ON AN EXTENSION OF NAGELL'S TOTIENT
FUNCTION AND SOME APPLICATIONS

M.V. Subbarao
University of Alberta
Edmonton, Alberta T6G 2G1
Canada
e-mail: m.v.subbarao@ualberta.ca

V.V. Subrahmanya Sastry
SSS Institute of Higher Learning
Anantapur, A.P. 515001
India

1. Introduction

In 1923 Nagell [4] studied the totient function \(\theta(m, n) \) for positive integers \(m, n \) defined as the number of positive integers \(x \leq n \) for which \((x, n) = 1 = (m - x, n) \). Several interesting properties and applications of the same were studied.

We shall denote by \(\mod^*n; m \), the set of all positive integers \(x \leq n \) for which \((x, n) = 1 = (m - x, n) \) and call it an RRS (Reduced Residue System) \(\mod n; m \). Note that \(\mod^*n; n \) is simply a reduced residue system \(\mod n \), and is denoted by \(\mod^*n \). As usual we shall denote a Complete Reduced System (CRS) \(\mod n \) by simply writing \(\mod n \). In general, we define for \(r \geq 2 \),

\[\theta(m_1, m_2, \ldots, m_r; n) \]

as the number of positive integers \(x \leq n \) for which \((x, n) = 1 = (m_i - x, n) \), \(i = 1, 2, \ldots, r \), where \(m_i \), \(i = 1, 2, \ldots, r \) are positive integers, and denote analogously this RRS \(\mod^*n : m_1, m_2, \ldots, m_r \). As the referee suggested, in order not to confuse this with a congruence relation, for example, say \(x = n \mod m \), we simply write \(r = n \mod m \), omitting parentheses. In this paper, we study the function \(\theta(m_1, m_2 \ldots, m_r; n) \) and obtain some of its arithmetical properties and identities that appear to be new. For the sake of simplicity we restrict ourselves mostly to the case \(r = 2 \). As an application of this function, we construct the Ramanujan Sum analogues associated with this function and study

*Partially supported by a Natural Sciences and Engineering Research Grant (Canada)

ARS COMBINATORIA 62(2002), pp. 79-96
their properties. We obtain also some results involving an associated zeta function analogue, and obtain applications to certain restricted relative partitions mod N.

2. Preliminaries

Let $\mu(n)$ denote the well known Möbius function given by

$$
\mu(n) = \begin{cases}
(-1)^k & \text{if } n \text{ is a product of } k \text{ distinct primes } (k \geq 0) \\
0 & \text{otherwise.}
\end{cases}
$$

We recall that an arithmetic function f is said to be multiplicative if

$$f(mn) = f(m)f(n) \quad \text{whenever } (m,n) = 1.$$

We say that f is completely multiplicative if this multiplicative property holds for all m,n.

Further, if

$$e_n(x) \overset{\text{def}}{=} \exp \left\{ \frac{2\pi i x}{n} \right\}$$

then

$$\sum_{d \pmod{n}} e_n(xd) = \begin{cases}
n & \text{if } n|d; \\
0 & \text{otherwise.}
\end{cases}$$

The Ramanujan sum $C(\ell, n)$ (see [3]) and some other arithmetic functions that are needed in this paper are defined below.

$$C(\ell, n) \overset{\text{def}}{=} \sum_{d \pmod{n}} e_n(x\ell)$$

$$I_k(n) \overset{\text{def}}{=} n^k, \quad \forall n$$

$$E(n) = I_0(n) = 1, \quad \forall n$$

80
\[E_0(n) = \lfloor 1/n \rfloor = \begin{cases}
1, & n = 1 \\
0, & n > 1.
\end{cases} \]

\[\mu(m_1, m_2; n) \overset{\text{def}}{=} \begin{cases}
(-1)^{w_1(n)}(-2)^{w_2(n)}(-3)^{w_3(n)}, \\
\text{when } n \text{ is a product of distinct primes,} \\
0 & \text{otherwise.}
\end{cases} \]

\[\lambda(m_1, m_2; n) \overset{\text{def}}{=} 2^{\Omega_2(n)}3^{\Omega_3(n)}, \]

where

\[w_1(n) = \# \{ \text{distinct primes } p : p \mid (n, m_1, m_2) \} \]

\[w_2(n) = \# \{ \text{distinct primes } p : p \mid n \text{ and } p \mid \text{ just one of } m_1, m_2, m_1 - m_2 \} \]

\[w_3(n) = \# \{ \text{distinct primes } p : p \mid n \text{ and } p \nmid \text{ any one of } m_1, m_2, m_1 - m_2 \} \]

and

\[\Omega_i(n), i = 1, 2, 3 \text{ denote the total number of prime factors of } n \text{ corresponding to } w_i(n), i = 1, 2, 3 \text{ respectively.} \]

Let us call the primes of the above three types as primes of type 1, type 2 and type 3 respectively with respect to the pair of integers \(m_1, m_2 \).

If \(f(n), g(n) \) are any two arithmetic functions of \(n \) (where \(f \) or \(g \) or both may also be functions of some more parameters), we denote by \(\circ \) the Dirichlet Convolution of \(f \) and \(g \) with respect to \(n \), for e.g. \(I(n) \circ \mu(m_1, m_2; n) = \text{ Dirichlet product of } I(n) \text{ and } \mu(m_1, m_2; n) \text{ with respect to the argument } n. \)
3. Formulae for $\theta(m_1, m_2; n)$

We first obtain a 'Möbius type' inversion formula given by

3.1. Theorem. Let $f(x)$ be a periodic function of a real variable x with period 1 and

$$F(m_1, m_2; n) = \sum_{r \equiv m_1 \pmod{n}} f(r/n),$$

then

$$F(m_1, m_2; n) = \sum \mu(d_1) \mu(d_2) G(d_1, d_2; m_1, m_2; n),$$

(3.2)

where the summation is over those divisor pairs d_1, d_2 of n for which $(d_i, m_i) = 1$, $i = 1, 2$ and $(d_1, d_2)|(m_1 - m_2)$ and

$$G(d_1, d_2; m_1, m_2; n) = \sum_{r \equiv m_1 \pmod{n}, r \equiv m_i \pmod{d_i}, i = 1, 2} f(r/n).$$

This is easily proved by the inclusion-exclusion combinatorial principle.

In particular, choosing $f(x) = 1$, we have

3.3. Theorem. $\theta(m_1, m_2; n) = \sum \mu(d_1) \mu(d_2) \phi(n)/\phi(\delta)$ where $\delta = \text{l.c.m.} \{d_1, d_2\}$ and the summation is as in (3.2).

The proof follows easily by making use of the following well known result of Vaidyanathaswamy [7].

3.4. If $d|N$ and $(t, d) = 1$ then in any RRS $(\text{mod} N)$ there are $\phi(N)/\phi(d)$ integers congruent to $t(\text{mod} d)$.

When $f(x) = 1$, Theorem 3.1 gives

$$G(d_1, d_2; m_1, m_2; n) = \begin{cases} \frac{\phi(n)}{\phi(\delta)} & \text{if } (d_1, d_2)|(m_1 - m_2) \\ 0 & \text{otherwise} \end{cases},$$

82
where $\delta = \text{l.c.m.} \{d_1, d_2\}$ by considering the simultaneous solutions of $r = m_i \pmod{d_i}$, $i = 1, 2$.

Next we note

3.5. Lemma. Let $f \neq 0$, g, h, s be multiplicative arithmetic functions and for any three positive integers n, m_1, m_2, let

$$A = \{-\text{ordered pairs of positive integers} (d_1, d_2) \text{ such that } d_1, d_2 \mid n, \quad (d_i, m_i) = 1, \quad i = 1, 2 \text{ and } d = (d_1, d_2) \mid (m_1 - m_2)\}.$$

Then

$$H(m_1, m_2; n) \overset{\text{def}}{=} s(n) \sum_A g(d_1) h(d_2) / f(d_1 d_2 / d)$$

is multiplicative in n.

In particular, for $g = h = \mu$, $f = \phi$, $s = \mathcal{E}$, we obtain that $\theta(m_1, m_2; n)$ is multiplicative in n.

The result follows easily following the usual procedure of splitting each of the two divisors d_j ($j = 1, 2$) of $n = n_1 n_2$ with $(n_1, n_2) = 1$ and satisfying conditions in A into product of two relatively prime numbers d_{j1}, d_{j2} dividing n_1 and n_2 respectively and using the multiplicativity of f, g, h and s.

In the particular case mentioned in 3.5, we obtain through evaluation of θ at prime powers that

$$\theta(m_1, m_2; n) = \phi(n) \prod_p \left(1 - \frac{1}{\phi(p)}\right) \prod_q \left(1 - \frac{2}{\phi(q)}\right)$$

$$= n \prod_u \left(1 - \frac{1}{u}\right) \prod_p \left(1 - \frac{2}{p}\right) \prod_q \left(1 - \frac{3}{q}\right),$$

where u, p and q run through the prime divisors of n, of types 1, 2 and 3 respectively.

Note that we have

(3.6) \hspace{1cm} \theta(m_1, m_2; n) = I(n) \circ \mu(m_1, m_2; n).
Remark. More generally, it can be proved by using a similar argument that

$$\theta(m_1, m_2, \ldots, m_r; n) = \sum \mu(d_1)\mu(d_2)\cdots\mu(d_r)\phi(n)/\phi(\delta),$$

where the summation is over those \(r \)-tuples \((d_1, d_2, \ldots, d_r) \) for which

(i) \(d_j | n \) and \((d_j, m_j) = 1, \quad j = 1, 2, \ldots, r \)

(ii) \((d_i, d_j) | (m_i - m_j), \quad 1 \leq i < j \leq r, \quad j = 1, 2, \ldots, r \) and

(iii) \(\delta = \{d_1, d_2, \ldots, d_r\} \), the l.c.m. of \(d_1, d_2, \ldots, d_r \).

The function \(\theta \) is multiplicative in \(n \) and so is given by

$$\theta(m_1, m_2, \ldots, m_r; n) = n \prod_{p_1} \left(1 - \frac{1}{p_1}\right) \prod_{p_2} \left(1 - \frac{2}{p_2}\right) \cdots \prod_{p_{r+1}} \left(1 - \frac{r+1}{p_{r+1}}\right),$$

wherein for \(t = 1, 2, \ldots, (r+1) \), \(p_t \) runs over those prime divisors of \(n \) which are relatively prime to just \(r + \binom{r}{2} - \left(\frac{r+2-t}{2}\right) \) of the members of the set \(M = \{m_j, (m_i - m_j) : 1 \leq i < j \leq r, \quad j = 1, 2, \ldots, r\} \), that is, those which just divide \(\left(\frac{r+2-t}{2}\right) \) members of the set \(M \).

4. Some Identities Involving \(\theta(m_1, m_2; n) \)

We define a zeta function analogue given by

$$\zeta(m_1, m_2; s) \overset{\text{def}}{=} \sum_{n=1}^{\infty} \lambda(m_1, m_2; n)/n^s$$

$$= \prod_u (1 + u^{-s} + u^{-2s} + \cdots) \prod_p (1 + 2p^{-s} + 2^2 p^{-2s} + \cdots)$$

$$\times \prod_q (1 + 3q^{-s} + 3^2 q^{-2s} + \cdots),$$
which is convergent for $\sigma = R\ell s > 1$, since

$$\left| \sum_u \sum_j u^{-js} + \sum_p \sum_j 2^j p^{-js} + \sum_q \sum_j 3^j q^{-js} \right| \leq \sum_n w(n)n^{-\sigma},$$

where $w(n) = w_1(n) + w_2(n) + w_3(n)$.

Then we have from (3.6) that

$$\sum_{n=1}^\infty \frac{\theta(m_1, m_2; n) / n^s}{n^s} = \frac{\zeta(s - 1)}{\zeta(m_1, m_2; s)}, \quad R\ell s > 2.$$ \hfill (4.1)

We further note that $\lambda(m_1, m_2; n) \circ \mu(m_1, m_2; n) = E_0(n)$ and so

$$\sum_{n=1}^\infty \frac{\mu(m_1, m_2, n)}{n^s} = \prod_u (1 - u^{-s}) \prod_p (1 - 2p^{-s}) \prod_q (1 - 3q^{-s})$$

$$= M(m_1, m_2; s), \quad \text{say},$$

which is convergent for $\sigma = R\ell s > 1$ since

$$\left| \sum u^{-s} + \sum 2p^{-s} + \sum 3q^{-s} \right| \leq 3 \sum n^{-\sigma}.$$

Hence we also have for $R\ell s > 1$

$$\sum_{n=1}^\infty \frac{\lambda(m_1, m_2; n) / n^s}{n^s} = 1/M(m_1, m_2; s) = \zeta(m_1, m_2; s).$$ \hfill (4.2)

Let

$$\tau(m_1, m_2; n) \overset{\text{def}}{=} E(n) \circ \lambda(m_1, m_2; n)$$ \hfill (4.3)

and

$$\sigma^{(k)}(m_1, m_2; n) \overset{\text{def}}{=} \sum_{d|n} 2^{\alpha_2(d)} 3^{\alpha_3(d)} (n/d)^k = I_k(n) \circ \lambda(m_1, m_2; n).$$ \hfill (4.4)

85
Then τ is a weighted divisor function of n, with a weight $2^{\Omega(n/d)} 3^{\omega(n/d)}$ attached to each divisor d of n. $\sigma^{(k)}(m_1, m_2; n)$ is the corresponding weighted sum of the k-th powers of divisors of n. We then have

\[
\sum_{1}^{\infty} \tau(m_1, m_2; n)/n^s = \zeta(s)\zeta(m_1, m_2, s), \\
\text{Re } s > 1
\]

\[
\sum_{1}^{\infty} \sigma^{(k)}(m_1, m_2; n)/n^s = \zeta(s-k)\zeta(m_1, m_2; s), \\
\text{Re } s \geq 1, \quad k \geq 1.
\]

These identities can be easily verified. We further have the following multiplicative and summatory results.

\[
\theta(m_1, m_2; n_1 n_2) = \theta(m_1, m_2; (n_1, n_2)) \\
\theta(m_1, m_2; (n_1, n_2)) = \theta(m_1, m_2; n_1) \theta(m_1, m_2; n_2)
\]

\[
\sum_{d|n} \theta(m_1, m_2; d) \mu(n/d) = \theta(m_1, m_2; n) \phi(n)/n
\]

\[
\sum_{d|n} \theta(m_1, m_2; d) \mu(m_1, m_2; n/d) = \left(\theta(m_1, m_2; n)\right)^2 /n.
\]

We shall indicate the proofs of (4.7) and (4.9).

Proof of (4.7). Since the functions are multiplicative, it is enough to prove the result when $n_1 = p^{a_1}$, $n_2 = p^{a_2}$ (prime powers).
If $p_1 \neq p_2$, using the multiplicativity of ϑ, we have

$$\vartheta(m_1, m_2; p_1^{a_1} p_2^{a_2}) \vartheta(m_1, m_2; (p_1^{a_1}, p_2^{a_2}))$$
$$= \vartheta(m_1, m_2; p_1^{a_1}) \vartheta(m_1, m_2; p_2^{a_2}) \vartheta(m_1, m_2, 1)$$
$$= \vartheta(m_1, m_2; p_1^{a_1}) \vartheta(m_1, m_2; p_2^{a_2}) (p_1^{a_1}, p_2^{a_2}).$$

If $p_1 = p_2$ and p_1 divides both m_1 and m_2 we have $(p_1^{a_1}, p_2^{a_2}) = p_1^{\min(a_1, a_2)}$ and so

$$\vartheta(m_1, m_2; p_1^{a_1} p_1^{a_2}) \vartheta(m_1, m_2; (p_1^{a_1}, p_1^{a_2}))$$
$$= \vartheta(m_1, m_2; p_1^{a_1+a_2}) \vartheta(m_1, m_2; p_1^{\min(a_1, a_2)})$$
$$= p_1^{a_1+a_2} (1 - 1/p_1) p_1^{\min(a_1, a_2)} (1 - 1/p_1)$$
$$= \vartheta(m_1, m_2; p_1^{a_1}) \vartheta(m_1, m_2; p_1^{a_2}) (p_1^{a_1}, p_1^{a_2})$$
$$\text{since } p_1 = p_2.$$

The results in the other cases follow similarly.

Proof of (4.9). For $n = p^\alpha$, we have

$$\sum_{\beta=0}^{\alpha} \vartheta(m_1, m_2; p^\beta) \mu(p^{\alpha-\beta}) = \vartheta(m_1, m_2; p^\alpha) - \vartheta(m_1, m_2; p^{\alpha-1})$$
$$= \vartheta(m_1, m_2; p^\alpha)(1 - 1/p)$$
$$= \vartheta(m_1, m_2; p^\alpha) \phi(p^\alpha)/p^\alpha.$$

5. Allied Ramanujan Sum Analogues

We define two Ramanujan sum analogues:

$$C(m_1, m_2, \ell, n) \overset{\text{def}}{=} \sum_{r \equiv \ell \pmod{n/m_1, m_2}} c_n(\ell r) \quad (5.1)$$

87
and

\[
C(m_1, m_2; \ell, n) \overset{\text{def}}{=} \sum_{d | (\ell, n)} d \mu(m_1, m_2; n/d).
\]

It is easy to see that \(C \) is modular or periodic in each of \(m_1, m_2 \) and \(\ell \mod n \) since \((n, m_4 + kn - r) = (n, m_4 - r) \) and \(e((\ell + kn)r) = e_n(\ell r) \). Further, since \(((\ell, n), n) = (\ell, n) \), \(\tilde{C} \) is an even function of \(\ell \mod n \). We refer to E. Cohen [2] for the definition and properties of even functions. Also whenever \((n_1, n_2) = 1 \), we have \((\ell, n_1 n_2) = (\ell, n_1)(\ell, n_2) \), where \(((\ell, n_1), (\ell, n_2)) = 1 \) and so \(\tilde{C} \) is multiplicative in \(n \).

We also have a translation property of \(C \) given by

5.3. Theorem. If \((m, n) = 1 \), then

\[
C(m_1, m_2; \ell m, n) = C(m_1 m, m_2 m; \ell, n).
\]

This follows on noting that when \((m, n) = 1 \), \(r \) runs \((\mod n; m_1, m_2) \) if and only if \(mr \) runs \((\mod n; mm_1, mm_2) \).

In the particular case when \(n | \ell \), we have

5.3.1. Corollary. If \((m, n) = 1 \), then

\[
\theta(m_1, m_2; n) = \theta(m_1 m, m_2 m; n).
\]

When \(n | m_1 \) and \(m_2 \) in (5.3) we have

5.3.2. Corollary. When \((m, n) = 1 \) the Ramanujan sum \(C(\ell, n) \) satisfies \(C(\ell m, n) = C(\ell, n) \).

5.4. Theorem. Whenever \((n_1, n_2) = 1 \), we have

\[
C(m_{11}, m_{12}; \ell_1, n_1)C(m_{21}, m_{22}; \ell_2, n_2) = C(M_1, M_2; \ell, n_1 n_2),
\]

where \(\ell = \ell_1 n_2 + \ell_2 n_1 \), \(M_1 = m_{11} n_2 + m_{21} n_1 \) and \(M_2 = m_{12} n_2 + m_{22} n_1 \).

88
Proof. Let \(r_1(\mod^* n_1; m_{11}, m_{12}) \) and \(r_2(\mod^* n_2; m_{21}, m_{22}) \) and \(s = n_1 r_2 + n_2 r_1 \). Since \((n_1, n_2) = 1\) we have \((r_1, n_1) = 1\) and \((r_2, n_2) = 1\) \(\implies\) \((s, n_1 n_2) = 1\). Again because of the same reason \((m_{1i} - r_1, n_1) = 1\), \((m_{2i} - r_2, n_2) = 1\) \(\implies\) \((M_i - s, n_1 n_2) = 1\), \(i = 1, 2\).

So, also for \(s(\mod^* n_1 n_2; M_1, M_2)\) and this proves the theorem since

\[
C(m_{11}, m_{12}; \ell_1, n_1)C(m_{21}, m_{22}; \ell_2, n_2)
= \sum_{r_i(\mod^* n_i; m_{i1}, m_{i2}), i=1,2} \exp\{2\pi i(\ell_1 r_1 n_2 + \ell_2 r_2 n_1)/n_1 n_2\}
= \sum_{s(\mod^* n_1 n_2; M_1, M_2)} \exp(2\pi i s/n_1 n_2)
= C(M_1, M_2; \ell, n_1 n_2).
\]

We also have an analogue of a result of Ramanujan.

5.5. Theorem.

\[
\sigma^{(s)}(\ell) = \ell^s \zeta(m_1, m_2; s + 1) \sum_{n=1}^{\infty} \overline{C}(m_1, m_2; \ell, n)/n^{s+1}, \quad \Re s > 0,
\]

where \(\sigma^{(s)}(\ell) = \text{sum of the} \ s^{th} \ \text{powers of the positive divisors of} \ \ell.\)

This follows on noting that we can write (5.2) as \(\overline{C}(m_1, m_2; \ell, n) = I(\ell, n) \circ \mu(m_1, m_2; n)\) where

\[
I(\ell, n) = \begin{cases} n & \text{if } n | \ell \\ 0 & \text{otherwise}, \end{cases}
\]

on realizing that \(\sum_{n=1}^{\infty} I(\ell, n)/n^s = \sigma^{(1-s)}(\ell) = \sigma^{(s-1)}(\ell)/\ell^{s-1}.\)
5.6. Theorem. Hölder type identity for \(C(m_1, m_2; \ell, n) \). Whenever \(d \mid (\ell, n) \), we have

\[
C(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)C(m_1, m_2; \ell/d, n/d)\theta(m_1, m_2; n/d).
\]

This follows from the definition of \(C \), using the

5.7. Lemma. For any given divisor \(d \) of \(n \), and any given \(j \) belonging to the residue system \((\text{mod}^*d; m_1, m_2)\) there are

\[
\theta(m_1, m_2; n)/\theta(m_1, m_2; d)
\]

numbers congruent to \(j \) (mod \(d \)) in the residue system \((\text{mod}^*n; m_1, m_2)\).

This lemma is easily proved on the same lines as result (3.6) above of
Vaidyanathaswamy [7].

5.8. Corollary. When \(g = (\ell, n) \),

\[
C(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)C(m_1\ell/g, m_2\ell/g; 1, n/g)\theta(m_1, m_2; n/g).
\]

This follows from Lemma (5.7) and Theorem (5.3).

Next we shall obtain some identities for \(\bar{C}(m_1, m_2; \ell, n) \).

5.9. Theorem. If \(g = (\ell, n) \), then the identity

\[
\bar{C}(m_1, m_2; \ell, n) = \theta(m_1, m_2; n)\mu(m_1, m_2; n/g)/\theta(m_1, m_2; n/g)
\]

holds under the following conditions.

(i) For all \(m_1, m_2 \) when \((n, 6) = 1 \)
(ii) For those \(m_1, m_2 \) with respect to which 2 is not of type 2, whenever \(2 \mid n \) and
(iii) For those \(m_1, m_2 \) with respect to which 3 is not of type 3, whenever \(3 \mid n \).

This is a particular case of the following
5.10. Theorem. Let f be a completely multiplicative function and let $A(n) = \mu(m_1, m_2; n)h(n)$, where $h(n)$ is a multiplicative function. Then the sum

$$\tilde{s}(m_1, m_2; \ell, n) \overset{\text{def}}{=} \sum_{d|\ell} f(d)A(n/d), \quad g = (\ell, n)$$

satisfies the identity

$$\tilde{s}(m_1, m_2; \ell, n) = F(m_1, m_2; n)A(n/g)/F(m_1, m_2; n/g)$$

where

$$F(m_1, m_2; n) = (f \circ A)(n)$$

$$= f(n)\prod_{p|n} \left(1 + \frac{\mu(m_1, m_2; p)h(p)}{f(p)}\right)$$

provided that

(i) $f(p) \neq 0$, for all $p|n$
(ii) $f(p) \neq h(p)$ for $p|n$ of type 1
(iii) $f(p) \neq 2h(p)$ for $p|n$ of type 2 and
(iv) $f(p) \neq 3h(p)$ for $p|n$ of type 3.

(Note that $A(n)$ is actually a function of m_1, m_2 and n.) This theorem is a generalization of Theorem 8.8, pp. 163-164 of Apostol [1].

Proof. We first note that

$$\tilde{s}(m_1, m_2; \ell, n) = \sum_{d|\ell} f(d)\mu(m_1, m_2; n/d)h(n/d)$$

(noting that $n/d = (n/g)(g/d)$ has a square factor whenever
\((n/g, g/d) \neq 1\) and using the definition of \(\mu\) in the preceding step), we have with \(g/d = \delta\) that

\[
\overline{\sigma}(m_1, m_2; \ell, n) = \sum_{\delta | \ell, (\delta, n/g) = 1} f(g/\delta) \mu(m_1, m_2; \delta n/g) h(\delta n/g)
\]

\[
= f(g) \mu(m_1, m_2; n/g) h(n/g) \sum_{\delta | \ell, (\delta, n/g) = 1} \mu(m_1, m_2; \delta) h(\delta) / f(\delta)
\]

(using the complete multiplicativity of \(f\), satisfying (i) to (iv) and definition of \(\mu\))

\[
= f(g) A(n/g) \prod_{\ell | \delta, \delta | n/g} \left(1 + \frac{\mu(m_1, m_2; p) h(p)}{f(p)}\right).
\]

But

\[
F(m_1, m_2; n) = \sum_{d | n} f(d) \mu(m_1, m_2; n/d) h(n/d)
\]

\[
= f(n) \sum_{e | n} \mu(m_1, m_2; e) h(e) / f(e), \quad (e = n/d)
\]

\[
= f(n) \prod_{p | n} \left(1 + \frac{\mu(m_1, m_2; p) h(p)}{f(p)}\right),
\]

in view of multiplicativity of \(\mu\) and \(h\).

Hence we obtain the theorem using the complete multiplicativity of \(f\).

When we choose \(f(n) = n\) and \(h(n) = 1\) for all \(n\), in the above Theorem 5.9 follows.

5.11. Theorem. A Brauer-Rademacher type identity holds for \(\overline{\sigma}(m_1, m_2; \ell, n)\) under the conditions of Theorem 5.9. It is given

92
\[
\theta(m_1, m_2; n) \sum_{d|m_1(\ell, d) = 1} d\mu(n/d)/\theta(m_1, m_2; d) \\
= \tilde{C}(m_1, m_2; \ell, n)\mu(n)\mu(n/g)\lambda(m_1, m_2; n/g)/\mu(m_1, m_2; n/g)
\]

where \(g = (\ell, n) \).

Proof. Defining \(f(n) = n/\theta(m_1, m_2; n) \), \(h(n) = \lambda(m_1, m_2; n)/\theta(m_1, m_2; n) \) (with fixed \(m_1, m_2 \)), we see that

\[
f(p) = f(p^2) = \cdots = f(p^n) = h(p) + 1
\]

for every prime factor \(p \) of \(n \).

Hence, from the general Brauer-Rademacher identity obtained by Subbarao [6] and Theorem 5.9, we obtain the required identity.

6. Applications to Certain Restricted Relative Partitions

We shall first prove

6.1. **Lemma.** Let \(A \) be a nonempty set of positive integers and \(n, N \) be any two integers such that \(0 \leq n < N \) and for a given \(u \), where \(u = 0, 1, 2, \ldots, N - 1 \), let

\[
C(A; u, N) \overset{\text{def}}{=} \sum_{\substack{\ell \in A \\ \ell \equiv u \mod N}} e_N(r\ell),
\]

and we denote \(C(A; 0, N) \) by \(\theta(A; N) \). Then if \(G(x) = \sum_{r=0}^{\infty} p_r x^r \)
is a power series with a finite non zero radius of convergence, we have

\[
\sum_{\ell \in A} G(e_N(\ell)) e_N(-\ell n) = \theta(A; N) \left(\sum_{t=1}^{\infty} p_{n+tN} \right) + \sum_{u=1}^{N-1} C(A; u, N) \left(\sum_{t=1}^{\infty} p_{n+tN+u} \right)
\]

(6.2)

This follows on collecting the terms containing \(r \) in the same residue class \(\mod N \).

Let \(A \) and \(B \) be two nonempty sets of positive integers and

\[P_s(B; N, n) \overset{\text{def}}{=} \text{the number of restricted relative partitions of} \ n \mod N \text{ for which} \ n = \sum_{j=1}^{s} a_j \,(\mod N), \quad a_j \in B \]

and

\[P_s(A, B; N, n) \overset{\text{def}}{=} \theta(A, N)P_s(B; N, n) + \sum_{u=1}^{N-1} C(A; u, N)P_s(B; N, n + u). \]

This \(P_s(A, B; N, n) \) is a weighted relative partition function into summands belonging to \(B \). In this, every partition of every positive integer in the residue class \(0 \,(\mod N) \) is counted \(\theta(A, N) \) times and any partition of any integer belonging to any other residue class \(u \,(\mod N) \) is counted \(C(A; u, N) \) times.

We then have, on utilizing a method of Subbarao [5],

6.3. Theorem. \(P_s(A, B; N, n) \) is given by

\[P_s(A, B; N, n) = \sum_{\ell \in A} (C(B; \ell, n)^s \exp(-2\pi i \ell n/N)), \]
where

\[C(B; \ell, N) = \sum_{\ell \in B} e_N(\ell x). \]

Proof. We note that

\[P_s(B; N; n) = \# \{ n : n \equiv a_1 + a_2 + \cdots + a_s \pmod{N}, \ a_j \in B \} \]

so that if

\[G(x) = \sum_{a_j \in B} x^{a_1 + a_2 + \cdots + a_s} = \sum_{r=0}^{\infty} p_r x^r, \]

so that

\[p_r = \text{ number of partitions of } \ n \ \text{ into } \ s \ \text{ summands} \in B, \]

we have

\[P_s(B; N; u) = \sum_{r \equiv u \pmod{N}} p_r \]

and substituting this in (6.2) and rewriting the left hand member of (6.2) for the present choice of \(G(x) \), in terms of \(C(B; \ell, n) \) the theorem follows.

6.4. Corollary. Choosing

\[A = \{ \ell : \ell > 0, \ \ell \equiv (\mathbf{mod}^* N; m_1, m_2) \} \]

\[B = \{ a : a \ \text{ runs} \pmod{\mathbf{mod}^* N} \} \]

and by setting \(P^*_s(N, n) = P_s(A, B; N, n) \) and \(P^*_s(N, n + u) = \)
\(P_s(B; N, n) \) for these \(A, B \) we have

\[
\theta(m_1, m_2; N)P_s^*(N, n) + \sum_{u=1}^{N-1} C(m_1, m_2; u, N)P_s^*(N; n + u) = \sum_{\ell \in A} C(\ell, N)^s \exp \left\{ -2\pi i\ell n/N \right\}.
\]

Acknowledgement. The authors sincerely thank the referee for pointing out some errors and inaccuracies.

REFERENCES

