ON AN EXTENSION OF NAGELL'S TOTIENT FUNCTION AND SOME APPLICATIONS

M.V. Subbarao University of Alberta Edmonton, Alberta T6G 2G1 Canada V.V. Subrahmanya Sastri SSS Institute of Higher Learning Anantapur, A.P. 515001 India

e-mail: m.v.subbaraoQualberta.ca

1. Introduction

In 1923 Nagell [4] studied the totient function $\theta(m,n)$ for positive integers m,n defined as the number of positive integers $x \le n$ for which (x,n) = 1 = (m-x,n). Several interesting properties and applications of the same were studied.

We shall denote by $(\bmod^*n; m)$, the set of all positive integers $x \le n$ for which (x, n) = 1 = (m - x, n) and call it an RRS (Reduced Residue System) $(\bmod n; m)$. Note that $(\bmod^*n; n)$ is simply a reduced residue system $\bmod n$, and is denoted by (\bmod^*n) . As usual we shall denote a Complete Reduced System (CRS) $\bmod n$ by simply writing $(\bmod n)$. In general, we define for $r \ge 2$,

 $\theta(m_1, m_2, \ldots, m_r; n)$ as the number of positive integers $x \leq n$ for which $(x, n) = 1 = (m_i - x, n)$, $i = 1, 2, \ldots, r$, where m_i , $i = 1, 2, \ldots, r$ are positive integers, and denote analogously this RRS (mod*n: m_1, m_2, \ldots, m_r). As the referee suggested, in order not to confuse this with a congruence relation, for example, say $x = n \pmod{m}$, we simply write $r = n \pmod{m}$, omitting parentheses. In this paper, we study the function $\theta(m_1, m_2, \ldots, m_r; n)$ and obtain some of its arithmetical properties and identities that appear to be new. For the sake of simplicity we restrict ourselves mostly to the case r = 2. As an application of this function, we construct the Ramanujan Sum analogues associated with this function and study

ARS COMBINATORIA 62(2002), pp. 79-96

^{*}Partially supported by a Natural Sciences and Engineering Research Grant (Canada)

their properties. We obtain also some results involving an associated zeta function analogue, and obtain applications to certain restricted relative partitions $\mod N$.

2. Preliminaries

Let $\mu(n)$ denote the well known Möbius function given by

$$\mu(n) = \begin{cases} (-1)^k & \text{if } n \text{ is a product of } k \text{ distinct primes } (k \ge 0) \\ 0 & \text{otherwise.} \end{cases}$$

We recall that an arithmetic function f is said to be multiplicative if

$$f(mn) = f(m)f(n)$$
 whenever $(m, n) = 1$.

We say that f is completely multiplicative if this multiplicative property holds for all m, n.

Further, if

$$e_n(x) \stackrel{\text{def}}{\equiv} \exp\left\{2\pi i x/n\right\}$$

then

$$\sum_{x \pmod{n}} e_n(xd) = \begin{cases} n & \text{if } n|d; \\ 0 & \text{otherwise.} \end{cases}$$

The Ramanujan sum $C(\ell, n)$ (see [3]) and some other arithmetic functions that are needed in this paper are defined below.

$$C(\ell, n) \stackrel{\text{def}}{\equiv} \sum_{x \pmod{n}} e_n(x\ell)$$

$$I_k(n) \stackrel{\text{def}}{\equiv} n^k, \qquad \forall n$$

$$E(n) = I_0(n) = 1, \qquad \forall n$$

$$E_0(n) = [1/n] = \begin{cases} 1, & n = 1 \\ 0, & n > 1. \end{cases}$$

$$\mu(m_1, m_2; n) \stackrel{\text{def}}{\equiv} \begin{cases} (-1)^{w_1(n)} (-2)^{w_2(n)} (-3)^{w_3(n)} \\ & \text{when } n \text{ is a product} \\ & \text{of distinct primes,} \\ 0, & \text{otherwise.} \end{cases}$$

$$\lambda(m_1, m_2; n) \stackrel{\text{def}}{\equiv} 2^{\Omega_2(n)} 3^{\Omega_3(n)},$$

where

$$w_1(n) = \#$$
 {distinct primes $p: p \mid (n, m_1, m_2)$ }
 $w_2(n) = \#$ {distinct primes $p: p \mid n$ and
 $p \mid$ just one of $m_1, m_2, m_1 - m_2$ }
 $w_3(n) = \#$ {distinct primes $p: p \mid n$ and
 $p \nmid$ any one of $m_1, m_2, m_1 - m_2$ }

and

 $\Omega_i(n)$, i = 1, 2, 3 denote the total number of prime factors of n corresponding to $w_i(n)$, i = 1, 2, 3 respectively.

Let us call the primes of the above three types as primes of type 1, type 2 and type 3 respectively with respect to the pair of integers m_1, m_2 .

If f(n), g(n) are any two arithmetic functions of n (where f or g or both may also be functions of some more parameters), we denote by o the Dirichlet Convolution of f and g with respect to n, for e.g. $I(n) \circ \mu(m_1, m_2; n) = Dirichlet product of <math>I(n)$ and $\mu(m_1, m_2; n)$ with respect to the argument n.

3. Formulae for $\theta(m_1, m_2; n)$

We first obtain a 'Möbius type' inversion formula given by

3.1. Theorem. Let f(x) be a periodic function of a real variable x with period 1 and

$$F(m_1, m_2; n) = \sum_{r \pmod{n; m_1, m_2}} f(r/n),$$

then

(3.2)
$$F(m_1, m_2; n) = \sum \mu(d_1)\mu(d_2)G(d_1, d_2; m_1, m_2; n),$$

where the summation is over those divisor pairs d_1, d_2 of n for which $(d_i, m_i) = 1$, i = 1, 2 and $(d_1, d_2)|(m_1 - m_2)$ and

$$G(d_1, d_2; m_1, m_2; n) = \sum_{r \pmod{n}, r \equiv m_i \pmod{d_i}, i=1,2} f(r/n)$$

This is easily proved by the inclusion-exclusion combinatorial principle.

In particular, choosing f(x) = 1, we have

3.3. Theorem. $\theta(m_1, m_2; n) = \sum \mu(d_1)\mu(d_2)\phi(n)/\phi(\delta)$ where $\delta = \ell.c.m.$ $\{d_1, d_2\}$ and the summation is as in (3.2).

The proof follows easily by making use of the following well known result of Vaidyanathaswamy [7].

3.4. If $d \mid N$ and (t, d) = 1 then in any RRS (mod N) there are $\phi(N)/\phi(d)$ integers congruent to t(mod d).

When f(x) = 1, Theorem 3.1 gives

$$G(d_1, d_2; m_1, m_2; n) = \left\{ egin{array}{ll} \phi(n)/\phi(\delta) & ext{if} & (d_1, d_2) \, | \, (m_1 - m_2) \ & ext{otherwise}, \end{array}
ight.$$

where $\delta = \ell$.c.m. $\{d_1, d_2\}$ by considering the simultaneous solutions of $r \equiv m_i \pmod{d_i}$, i = 1, 2.

Next we note

3.5. Lemma. Let $f \neq 0$, g, h, s be multiplicative arithmetic functions and for any three positive integers n, m_1, m_2 , let

A = {ordered pairs of positive integers
$$\langle d_1, d_2 \rangle$$
 such that $d_1, d_2 \mid n$, $(d_i, m_i) = 1$, $i = 1, 2$ and $d = (d_1, d_2) \mid (m_1 - m_2)$ }.

Then

$$H(m_1, m_2; n) \stackrel{\text{def}}{\equiv} s(n) \sum_A g(d_1) h(d_2) / f(d_1 d_2 / d)$$

is multiplicative in n.

In particular, for $g = h = \mu$, $f = \phi$, s = E, we obtain that $\theta(m_1, m_2; n)$ is multiplicative in n.

The result follows easily following the usual procedure of splitting each of the two divisors d_j (j = 1, 2) of $n = n_1 n_2$ with $(n_1, n_2) = 1$ and satisfying conditions in A into product of two relatively prime numbers d_{j1}, d_{j2} dividing n_1 and n_2 respectively and using the multiplicativity of f, g, h and s.

In the particular case mentioned in 3.5, we obtain through evaluation of θ at prime powers that

$$\theta(m_1, m_2; n) = \phi(n) \prod_{p} \left(1 - \frac{1}{\phi(p)}\right) \prod_{q} \left(1 - \frac{2}{\phi(q)}\right)$$
$$= n \prod_{u} \left(1 - \frac{1}{u}\right) \prod_{p} \left(1 - \frac{2}{p}\right) \prod_{q} \left(1 - \frac{3}{q}\right),$$

where u, p and q run through the prime divisors of n, of types 1, 2 and 3 respectively.

Note that we have

(3.6)
$$\theta(m_1, m_2; n) = I(n) \circ \mu(m_1, m_2; n).$$

Remark. More generally, it can be proved by using a similar argument that

$$heta(m_1,m_2,\ldots,m_r;n) = \sum \mu(d_1)\mu(d_2)\cdots\mu(d_r)\phi(n)/\phi(\delta),$$

where the summation is over those r-tuples $\langle d_1, d_2, \ldots, d_r \rangle$ for which

- (i) $d_j \mid n$ and $(d_j, m_j) = 1, j = 1, 2, ..., r$
- (ii) $(d_i, d_j) | (m_i m_j), 1 \le i < j \le r, j = 1, 2, ..., r$ and
- (iii) $\delta = \{d_1, d_2, \dots, d_r\}$, the $\ell.c.m.$ of d_1, d_2, \dots, d_r .

The function θ is multiplicative in n and so is given by

$$\theta(m_1, m_2, \ldots, m_r; n)$$

$$= n \prod_{p_1} \left(1 - \frac{1}{p_1}\right) \prod_{p_2} \left(1 - \frac{2}{p_2}\right) \cdots \prod_{p_{r+1}} \left(1 - \frac{r+1}{p_{r+1}}\right),$$

wherein for t = 1, 2, ..., (r+1), p_t runs over those prime divisors of n which are relatively prime to just $r + \binom{r}{2} - \binom{r+2-t}{2}$ of the members of the set $M = \{m_j, (m_i - m_j) : 1 \le i < j \le r, j = 1, 2, ..., r\}$, that is, those which just divide $\binom{r+2-t}{2}$ members of the set M.

4. Some Identities Involving $\theta(m_1, m_2; n)$

We define a zeta function analogue given by

$$\zeta(m_1, m_2; s) \stackrel{\text{def}}{=} \sum_{n=1}^{\infty} \lambda(m_1, m_2; n) / n^s$$

$$= \prod_{u} (1 + u^{-s} + u^{-2s} + \dots) \prod_{p} (1 + 2p^{-s} + 2^2 p^{-2s} + \dots)$$

$$\times \prod_{g} (1 + 3q^{-s} + 3^2 q^{-2s} + \dots),$$

which is convergent for $\sigma = Rl \, s > 1$, since

$$\left| \sum_{u} \sum_{j} u^{-js} + \sum_{p} \sum_{j} 2^{j} p^{-js} + \sum_{q} \sum_{j} 3^{j} q^{-js} \right| \leq \sum_{n} 3^{w(n)} n^{-\sigma},$$

where $w(n) = w_1(n) + w_2(n) + w_3(n)$. Then we have from (3.6) that

(4.1)
$$\sum_{n=1}^{\infty} \theta(m_1, m_2; n)/n^s = \zeta(s-1)/\zeta(m_1, m_2; s), \quad R\ell s > 2.$$

We further note that $\lambda(m_1, m_2; n) \circ \mu(m_1, m_2; n) = E_o(n)$ and so

$$\sum_{n=1}^{\infty} \mu(m_1, m_2, n)/n^s = \prod_{u} (1 - u^{-s}) \prod_{p} (1 - 2p^{-s}) \prod_{q} (1 - 3q^{-s})$$
$$= M(m_1, m_s; s), \quad \text{say},$$

which is convergent for $\sigma = R\ell s > 1$ since

$$\left| \sum u^{-s} + \sum 2p^{-s} + \sum 3q^{-s} \right| \leq 3 \sum n^{-\sigma}.$$

Hence we also have for Rl > 1

(4.2)
$$\sum_{n=1}^{\infty} \lambda(m_1, m_2; n)/n^s = 1/M(m_1, m_2; s) = \zeta(m_1, m_2; s).$$

Let

(4.3)
$$\tau(m_1, m_2; n) \stackrel{\text{def}}{=} E(n) \circ \lambda(m_1, m_2; n)$$

and

4.4)
$$\sigma^{(k)}(m_1, m_2; n) \stackrel{\text{def}}{=} \sum_{d|n} 2^{\Omega_2(d)} 3^{\Omega_2(d)} (n/d)^k = I_k(n) \circ \lambda(m_1, m_2; n).$$

Then τ is a weighted divisor function of n, with a weight $2^{\Omega_2(n/d)}3^{\Omega_3(n/d)}$ attached to each divisor d of n. $\sigma^{(k)}(m_1, m_2; n)$ is the corresponding weighted sum of the k-th powers of divisors of n. We then have

(4.5)
$$\sum_{1}^{\infty} \tau(m_{1}, m_{2}; n)/n^{s} = \zeta(s)\zeta(m_{1}, m_{2}, s),$$

$$R\ell s > 1$$

$$\sum_{1}^{\infty} \sigma^{(k)}(m_{1}, m_{2}; n)/n^{s} = \zeta(s - k)\zeta(m_{1}, m_{2}; s),$$

$$R\ell s \geq 1, \quad k \geq 1.$$

These identities can be easily verified. We further have the following multiplicative and summatory results.

$$\theta(m_1, m_2; n_1 n_2) \theta(m_1, m_2, (n_1, n_2))$$

$$= (n_1, n_2) \theta(m_1, m_2; n_1) \theta(m_1, m_2; n_2)$$

(4.8)
$$\theta(m_1, m_2; \{n_1, n_2\})\theta(m_1, m_2; (n_1, n_2)) = \theta(m_1, m_2; n_1)\theta(m_1, m_2; n_2)$$

(4.9)
$$\sum_{d|n} \theta(m_1, m_2; d) \mu(n/d) = \theta(m_1, m_2; n) \phi(n)/n$$

(4.10)
$$\sum_{d|n} \theta(m_1, m_2; d) \mu(m_1, m_2; n/d) = \{\theta(m_1, m_2; n)\}^2/n.$$

We shall indicate the proofs of (4.7) and (4.9).

Proof of (4.7). Since the functions are multiplicative, it is enough to prove the result when $n_1 = p^{\alpha_1}$, $n_2 = p^{\alpha_2}$ (prime powers).

If $p_1 \neq p_2$, using the multiplicativity of θ , we have

$$\theta(m_1, m_2; p_1^{\alpha_1} p_2^{\alpha_2}) \theta(m_1, m_2; (p_1^{\alpha_1}, p_2^{\alpha_2}))$$

$$= \theta(m_1, m_2; p_1^{\alpha_1}) \theta(m_1, m_2; p_2^{\alpha_2}) \theta(m_1, m_2, 1)$$

$$= \theta(m_1, m_2; p_1^{\alpha_1}) \theta(m_1, m_2; p_2^{\alpha_2}) (p_1^{\alpha_1}, p_2^{\alpha_2}).$$

If $p_1 = p_2$ and p_1 divides both m_1 and m_2 we have $(p_1^{\alpha_1}, p_2^{\alpha_2}) = p_1^{\min(\alpha_1, \alpha_2)}$ and so

$$\begin{split} &\theta(m_1, m_2; p_1^{\alpha_1} p_1^{\alpha_2}) \theta\big(m_1, m_2; \big(p_1^{\alpha_1}, p_1^{\alpha_2}\big)\big) \\ &= \theta(m_1, m_2; p_1^{\alpha_1 + \alpha_2}) \theta\big(m_1, m_2; p_1^{\min{(\alpha_1, \alpha_2)}}\big) \\ &= p_1^{\alpha_1 + \alpha_2} (1 - 1/p_1) p_1^{\min{(\alpha_1, \alpha_2)}} (1 - 1/p_1) \\ &= \theta(m_1, m_2; p_1^{\alpha_1}) \theta(m_1, m_2; p_2^{\alpha_2}) (p_1^{\alpha_1}, p_2^{\alpha_2}) \\ &= \min_{p_1} = p_2. \end{split}$$

The results in the other cases follow similarly.

Proof of (4.9). For $n = p^{\alpha}$, we have

$$\sum_{\beta=0}^{\alpha} \theta(m_1, m_2; p^{\beta}) \mu(p^{\alpha-\beta}) = \theta(m_1, m_2; p^{\alpha}) - \theta(m_1, m_2; p^{\alpha-1})$$

$$= \theta(m_1, m_2; p^{\alpha}) (1 - 1/p)$$

$$= \theta(m_1, m_2; p^{\alpha}) \phi(p^{\alpha}) / p^{\alpha}.$$

5. Allied Ramanujan Sum Analogues

We define two Ramanujan sum analogues:

(5.1)
$$C(m_1, m_2, \ell, n) \stackrel{\text{def}}{=} \sum_{r \pmod{n, m_1, m_2}} e_n(\ell r)$$

and

(5.2)
$$\widetilde{C}(m_1, m_2; \ell, n) \stackrel{\text{def}}{=} \sum_{\mathbf{d} \mid (\ell, n)} d\mu(m_1, m_2; n/d).$$

It is easy to see that C is modular or periodic in each of m_1, m_2 and $\ell(\bmod n)$ since $(n, m_i + kn - r) = (n, m_i - r)$ and $e((\ell + kn)r) = e_n(\ell r)$. Further, since $((\ell, n), n) = (\ell, n)$, \widetilde{C} is an even function of $\ell(\bmod n)$. We refer to E. Cohen [2] for the definition and properties of even functions. Also whenever $(n_1, n_2) = 1$, we have $(\ell, n_1 n_2) = (\ell, n_1)(\ell, n_2)$, where $((\ell, n_1), (\ell, n_2)) = 1$ and so \widetilde{C} is multiplicative in n.

We also have a translation property of C given by

5.3. Theorem. If (m, n) = 1, then

$$C(m_1, m_2; \ell m, n) = C(m_1 m, m_2 m; \ell, n).$$

This follows on noting that when (m, n) = 1, r runs $(\text{mod}^*n; m_1, m_2)$ if and only if mr runs $(\text{mod}^*n; mm_1, mm_2)$. In the particular case when $n \mid \ell$, we have

5.3.1. Corollary. If (m, n) = 1, then

$$\theta(m_1, m_2; n) = \theta(m_1 m, m_2 m; n).$$

When $n \mid m_1$ and m_2 in (5.3) we have

5.3.2. Corollary. When (m,n)=1 the Ramanujan sum $C(\ell,n)$ satisfies $C(\ell m,n)=C(\ell,n)$.

5.4. Theorem. Whenever $(n_1, n_2) = 1$, we have

$$C(m_{11}, m_{12}; \ell_1, n_1)C(m_{21}, m_{22}; \ell_2, n_2) = C(M_1, M_2; \ell, n_1 n_2),$$

where $\ell = \ell_1 n_2 + \ell_2 n_1$, $M_1 = m_{11} n_2 + m_{21} n_1$ and $M_2 = m_{12} n_2 + m_{22} n_1$.

Proof. Let $r_1(\text{mod}^*n_1; m_{11}, m_{12})$ and $r_2(\text{mod}^*n; m_{21}, m_{22})$ and $s = n_1r_2 + n_2r_1$. Since $(n_1, n_2) = 1$ we have $(r_1, n_1) = 1$ and $(r_2, n_2) = 1 \Longrightarrow (s, n_1n_2) = 1$. Again because of the same reason

$$(m_{1i}-r_1,n_1)=1, (m_{2i}-r_2,n_2)=1 \Longrightarrow (M_i-s,n_1n_2)=1, i=1,2.$$

So, also for $s(\text{mod}^*n_1n_2; M_1, M_2)$ and this proves the theorem since

 $C(m_{11}, m_{12}; \ell_1, n_1)C(m_{21}, m_{22}; \ell_2, n_2)$

$$= \sum_{r_i \pmod{n_i; m_{i1}, m_{i2}, i=1,2}} \exp \left\{ 2\pi i (\ell_1 r_1 n_2 + \ell_2 r_2 n_1) / n_1 n_2 \right\}$$

$$= \sum_{s \pmod{n_1 n_2; M_1, M_2}} \exp(2\pi \ell s/n_1 n_2)$$

 $= C(M_1, M_2; \ell, n_1 n_2).$

We also have an analogue of a result of Ramanujan.

5.5. Theorem.

$$\sigma^{(s)}(\ell) = \ell^s \zeta(m_1, m_2; s+1) \sum_{n=1}^{\infty} \widetilde{C}(m_1, m_2; n) / n^{s+1}, \quad R\ell \ s > 0,$$

where $\sigma^{(s)}(\ell) = \text{sum of the } s^{\text{th}}$ powers of the positive divisors of ℓ .

This follows on noting that we can write (5.2) as $\widetilde{C}(m_1, m_2; \ell, n) = I(\ell, n) \circ \mu(m_1, m_2; n)$ where

$$I(\ell,n) = \begin{cases} n & \text{if } n \mid \ell \\ 0 & \text{otherwise,} \end{cases}$$

on realizing that $\sum_{n=1}^{\infty} I(\ell,n)/n^s = \sigma^{(1-s)}(\ell) = \sigma^{(s-1)}(\ell)/\ell^{s-1}$.

5.6. Theorem. Hölder type identity for $C(m_1, m_2; \ell, n)$. Whenever $d \mid (\ell, n)$, we have

 $C(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)C(m_1, m_2; \ell/d, n/d)/\theta(m_1, m_2; n/d).$

This follows from the definition of C, using the

5.7. Lemma. For any given divisor d of n, and any given j belonging to the residue system $(\text{mod}^*d; m_1, m_2)$ there are $\theta(m_1, m_2; n)/\theta(m_1, m_2; d)$ numbers congruent to $j \pmod{d}$ in the residue system $(\text{mod}^*n; m_1, m_2)$.

This lemma is easily proved on the same lines as result (3.6) above of Vaidyanathaswamy [7].

5.8. Corollary. When $g = (\ell, n)$,

$$C(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)C(m_1\ell/g, m_2\ell/g; 1, n/g)/\theta(m_1, m_2; n/g).$$

This follows from Lemma (5.7) and Theorem (5.3). Next we shall obtain some identities for $\widetilde{C}(m_1, m_2; \ell, n)$.

5.9. Theorem. If $g = (\ell, n)$, then the identity

$$\widetilde{C}(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)\mu(m_1, m_2; n/g)/\theta(m_1, m_2; n/g)$$

holds under the following conditions.

- (i) For all m_1, m_2 when (n, 6) = 1
- (ii) For those m_1, m_2 with respect to which 2 is not of type 2, whenever 2|n and
- (iii) For those m_1, m_2 with respect to which 3 is not of type 3, whenever 3|n.

This is a particular case of the following

5.10. Theorem. Let f be a completely multiplicative function and let $A(n) = \mu(m_1, m_2; n)h(n)$, where h(n) is a multiplicative function. Then the sum

$$\widetilde{s}(m_1, m_2; \ell, n) \stackrel{\text{def}}{=} \sum_{d \mid g} f(d) A(n/d), \quad g = (\ell, n)$$

satisfies the identity

$$\widetilde{s}(m_1, m_2; \ell, n) = F(m_1, m_2; n) A(n/g) / F(m_1, m_2; n/g)$$

where

$$F(m_1, m_2; n) = (f \circ A)(n)$$

$$= f(n) \prod_{p \mid n} \left(1 + \frac{\mu(m_1, m_2; p)h(p)}{f(p)} \right)$$

provided that

- (i) $f(p) \neq 0$, for all p|n
- (ii) $f(p) \neq h(p)$ for p|n of type 1
- (iii) $f(p) \neq 2h(p)$ for p|n of type 2 and
- (iv) $f(p) \neq 3h(p)$ for p|n of type 3.

(Note that A(n) is actually a function of m_1, m_2 and n) This theorem is a generalization of Theorem 8.8, pp. 163-164 of Apostol [1].

Proof. We first note that

$$\widetilde{s}(m_1, m_2; \ell, n) = \sum_{d|g} f(d)\mu(m_1, m_2; n/d)h(n/d)$$

(noting that n/d = (n/g)(g/d) has a square factor whenever

 $(n/g, g/d) \neq 1$ and using the definition of μ in the preceding step), we have with $g/d = \delta$ that

$$\begin{split} \widetilde{s}(m_1, m_2; \ell, n) &= \sum_{\delta \mid g, (\delta, n/g) = 1} f(g/\delta) \mu(m_1, m_2; \delta n/g) h(\delta n/g) \\ &= f(g) \mu(m_1, m_2; n/g) h(n/g) \sum_{\delta \mid g, (\delta, n/g) = 1} \mu(m_1, m_2; \delta) h(\delta) / f(\delta) \end{split}$$

(using the complete multiplicativity of f, satisfying (i) to (iv) and definition of μ)

$$= f(g)A(n/g)\prod_{p\mid g,p\nmid n/g}\Big(1+\frac{\mu(m_1,m_2;p)h(p)}{f(p)}\Big).$$

But

$$\begin{split} F(m_1, m_2; n) &= \sum_{d \mid n} f(d) \mu(m_1, m_2; n/d) h(n/d) \\ &= f(n) \sum_{e \mid n} \mu(m_1, m_2; e) h(e) / f(e), \quad (e = n/d) \\ &= f(n) \prod_{p \mid n} (1 + \mu(m_1, m_2; p) h(p) / f(p)), \end{split}$$

in view of multiplicativity of μ and h.

Hence we obtain the theorem using the complete multiplicativity of f.

When we choose f(n) = n and h(n) = 1 for all n, in the above Theorem 5.9 follows.

5.11. Theorem. A Brauer-Rademacher type identity holds for $\widetilde{C}(m_1, m_2; \ell, n)$ under the conditions of Theorem 5.9. It is given

$$\theta(m_1, m_2; n) \sum_{d|n, (\ell, d) = 1} d\mu(n/d)/\theta(m_1, m_2; d)$$

$$= \widetilde{C}(m_1, m_2; \ell, n)\mu(n)\mu(n/g)\lambda(m_1, m_2; n/g)/\mu(m_1, m_2; n/g)$$

• where $g = (\ell, n)$.

Proof. Defining $f(n) = n/\theta(m_1, m_2; n)$, $h(n) = \lambda(m_1, m_2; n)/\theta(m_1, m_2; n)$ (with fixed m_1, m_2), we see that

$$f(p) = f(p^2) = \cdots = f(p^{\alpha}) = h(p) + 1$$

for every prime factor p of n.

Hence, from the general Brauer-Rademacher identity obtained by Subbarao [6] and Theorem 5.9, we obtain the required identity.

6. Applications to Certain Restricted Relative Partitions

We shall first prove

6.1. Lemma. Let A be a nonempty set of positive integers and n, N be any two integers such that $0 \le n < N$ and for a given u, where u = 0, 1, 2, ..., N - 1, let

$$C(A; u, N) \stackrel{\text{def}}{\equiv} \sum_{\substack{\ell \in A \\ r, r \equiv u \bmod N}} e_N(r\ell),$$

and we denote C(A; 0, N) by $\theta(A; N)$, Then if $G(x) = \sum_{r=0}^{\infty} p_r x^r$

is a power series with a finite non zero radius of convergence, we have

$$\sum_{\ell \in A} G(e_N(\ell)) e_N(-\ell n) = \theta(A; N) \left(\sum_{t=1}^{\infty} p_{n+tN} \right) + \sum_{u=1}^{N-1} C(A; u, N) \left(\sum_{t=1}^{\infty} p_{n+tN+u} \right)$$
(6.2)

This follows on collecting the terms containing r in the same residue class mod N.

Let A and B be two nonempty sets of positive integers and

$$P_s(B; N, n) \stackrel{\text{def}}{\equiv}$$
 the number of restricted relative partitions of n modulo N for which $n \equiv \sum_{j=1}^s a_j \pmod{N}, \quad a_j \in B$

and

$$P_{\mathfrak{s}}(A, B; N, n)$$

$$\stackrel{\text{def}}{=} \theta(A, N) P_{\mathfrak{s}}(B; N, n) + \sum_{n=1}^{N-1} C(A; u, N) P_{\mathfrak{s}}(B; N, n + u).$$

This $P_s(A, B; N, n)$ is a weighted relative partition function into summands belonging to B. In this, every partition of every positive integer in the residue class $0 \pmod{N}$ is counted $\theta(A, N)$ times and any partition of any integer belonging to any other residue class $u \pmod{N}$ is counted C(A; u, N) times.

We then have, on utilizing a method of Subbarao [5],

6.3. Theorem. $P_{\bullet}(A, B; N, n)$ is given by

$$P_{\bullet}(A,B;N,n) = \sum_{\ell \in A} (C(B;\ell,n)^{\bullet} \exp(-2\pi i \ell n/N)),$$

where

$$C(B; \ell, N) = \sum_{x \in B} e_N(\ell x).$$

Proof. We note that

$$P_s(B; N; n) = \#\{n : n \equiv a_1 + a_2 + \dots + a_s \pmod{N}, a_j \in B\}$$

so that if

$$G(x) = \sum_{a_j \in B} x^{a_1 + a_2 + \dots + a_s} = \sum_{r=0}^{\infty} p_r x^r,$$

so that

 $p_r =$ number of partions of n into s summands $\in B$,

we have

$$P_{\theta}(B;N,u) = \sum_{r \equiv u \pmod{N}} p_r$$

and substituting this in (6.2) and rewriting the left hand member of (6.2) for the present choice of G(x), in terms of $C(B; \ell, n)$ the theorem follows.

6.4. Corollary. Choosing

$$A = \{\ell : \ell > 0, \ \ell(\text{mod}^{\bullet}N; m_1, m_2)\}$$

 $B = \{a : a \ \text{runs} (\text{mod}^{\bullet}N)\}$

and by setting $P_s^*(N,n) = P_s(A,B;N,n)$ and $P_s^*(N,n+u) =$

 $P_s(B; N, n)$ for these A, B we have

$$\theta(m_1, m_2; N) P_s^*(N, n) + \sum_{u=1}^{N-1} C(m_1, m_2; u, N) P_s^*(N; n + u)$$

$$= \sum_{\ell \in A} C(\ell, N)^s \exp\{-2\pi i \ell n / N\}.$$

Acknowledgement. The authors sincerely thank the referee for pointing out some errors and inaccuracies.

REFERENCES

- 1. Apostol, T.M., Introduction to Analytic Number Theory, Springer International Student (Narosa Publishing House) Edition.
- Cohen, E, Representation of even function (mod r) I. Arithmetical identities, Duke Math. J. 25 (1958), 401-421.
- Hardy, G.H. and Wright, E.M., An Introduction to the Theory of Numbers, Oxford, 1954.
- Nagell, T., Verallgemeinerrung eines Satses von Schemmel, Skrifter Utgitt abdet Norske Videnskapa, Akademi Oalo (Math. Class) I, No. 13 (1923), 23-25.
- Subbarao, M.V., Ramanujan's trigonometric sums and relative partitions, J. Ind. Math. Soc. (2), 15 (1951), 57-64.
- Subbarao, M.V., The Brauer Rademacher identity, Amer. Math. Monthly 72 (1963), 135-138.
- Vaidyanathaswamy, R., A remarkable property of the integers mod N andits bearing on Group Theory, Proc. Ind. Acad. Sci. 5, No. 1, Sec. A (1937), 63-75.