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Abstract. We give the asymptotics of the sum
∑

x�n�x+h f (n), where h � x7/12+ε, for the multiplicative functions

f (n) = zω(n), zω(n)|µ(n)|, 1/dk(n), and nd(n).
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1. Ramachandra [1] proved the following assertion. Let S1, S2, and S3 be the sets of L-series, the derivatives,
and the logarithms of L-series, respectively. log L(s, x) is defined by analytic continuation from the halfplane
σ = Re s > 1; for some complex z, we define

L(s, χ)z = exp(z log L(s, χ)).

Let P1(s) be any finite power product (with complex exponents) of functions of S1. Let P2(s) be any finite
power product (with nonnegative integral exponents) of functions of S2. Let also P3(s) denote any finite power
product with nonnegative integral exponents of functions of S3. Let cn be a sequence of complex numbers such
that |cn| � nε for every ε > 0 and ∑ |cn|

nσ
< ∞ for σ > 1/2.

Let F0(s) = ∑
n

cn

ns . Furthermore, let

F1(s) = P1(s)P2(s)P3(s)F0(s) =
∞∑

n=1

gn

ns
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and

E(x) =
∑
n�x

gn.

Let r(� 1/2) be a positive number. We define the contour C(r) by starting from the circle {s | |s − 1| = r},
removing the point 1 − r , and proceeding on the remaining portion of the circle in the anticlockwise direction.
Let C0 = C(r).

Assume that r is so small that F1(s) has no singularities on the boundary and in interior of it, except, possibly,
the place s = 1.

Let C1 = C( 1
log x

), and let L−, L+ be defined as the intervals on straightlines

L− =
[(

1 − 1

r

)
e−iπ ,

(
1 − 1

log x

)
e−iπ

]
,

L+ =
[(

1 − 1

log x

)
eiπ ,

(
1 − 1

r

)
eiπ

]
.

Let C∗ be the contour going along L− starting from (1 − 1
r
)e−iπ , then on C1, and, finally, on L+.

Let B be the constant occurring in the density result

Nχ(α, T ) = O
(
T B(1−α)(log T )2) ,

which is valid for all characters occurring in P1, P2, and P3. Let ϕ = 1 − 1/B + ε with arbitrary ε > 0.

Remark. According to Huxley’s result, ϕ can be any constant greater than 7/12.

THEOREM OF RAMACHANDRA L. et x be sufficiently large and 1 � h � x. Let

I (x, h) = 1

2πi

h∫
0

(∫
C0

F1(s)(v + x)s−1 ds

)
dv. (1.1)

Then

E(x + h) − E(x) = I (x, h) + Oε

(
h · exp

(−(log x)1/6) xϕ
)
. (1.2)

Ramachandra used the Hooley–Huxley contour for proving his very general theorem. Kátai [2] applied
Ramachandra’s theorem to obtain the uniform result

∑
ω(n)=k, x�n�x+h

1 = (1 + σ(1))
h(log log x)k−1

(k − 1)! logx
,

uniformly for any k � log log x + cx

√
log log x, where cx → ∞ sufficiently slowly, and h � xϕ+ε.

Sankaranarayanan and Srinivas [3] gave a version of Ramachandra’s result in which the function F1(s) may
depend on a parameter.

2. Assume that the conditions of Ramachandra’s theorem are satisfied. Integrating on the same contour as
Ramachandra did, we have

E(x) = J(x) + O
(
x · exp

(−(log x)1/6)) , (2.1)
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where

J(x) = 1

2πi

∫
C0

F1(s)
xs

s
ds. (2.2)

Furthermore, I (x, h) can be written as

I (x, h) = 1

2πi

∫
C0

F1(s)
(x + h)s − xs

s
ds. (2.3)

Let

D(x, h, s) := 1

s

(
(x + h)s − xs

h
− xs−1

)
. (2.4)

Assume that 1
2 � |s| � 2 and that h = xη, η < 2

3 − 2r
3 with small r . Then

(x + h)s − xs

sh
= xs−1 + hxs−2(1 − s)

2
+ O

(
h3xσ−3)

and, thus,

D(x, h, s) = xs−1
(

1 − 1

s

)
+ O

(
h3 · xσ−3) ,

which by h3 · xσ−3 � x2−2r+r−2 � x−r and hxσ−2 � x−r implies that

D(x, h, s) = xs−1 (s − 1)

s
+ O

(
x−r

)
.

Hence, we obtain that

E(x + h) − E(x)

h
− E(x)

x
= 1

2πi

∫
C0

F1(s)
xs−1

s
(s − 1) ds

+ O
(
x−r

) + O
(
exp

(−(log x)1/6))
(2.5)

and, thus, by (2.1) and (2.2) we have

E(x + h) − E(x)

h
= 1

2πi

∫
C0

F1(s)x
s−1 ds + O

(
exp

(−(log x)1/6)) + O
(
x−r

)
. (2.6)

Since F1(s) is analytic on the domain with boundary C0 ∪ C∗, we can transform the integration line on the
right side of (2.6) to the contour C∗.

We have proved the following:

THEOREM 1. Assume that F1(s) satisfies the conditions stated in Ramachandra’s theorem. Let r > 0 and
ε > 0 be sufficiently small constants, and let x7/12+ε � h � x

2
3 − 2r

3 . Then

E(x + h) − E(x)

h
= 1

2πi

∫
C∗

F1(s)x
s−1 dx + O

(
exp

(−(log x)1/6)) . (2.7)
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Let us assume that

F1(s) = U(s)

(s − 1)z
, (2.8)

where the function U(s) is analytic in the disc |s − 1| � r . Then, for each fixed k,

U(s) = A0 + A1(s − 1) + · · · + Ak(s − 1)k + (s − 1)k+1V (s),

where V (s) is bounded in |s − 1| � r .
Furthermore, since

1

2πi

∫
C∗

xs−1(s − 1)a−z ds = 	(a − z)

(log x)a−z+1

sin π(a − z)

π
+ O

(
x−r/2) (2.9)

(for the proof, see Lemma 8 of [7]), we deduce the following:

THEOREM 2. Under the conditions stated above, we have

1

2πi

∫
C∗

U(s)

(s − 1)z
xs−1 ds =

k∑
l=0

Al

	(l − z)

(log x)l−z+1

(−1)l+1 sin πz

π
+ O

(
1

(log x)k+2−Rez

)
, (2.10)

whenever Re z � k + 1.

Proof . By (2.9), we have only to prove that

1

2πi

∫
C∗

V (s)(s − 1)k+1−z ds (2.11)

can be majorized by the error term on the right-hand side of (2.10). The integral (2.11) extended to the contour
C(1/ log x) is obviously less than the error term of (2.10).

To estimate the integral on L+ and L−, let us write s = 1 − τ . Then

1

2π

∫
L±

|V (s)| |(s − 1)|k+1−Rezx−τ ds �
K

2π

r∫
1/ log x

x−τ τ k+1−Re z dτ

� 1

(log x)k+2−Re z
,

and the proof is completed.

3. Using Theorems 1 and 2, we can obtain short-interval versions of known theorems. We give some
examples.

3.1. On the theorem of Sathe and Selberg. Let ω(m) be the number of distinct prime divisors of m, and let
�(m) be the number of prime power divisors of m.

THEOREM 3. Let |z| � c1. Let, furthermore, x7/12+ε � h � x2/3− 2r
3 , where r and ε are arbitrary positive

constants. Then

h−1
∑

x�m<x+h

zω(m) = ϕ(z)(logx)z−1 + O
(
(log x)z−2) ;
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here

ϕ(z) = 1

	(z)

∏
p

(
1 − 1

p

)z (
1 + z

p − 1

)
.

Proof . Note that

F1(s) =
∑ zω(n)

ns
=

∏
p

(
1 + z

ps − 1

)
,

and, thus, F1(s) = ζ z(s)h(s), where

(h(s, z) =)h(s) =
∏
p

(
1 − 1

ps

)z (
1 + z

ps − 1

)
,

and it can be expanded into an absolutely convergent Dirichlet series in Re s > 1/2.
Using our Theorems 1 and 2 and Lemma 9.2 of Kubilius [4], we immediately obtain Theorem 3. Lemma

9.2 is the theorem of Selberg [5] (see also [6]).

THEOREM 3a. Let x7/12+ε � h � x2/3− 2r
3 with ε, r > 0. Let |z| � c1. Then

1

h

∑
x�n<x+h

zω(n)|µ(n)| = ψ(z)(logx)z−1 + O
(
(log x)z−2

)
,

where

ψ(z) = 1

	(z)

∏
p

(
1 − 1

p

)z (
1 + z

p

)
.

Let, furthermore, ∏
l

([x, x + h]) :=
∑

x�n<x+h
ω(n)=l

|µ(n)|.

Then

1

h

∏
l

([x, x + h]) = 6

π2

(log log x)l−1

(log x)(l − 1)!

(
1 + O

(
1

(log log x)

))

uniformly in l � c log log x for an arbitrary constant c.

Proof . The first assertion follows from Theorem 2 by taking

h(s) =
∏
p

(
1 − 1

ps

)z (
1 + z

ps

)
,

F1(s) = ζ(s)zh(s), and the second one by estimating the coefficient of zl in ψ(z) (see Kubilius [4]).

3.2. Let �(n) be the number of prime power divisors of n, and let |z| � 2 − δ with an arbitrary positive
constant δ.
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THEOREM 4. Let x7/12+ε � h � x
2
3 − 2r

3 , and let ε, r > 0 be arbitrary constants. Then

h−1
∑

x�m�x+h

z�(m) = G(z)(logx)z−1 + O
(
(log x)Rez−2) ,

where

G(z) = 1

	(1 + z)

∏
p

(
1 − z

p

)−1 (
1 − 1

p

)z

.

Proof . We note that

F1(s) =
∞∑

n=1

z�(m)

ms
=

∏
p

1

1 − z
ps

= ζ z(s)h(s),

h(s) =
∏
p

(
1 − z

ps

)−1 (
1 − 1/ps

)z
,

and the statement immediately follows from Theorems 1 and 2.

3.3. On the sum 1/dk(n) over a short interval. Let dk(n) be the number of solutions of the equation
n = x1 · · · xk in positive integers x1, . . . , xk. Then dk is multiplicative, dk(p) = k, and dk(p

α) = (
k+α−1

α

)
.

Since

F1(s) =
∞∑

n=1

1/dk(n)

ns
=

∏
p

(
1 + 1

k · ps
+ 1

dk(p2)p2s
+ · · ·

)

and F1(s)ζ(s)−1/k = h(s) can be expanded into a Dirichlet series which is absolutely convergent in Re s > 1/2,
the conditions of Ramachandra’s theorem are satisfied. We can apply our Theorems 1 and 2. We have

U(s) = h(s) (ζ(s)(s − 1))1/k , (3.1)

which is analytic in |s − 1| � r if r < 1/2.

THEOREM 5. Let x7/12+ε � h � x2/3− 2r
3 with ε, r > 0.

Let m � 0 be an arbitrary fixed positive integer, and let

U(s) = A0 + A1(s − 1) + · · · + Am(s − 1)m + (s − 1)m+1V (s),

where U(s) is defined in (3.1). Then

1

h

∑
x�n�x+h

1

dk(n)
=

m∑
l=0

Al

	(l − 1/k)

(log x)l+1−1/k

(−1)l+1 sin π/k

k
+ O

(
1

(log x)m+2−1/k

)
.

Proof . Theorem 5 is a direct consequence of Theorems 1 and 2.

Remarks

1. A similar theorem can be proved for
∑

x�n�x+h 1/g(n), where g is a multiplicative function, g(p) = 1/λ,
and g(n)nγ � 1 for some suitable constant γ .
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2. Ivić [8] proved that

∑
n�x

1

dk(n)
=

N∑
j=0

ck,j x(log x)1/k−j + O
(
x(log x)

1
k −N−1

)

for every fixed N > 0.

3. On the sum
∑

x�nd(n)�x+h 1. An asymptotic formula for the number of integers n such that nd(n) � x

was first considered by Abbott and Subbarao [9], who proved that

∑
nd(n)�x

1 ∼ c
x√

log x
for a suitable c > 0.

THEOREM 6. Assume that x
7

12 +ε � h � x
2
3 − 2r

3 where ε and r are small positive constants. Then

σ(x, h) := 1

h

∑
x�nd(n)<x+h

1 = (1 + ox(1))
1√

log x
, x → ∞.

Proof . Let us write each integer n as Km, where K is square full, m is square free and (K, m) = 1.
For fixed K and l, count those integers n = Km for which ω(m) = l and nd(n) ∈ [x, x + h]. Then m ∈
[ x

K·d(K)·2l ,
x+h

K·d(K)·2l ].
Let us note that ∑

l>l0

∑
K

h

K · d(K)
· 1

2l
� h

2l0

and ∑
K>(log x)2

h

Kd(K)
� h

log x
.

Let l0 = ( 1
2 log 2 + δ) log log x (< (1 − δ) log log x). We have

σ(x, h) = 1

h

∑
K�(log x)2

1

K · d(K)

l0∑
l=0

T (K, l) + ox(1)√
log x

, (3.2)

where

T (K, l) = #
{
m ∈

[
x

K · d(K) · 2l
,

x + h

K · d(K) · 2l

] ∣∣∣ω(m) = l, (m, K) = 1, |µ(m)| = 1
}
. (3.3)

Assume that K � (log x)2. We define

HK(s, z) =
∑

(m,K)=1

zω(m)|µ(m)|
ms

=
∏
p�K

(
1 + z

ps

)

TK(s, z) =
∏
p|K

1

1 + z
ps

=
∑
v∈BK

λ(v)zω(v)

vs
,
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where BK is the set of integers all prime factors of which divide K.
Thus,

TK(s, z) =
( ∑

v∈BK

λ(v)zω(v)

vs

)
H1(s, z) (3.4)

and, consequently,

# {m ∈ [Y, Y + H ] | ω(m) = l, |µ(m)| = 1}

=
∑

v�Y+H
v∈BK

λ(v)#
{
ν ∈

[
Y

v
,
Y + H

v

] ∣∣∣ω(ν) = l − ω(v), |µ(ν)| = 1
}

.
(3.5)

Let us apply this relation with

Y = x

K · d(K) · 2l
, H = h

K · d(K) · 2l
, v � (log x)10.

Then, by Theorem 3a,

#

{
ν ∈

[
Y

v
,
Y + H

v

] ∣∣∣ω(ν) = l − ω(v), |µ(ν)| = 1

}

= 6

π2

H

v

(log log x)l−ω(v)−1

(log x)(l − 1 − ω(v))!

(
1 + O

(
1

log log x

))
.

For some fixed K and v, take the sum over l � l0. Then

l0∑
l=0

6

π2

h

vK · d(K) logx

1

2ω(v)+1

(log log x)l−1

2l−1(l − 1)!

(
1 + O

(
1

log log x

))

= h

K · d(K) · 2ω(v)+1v
· 1√

log x

(
1 + O

(
1

log log x

))
.

Let us estimate ∑
l

∑
v∈BK

v>(logx)10

#
{
ν ∈

[
Y

v
,
Y + H

v

] ∣∣∣ω(ν) = l − ω(v)

}
.

This is less than
h

K · d(K)

∑
v∈BK

v>(logx)10

1

v
� h

Kd(K)(log x)v

∑ 1√
v
.

Since ∑ 1√
v

�
∏
p|K

(
1 + 1√

p
+ 1

p
+ · · ·

)
< c · 2ω(K) � log x,

the contribution of these terms is small.
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Furthermore, ∑
v∈BL

λ(v)

v · 2ω(v)
=

∏
p|K

(
1 − 1

2p
+ 1

2p2
− · · ·

)
=

∏
p|K

(
1 − 1

2p − 1

)
.

Summing over K up to (log x)2, we get

∑
K<(log x)

1

2K · d(K)

∏
p|K

(
1 − 1

2p − 1

)
= c + O

(
1√

log x

)
.

Hence, the theorem follows.
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