E en(zd) = _
z(modn) 0 otherwise.

The Ramanujan sum C({,n) (see [3]) and some other arithmetic
functions that are needed in this paper are defined below.

cim)E Y en(z0)

z(mod* n)
Li(n) & nk, Vn
E(n) = Io(n) =1, Yn
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1, n=1

Eo(n) = [1/n] = {

0, n>1.

(1)) (~2)waln)(~3)ws(n)
df when n is a product

p(my, mg;n) of distinct primes

0, otherwise.

A(my, ma; n) S 2030,

where
wi(n) = # {distinct primes p:p|(n, mly""))}
wa(n) =# {distinct primes p:p|n and
p| just one of my,my,m; —my}
wa(n) = # {distinct primes p:p|n and
p{ anyoneof m;,mym; —m3}
and

Q(n), i=1,2,3 denote the total number of prime factorsof n
corresponding to wy(n), & = 1,2, 3 respectively.

Let us call the primes of the above three types as primes of
_type 1, type 2 and type 3 respectively with respect to the pair of
integers m;, my.
If f(n), g(n) sre any two arithmetic functions of n (where
" f or g or both may also be functions of some more parameters), we
denote by o the Dirichlet Convaolution of f and g with respect to
n, for e.g. I(n)o u(m;,mq;n) = Dirichlet product of I(n) and
p(my, mg;n) with respect to the argument n.
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3. Formulae for &(m,,my;n)
We first obtain a ‘Mabius type’ inversion formula given by

3.1. Theorem. Let f(z) be a pericdic function of a real variable
z with period 1 and

Pimmain)= 3 f(r/n)

r(mod* n; my ,ma)

then
(32)  F(mi,mgin) =Y p(d)u(ds)G(d1, da; my, my; ),

where the summation is over those divisor paire dy,d; of n for
which (dn’ni) = 1’ §== 1r2 and (dl’dz)l(ml -"19) and

G(dy, dg;my, ma;n) = 3 J(r/n)

r{mod*n),rmm(mod d;),im=1,2

This is easily proved by the inclusion-exclusion combinatorial
principle.
In particular, choosing f(z) =1, we have

3.3. Theorem. 8(m;,ma;n) = 3 u(d\)pu(da)p(n)/#(8) where
§ = f.c.m. {d,,d3} and the summation is as in (3.2).

The proof follows easily by making use of the following weil
known result of
Vaidyanathaswamy {7].

8.4. If d|N and (t,d) =1 then in any RRS (mod N) there are

#(N)/¢(d) integers congruent to (modd).
When f(z)=1, Theorem 3.1 gives

$(n)/#(8) if (d1,da)}|(m1 —m2)

G(dy, da; in) =
( 1, G2; ™My, M2, ) {0 otherwise,
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where § = £.c.m. {dy,d3} by considering the simultaneous solutions
of r=my(modd;), i=12
Next we note

3.5. Lemma. Let f # 0, g,h, s be multiplicative arithmetic
functions and for any three positive integers n,m;,ma, let

A = {ordered pairs of positive integers (d,,d3) such that d,,d3 | n,
(d‘)'ni)'zlv i=1,2&ndd=(d1,dg)l(m1-ma)}.

H(m,mg;n) = a(n) 3 o(dh) h{da)/ f(dyda/d)
A

is multiplicative in n.
In particular, for g=h=yu, f=¢, s=E, we obtain that
6(m;,ma;n) is multiplicative in n.

The result follows easily following the usual procedure of split-
ting each of the two divisors d; (j = 1,2) of n = niny with
(n1,n3) = 1 and satisfying conditions in A into product of two rel-
atively prime numbers dj,d;; dividing n, and n; respectively
and using the multiplicativity of f,g,h and s.

In the particular case mentioned in 3.5, we obtain through eval-

uation of 6 at prime powers that

1 2
dtma,maie) =9 [T (1= 65) T (- 55)

=n[1 (- ) TC-3)TC-5)

where u,p and ¢ run through the prime divisors of n, of types
1,2 and 3 respectively.
Note that we have

(3.6) 8(my, main) = I(n) o u(my, my;n).
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Rerark. More generally, it can be proved by using a similar argu-
ment that

B(ma,ma, ... meim) = 3 w(diJu(da) -+ (d () /),

where the summation is over those r-tuples (d,,d;,...,d.) for
which '

(l) dj!ﬂ and (dj,fﬂj)=1, j=1,2,... T
(u) (disdj),("‘i-mj)s 1$i<j5rr j=1,2,...,1‘ and
(iii) &={di,dz,...,d}, the Lem. of dy,dy,...,d,.

The function @ is multiplicative in n and so is given by

6(my,mg,...,my;n)

=ng (1- i)g (1- %)"'H (1- ptl)

Pr43

whereinfor t =1,2,...,(r+1), p, runsover those prime divisors of
n which are relatively prime to just r+(3)—(""3") of the members
oftheset M = {my,(my—my): 1 <i<j<r j=12,...,r}
that is, those which just divide ("*3~*) members of the set M.

4. Some Identities Involving &(m;,my; n)
We define a zeta function analogue given by

Cmy,ma;0) E D A(my, mg;n)/n’
nael

=[Ja+uv+u >+ GO +27"+ 27 +..)
u P

xH(l+3q"‘+3’q""+...),
1
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which is convergent for ¢ = R s > 1, since

< Z 3w(n) n-° ,

n

“where w(n) = wi(n) + wa(n) + ws(n).
Then we have from (3.6) that

- (4.1) f:O(ml,mg;n)/n' = ((s —1)/{(my,m2;8), Rls>2.

n=l

We further note that A(my, mg; n) o u(m,y,mz;n) = E,(n) and so

3 tma, ma,mymt = T 0 =) [T -2~ [T (1 - 37)

Nl u

= M(mlvmd;’)) say,
which is convergent for ¢ = R{ s > 1 since
i Zu"' + Z2p"‘ + ESq"‘

Hence we also have for RLs > 1

< 3211"".

(4.2) f:)\(mx,ma;n)/n' = 1/M(m,, ma; 8) = {(m1, ™25 8)-

n=l

Let
(4.3) (1, ma;n) B E(n) o Ama, ma;n)
_ and
(4.4)
o'® (my, ma;n) o Z 2Ma(d) 30(9) ( /d)* = I1(n) o A(ma, ma; n).

dir.
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Then 7 is a weighted divisor function of n, with a weight
202(n/d)30s(n/d) gitached to each divisor d of n. o®)(m;, my;n)
is the corresponding weighted sum of the k-th powers of divisors of
n. We then have

Y T(m, main)/n’ = ((s)¢(my, my, 8),
1
(4.5) Rts>1
3 o™ (my, ma;n)/n® = ¢(s - k)S(my1, ma; 8),
1
(4.6) Rts>1, k2>1.

These identities can be easily verified. We further have the following
multiplicative and summatory results.

0(my, ma; nyna)8(my, my, (ny,n2))
(4.7) = (ny,n3)0(my, my; ny)8(my, my; nz)

(4.8)
6(my, ma; {n1,n2})0{m1, ma; (n1,m2)) = 6(my, mp; np)0(my, ma; ng)

(4.9) 3 6(mi,ma; d)p(n/d) = 6(m1, ma; n)é(n) /n

din

(4.10)
3 6(my, ma; d)u(my, ma; n/d) = {8(m1, ma;n)} /n.

din

We shall indicate the proofs of (4.7) and (4.9).

Proof of (4.7). Since the functions are multiplicative, it is enough to
prove the result when n; =p™, n; =p® (prime powers).
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If p, # p3, using the multiplicativity of 8, we have

8(ma, ma; p7 p3? )0 (M, ma; (p7°, 937))
= @(my, my; py* )8(my, ma; p3?)8(my, My, 1)

= O(mq, my; p7*)8(m1, ma; p3° )1 P37)-

If py = p3 and p; divides both m; and m; wehave (p*,p9?) =
pmln(ax,m) and 8o
1

8(mny, ma; pI pT2)0(my, my; (952, P7?))
= O, ma; 55410 o, g )
=pP+o (1 - 1p)pr " (1 - 1/p1)

= 8(mq, ma; p7* )0(m1, ma; p3°) (51", P3°)

since p, = p3.
The results in the other cases follow similarly.

Proof of (4.9). For n=p®, we have

i B(rm1, ma; PP)u(p™P) = 8(m1, ma;p*) — B(ma, mai p® )
A=0
= 0(my, ma;p°)(1 — 1/p)

= 6(my, ma;p%)0(p%) /p°.

5. Allied Ramanujan Sum Analogues
We define two Ramanujan sum analogues:

(5.1) Cimumatm)E= 3 ealtr)

r{mod® n;m3 ,m3)
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and

(5.2) Clmy, ma; t,n) & Y du(my, my;n/d).
dl("“)

It is casy to see that C is modular or periodic in each of
mi,m; and {(modn) since (n,my +kn —r) = (n,m; —r) and
e((£+ kn)r) = en(¢r). Further, since ((¢, n),n) =(4n), C isan
even function of £(modn). We refer to E. Cohen [2] for the definition
and properties of even functions. Also whenever (n;,n;) =1, we
hfve (lnnlnﬂ) = (lv nl)(la n2)1 where ((tanl)’ (£:M)) = 1 and so
C is multiplicative in n.

We also have a tranalation property of C given by

5.3. Theorem. If {m,n) =1, then
C(my, mg; m,n) = C(mym,mym; {,n).
This follows on noting that when (m,n)=1, r runs

(mod*n;m;, m3) if and only if mr runs (mod*n; mm,, mm;).
In the particular case when n|¢, we have

5.3.1. Corollary. If (m,n) =1, then
6(my, ma; n) = 6(mym, mam; n).

When n|m,; and m; in (5.3) we have

5.3.2. Corollary. When (m,n) =1 the Ramanyjan sum C(¢,n)
satisfies C(fm,n) = C({,n).

5.4. Theorem. Whenever (ni;,n3) =1, we have
C(ma1, maz; &, 11)C{mar, mas; b, ma) = C(My, Mz £, myma),

where £=fyng +€ny, My =myng+mun; and M; =mizng +
maani.
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Froof. Let ri(mod®*n;;my;,my3) and ry(mod®n;mgy,,my;) and
2 = nirg + ngry. Since (n3,n3) = 1 we have (r;,n;) = 1 and
(ra,n3) = 1 ==> (8,m1n3) = 1. Again because of the same reason

(my—ri,m) =1, (Myy—r3,n3) =1=> (M;—s,nym) =1,i=12
" So, also for s{mod®n;ny; My, M;) and this proves the theorem since
C(m1, maa; &, m )C(may, maa; &3, 1)

= h exp {2mi{liring + L27an1) /ning}

ri(mod* n¢imi ,mia) i=l,2

= E exp (2mls/nyng)
s{mod nyna; My, M>3)

= C(Ml ' MQ; t, ﬂ‘l"ﬁ)'

We also have au analogue of a result of Ramanujan.
6.5. Theorem.

o) = £¢(m1,maia +1) 3 Clmy,maim)/n**, R >0,

nml

where o(*)(€) = sum of the s*" powers of the positive divisors of
¢

This follows on noting that we can write (5.2) as C(myi, mz; £, n)
= I(¢,n) o u(my,my;n) where

n if n|t
I(€,n) = {

0 otherwise,

on realizing that § I, n)/n® = o(1=0)(8) = oo 1}(g) /1.

nml
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5.6. Theorem. Hdlder type identity for C(my,mg;¢,n). When-
ever d|(f,n), we have

C(my, ma; ¢, n) = 8(my, mg; n)C(m,, my; ¢/d,n/d)/6(m,,my;n/d).

This follows from the definition of C, using the

5.7. Lemma. For any given divisor d of n, and any given j
beionging to the residue system (mod®d;m;,m;) there are :
6(my,my;n)/6(m,,my;d) numbers congruent to j(mod d) in the
residue system (mod®n;m;,m,).

This lemma is easily proved on the same lines as reeult (3.6)
above of
Vaidyanathaswamy [7].

5.8. Corollary. When g = (¢,n),

C(my,myp; ¢, n)
= 6(my, my; n)C(mit/g,mp¢/g; 1,n/g)/0(my, mz; n/g).

This follows from Lemma (5.7) and Theorem (5.3).
Next we shall obtain some identities for C(m1,m2;¢,n).

5.9. Theorem. If g = ({,n), then the identity
C(mi1,ma; 4, n) = 8(my, ma; n)u(my, ma; n/g) /8(my, ma; n/g)

holds under the following conditions.

(i) For all m;,m; when (n,6)=1
(ii) For those my,m; with respect to which 2 is not of type 2,

whenever 2in and
(iii) For those m;,my with respect to whick 3 is not of type 3,
whenever Jin.

This is a particular case of the following
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5.10. Theorem. Let f be a completely multiplicative function
and let A(n) = p(my, mg;n)h(n), where h(n) is a multiplicative
function. Then the sum

(m,mag; 6, m) ¥ f(d)An/d), 9= ()
dlg
satisfies the identity

8(my, mg; &, n) = F(m,,ma;n)A(n/g)/F(mi,mz;n/g)

where
F(my,mg;n) = (f o A)(n)
= f(n)!:! (1+ #(mx,;m(;)p)h(ﬂ)
provided that

(i) f(p)#0, forall pin

(i) f(p) # h(p) for pin of type I
(i8) f(p) # 2h(p) for p|n of type 2 and
(iv) f(p) # 3h(p) for pin of type 3.

(Note that A(n) is actually a function of m;,m; and n) This
theorem is a generalization of Theorem 8.8, pp. 163-164 of Apostol

1]
- Proof. We first note that

#(m1,ma; £, ) = Y _f(d)p(m1, ma;n/d)h(n/d)
dlg

(noting that n/d = (n/g)}(g/d) has s square factor whenever
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(n/g,9/d) # 1 and using the definition of u in the preceding step),
we have with g/d =4 that

smumgtn)= Y f(g/8)u(m1, ma;6n/g)h(én/g)
5l9.(8.n/g)m1

= f(@)ulm,main/gdh(n/a) Y u(my,ma8)n(8)/1(6)

Sig {8/ g)m1

(using the complete multiplicativity of f, satisfying (i) to (iv) and
definition of u)

= f(g)A(n/g) 1+ p(ma, ma; p)h(p) _
r|al.;1fﬁ/n ( /() )

But

F(my,mgin) =3 _f(d)p(ma,ma;n/d)h(n/d)

din

= (n)Y _p(mi,mz;e)h(e)/f(e), (e =n/d)

ein

= f(m)[J (1 + p(m1,ma; p)h(p)/ 1 (P)),

pin

in view of multiplicativity of u and A.

Hence we obtain the theorem using the complete multiplicativ-
ity of f.

When we choose f(n) =n and h(n) =1 for all n, in the
above Theorem 5.9 follows.

5.11. Theorem. A Brauer-Rademacher type identity holds for
C(my,ma;¢,n) under the conditions of Theorem 5.9. It is given
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by

O(my,main) Y du(n/d)/6(m1,my;d)

din,(¢,d)=1

= C(my, ma; £, n)u(n)u(n/g)M(m1, ma; n/g)/u(m1, mz;n/g)
- where g = (,n).

me Deﬁn-‘ng f(ﬂ) = n/ﬂ(m;,mg;n),
h{n) = A(m,ma;n)/8(m,, mz;n) (withfixed m,, my), we see that

f0) = 1(*) =--- = (") = h(p) +1

for every prime factor p of n.
Hence, from the general Brauver-Rademacher identity obtained
by Subbarao [6) and Theorem 5.9, we obtain the required identity.

6. Applications to Certain Restricted Relative Partitions
We shall first prove
6.1. Lemma. Let A be a nonempty set of positive integers and

n, N be any two integers such that 0 <n< N and for & given u,
where u=20,1,2,...,N -1, let

ClamME Y enlro),

LeA
ror@umod N

and we denote C(A;0,N) by 6(A;N), Then if G(z) = Eo prz”
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is a power series with a finite non zero radius of convergence, we have

D> Glen(B)en(~tn) = 6(4; N)( i}’nq-m)

leA te=]

(6.2) + Nf C(A;u,N) ( i Pn+m+u)

um]l tm]

This follows on collecting the terms contsining r in the same
residue class mod N.
Iet A and B be two nonempty sets of positive integers and

P,{B;N,n) %’ the number of restricted relative partitions of n

’
mwodulo N for which nsZa,(modN), a; € B

Jm1
and
P,(A,B;N,n)
def N-1
= 0(A,N)P,(B; N,n)+ ) _ C(A;u, N)P,(B; N,n +u).
um]

This P,(A, B; N,n) is a weighted relative partition function
into summands belonging to B. In this, every partition of every
pasitive integer in the residue class O(mod N) is counted 6(A4, N)
times and any partition of any integer belonging to any other residue
cless u(mod N) is counted C(A;u,N) times.

We then have, on utilizing a method of Subbarao (5},

6.3. Theorem. P,(A,B;N,n) is given by

P,(A,B;N,n) = Z (C(B; ¢, n)* exp (—2miln/N)),
LeA
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where

C(B;¢, N} =Y en(tz).
zEB

Proof. We note that

P,(B;N;n)=#{n:n=a; +a3 +--++a,(mod N), a; € B}

so that if
o0
G(z) = Z gorterttes }: pez’,
a ;€D r=0
so that
p. = npumber of partions of n into s summands € B,
we have

P,(B; N, u) = Z Pr
rmu(mod N}

and substituting this in (6.2) and rewriting the left hand member
of (6.2) for the present choice of G(z), in terms of C(B;{,n) the
theorem follows.

8.4. Corollary. Choosing

A={£:2>0, t(mod" N;my,m)}
B={a:a runs(mod'N}}

and by setting P;{N,n) = P.(A, B;N,n) and P:(N,n+u) =
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P,(B;N,n) for these A,B we have

N-1
0(m1,ma;N)P,‘(N, n) + Z C(my, mg; u, N)FP}(N;n + u)

wm)

=) C(¢,N)* exp {~2mitn/N}.
(€A
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