SOME REMARKS ON A PAPER OF RAMACHANDRA

I. Kátai ${ }^{1}$
Eötvös Loránd University, Department of Computer Algebra, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
(e-mail: katai@compalg.inf.elte.hu)
M. V. Subbarao ${ }^{2}$
University of Alberta, Edmonton, Alberta, Canada T6G 2G1
(e-mail: m.v.subbarao@ualberta.ca)

Abstract. We give the asymptotics of the sum $\sum_{x \leqslant n \leqslant x+h} f(n)$, where $h \gg x^{7 / 12+\varepsilon}$, for the multiplicative functions $f(n)=z^{\omega(n)}, z^{\omega(n)}|\mu(n)|, 1 / d_{k}(n)$, and $n d(n)$.
Keywords: multiplicative functions in short intervals, L-functions, density theorems.

1. Ramachandra [1] proved the following assertion. Let S_{1}, S_{2}, and S_{3} be the sets of L-series, the derivatives, and the logarithms of L-series, respectively. $\log L(s, x)$ is defined by analytic continuation from the halfplane $\sigma=\operatorname{Re} s>1$; for some complex z, we define

$$
L(s, \chi)^{z}=\exp (z \log L(s, \chi))
$$

Let $P_{1}(s)$ be any finite power product (with complex exponents) of functions of S_{1}. Let $P_{2}(s)$ be any finite power product (with nonnegative integral exponents) of functions of S_{2}. Let also $P_{3}(s)$ denote any finite power product with nonnegative integral exponents of functions of S_{3}. Let c_{n} be a sequence of complex numbers such that $\left|c_{n}\right| \ll n^{\varepsilon}$ for every $\varepsilon>0$ and

$$
\sum \frac{\left|c_{n}\right|}{n^{\sigma}}<\infty \quad \text { for } \sigma>1 / 2
$$

Let $F_{0}(s)=\sum_{n} \frac{c_{n}}{n^{s}}$. Furthermore, let

$$
F_{1}(s)=P_{1}(s) P_{2}(s) P_{3}(s) F_{0}(s)=\sum_{n=1}^{\infty} \frac{g_{n}}{n^{s}}
$$

${ }^{1}$ Financially supported by OTKA T 031877 , and the fund of Applied Number Theory Group of HAS.
${ }^{2}$ Financially supported by an NSERC Grant.
${ }^{2}$ Financially supported by an NSERC Grant.

Published in Lietuvos Matematikos Rinkinys, Vol. 43, No. 4, pp. 497-506, October-December, 2003. Original article submitted March 5, 2003.
and

$$
E(x)=\sum_{n \leqslant x} g_{n} .
$$

Let $r(\leqslant 1 / 2)$ be a positive number. We define the contour $C(r)$ by starting from the circle $\{s||s-1|=r\}$, removing the point $1-r$, and proceeding on the remaining portion of the circle in the anticlockwise direction. Let $C_{0}=C(r)$.

Assume that r is so small that $F_{1}(s)$ has no singularities on the boundary and in interior of it, except, possibly, the place $s=1$.

Let $C_{1}=C\left(\frac{1}{\log x}\right)$, and let L^{-}, L^{+}be defined as the intervals on straightlines

$$
\begin{gathered}
L^{-}=\left[\left(1-\frac{1}{r}\right) \mathrm{e}^{-i \pi},\left(1-\frac{1}{\log x}\right) \mathrm{e}^{-i \pi}\right], \\
L^{+}=\left[\left(1-\frac{1}{\log x}\right) \mathrm{e}^{i \pi},\left(1-\frac{1}{r}\right) \mathrm{e}^{i \pi}\right] .
\end{gathered}
$$

Let C^{*} be the contour going along L^{-}starting from $\left(1-\frac{1}{r}\right) \mathrm{e}^{-i \pi}$, then on C_{1}, and, finally, on L^{+}.
Let B be the constant occurring in the density result

$$
N_{\chi}(\alpha, T)=\mathrm{O}\left(T^{B(1-\alpha)}(\log T)^{2}\right),
$$

which is valid for all characters occurring in P_{1}, P_{2}, and P_{3}. Let $\varphi=1-1 / B+\varepsilon$ with arbitrary $\varepsilon>0$.
Remark. According to Huxley's result, φ can be any constant greater than 7/12.
Theorem of Ramachandra L. et x be sufficiently large and $1 \leqslant h \leqslant x$. Let

$$
\begin{equation*}
I(x, h)=\frac{1}{2 \pi i} \int_{0}^{h}\left(\int_{C_{0}} F_{1}(s)(v+x)^{s-1} \mathrm{~d} s\right) \mathrm{d} v . \tag{1.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(x+h)-E(x)=I(x, h)+\mathrm{O}_{\varepsilon}\left(h \cdot \exp \left(-(\log x)^{1 / 6}\right) x^{\varphi}\right) . \tag{1.2}
\end{equation*}
$$

Ramachandra used the Hooley-Huxley contour for proving his very general theorem. Kátai [2] applied Ramachandra's theorem to obtain the uniform result

$$
\sum_{\omega(n)=k, x \leqslant n \leqslant x+h} 1=(1+\sigma(1)) \frac{h(\log \log x)^{k-1}}{(k-1)!\log x},
$$

uniformly for any $k \leqslant \log \log x+c_{x} \sqrt{\log \log x}$, where $c_{x} \rightarrow \infty$ sufficiently slowly, and $h \geqslant x^{\varphi+\varepsilon}$.
Sankaranarayanan and Srinivas [3] gave a version of Ramachandra's result in which the function $F_{1}(s)$ may depend on a parameter.
2. Assume that the conditions of Ramachandra's theorem are satisfied. Integrating on the same contour as Ramachandra did, we have

$$
\begin{equation*}
E(x)=J(x)+\mathrm{O}\left(x \cdot \exp \left(-(\log x)^{1 / 6}\right)\right) \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
J(x)=\frac{1}{2 \pi i} \int_{C_{0}} F_{1}(s) \frac{x^{s}}{s} \mathrm{~d} s \tag{2.2}
\end{equation*}
$$

Furthermore, $I(x, h)$ can be written as

$$
\begin{equation*}
I(x, h)=\frac{1}{2 \pi i} \int_{C_{0}} F_{1}(s) \frac{(x+h)^{s}-x^{s}}{s} \mathrm{~d} s . \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
D(x, h, s):=\frac{1}{s}\left(\frac{(x+h)^{s}-x^{s}}{h}-x^{s-1}\right) . \tag{2.4}
\end{equation*}
$$

Assume that $\frac{1}{2} \leqslant|s| \leqslant 2$ and that $h=x^{\eta}, \eta<\frac{2}{3}-\frac{2 r}{3}$ with small r. Then

$$
\frac{(x+h)^{s}-x^{s}}{s h}=x^{s-1}+\frac{h x^{s-2}(1-s)}{2}+\mathrm{O}\left(h^{3} x^{\sigma-3}\right)
$$

and, thus,

$$
D(x, h, s)=x^{s-1}\left(1-\frac{1}{s}\right)+\mathrm{O}\left(h^{3} \cdot x^{\sigma-3}\right)
$$

which by $h^{3} \cdot x^{\sigma-3} \ll x^{2-2 r+r-2} \ll x^{-r}$ and $h x^{\sigma-2} \ll x^{-r}$ implies that

$$
D(x, h, s)=x^{s-1} \frac{(s-1)}{s}+\mathrm{O}\left(x^{-r}\right) .
$$

Hence, we obtain that

$$
\begin{align*}
\frac{E(x+h)-E(x)}{h}-\frac{E(x)}{x}= & \frac{1}{2 \pi i} \int_{C_{0}} F_{1}(s) \frac{x^{s-1}}{s}(s-1) \mathrm{d} s \tag{2.5}\\
& +\mathrm{O}\left(x^{-r}\right)+\mathrm{O}\left(\exp \left(-(\log x)^{1 / 6}\right)\right)
\end{align*}
$$

and, thus, by (2.1) and (2.2) we have

$$
\begin{equation*}
\frac{E(x+h)-E(x)}{h}=\frac{1}{2 \pi i} \int_{C_{0}} F_{1}(s) x^{s-1} \mathrm{~d} s+\mathrm{O}\left(\exp \left(-(\log x)^{1 / 6}\right)\right)+\mathrm{O}\left(x^{-r}\right) . \tag{2.6}
\end{equation*}
$$

Since $F_{1}(s)$ is analytic on the domain with boundary $C_{0} \cup C^{*}$, we can transform the integration line on the right side of (2.6) to the contour C^{*}.

We have proved the following:
Theorem 1. Assume that $F_{1}(s)$ satisfies the conditions stated in Ramachandra's theorem. Let $r>0$ and $\varepsilon>0$ be sufficiently small constants, and let $x^{7 / 12+\varepsilon} \leqslant h \leqslant x^{\frac{2}{3}-\frac{2 r}{3}}$. Then

$$
\begin{equation*}
\frac{E(x+h)-E(x)}{h}=\frac{1}{2 \pi i} \int_{C^{*}} F_{1}(s) x^{s-1} \mathrm{~d} x+\mathrm{O}\left(\exp \left(-(\log x)^{1 / 6}\right)\right) . \tag{2.7}
\end{equation*}
$$

Let us assume that

$$
\begin{equation*}
F_{1}(s)=\frac{U(s)}{(s-1)^{z}}, \tag{2.8}
\end{equation*}
$$

where the function $U(s)$ is analytic in the disc $|s-1| \leqslant r$. Then, for each fixed k,

$$
U(s)=A_{0}+A_{1}(s-1)+\cdots+A_{k}(s-1)^{k}+(s-1)^{k+1} V(s),
$$

where $V(s)$ is bounded in $|s-1| \leqslant r$.
Furthermore, since

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C^{*}} x^{s-1}(s-1)^{a-z} \mathrm{~d} s=\frac{\Gamma(a-z)}{(\log x)^{a-z+1}} \frac{\sin \pi(a-z)}{\pi}+\mathrm{O}\left(x^{-r / 2}\right) \tag{2.9}
\end{equation*}
$$

(for the proof, see Lemma 8 of [7]), we deduce the following:
Theorem 2. Under the conditions stated above, we have

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C^{*}} \frac{U(s)}{(s-1)^{z}} x^{s-1} \mathrm{~d} s=\sum_{l=0}^{k} A_{l} \frac{\Gamma(l-z)}{(\log x)^{l-z+1}} \frac{(-1)^{l+1} \sin \pi z}{\pi}+\mathrm{O}\left(\frac{1}{(\log x)^{k+2-\operatorname{Re} z}}\right) \tag{2.10}
\end{equation*}
$$

whenever $\operatorname{Re} z \leqslant k+1$.
Proof. By (2.9), we have only to prove that

$$
\begin{equation*}
\frac{1}{2 \pi i} \int_{C^{*}} V(s)(s-1)^{k+1-z} \mathrm{~d} s \tag{2.11}
\end{equation*}
$$

can be majorized by the error term on the right-hand side of (2.10). The integral (2.11) extended to the contour $C(1 / \log x)$ is obviously less than the error term of (2.10).

To estimate the integral on L^{+}and L^{-}, let us write $s=1-\tau$. Then

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{L^{ \pm}}|V(s)||(s-1)|^{k+1-\operatorname{Re} z} x^{-\tau} \mathrm{d} s & \leqslant \frac{K}{2 \pi} \int_{1 / \log x}^{r} x^{-\tau} \tau^{k+1-\operatorname{Re} z} \mathrm{~d} \tau \\
& \ll \frac{1}{(\log x)^{k+2-\operatorname{Re} z}}
\end{aligned}
$$

and the proof is completed.
3. Using Theorems 1 and 2, we can obtain short-interval versions of known theorems. We give some examples.
3.1. On the theorem of Sathe and Selberg. Let $\omega(m)$ be the number of distinct prime divisors of m, and let $\Omega(m)$ be the number of prime power divisors of m.

THEOREM 3. Let $|z| \leqslant c_{1}$. Let, furthermore, $x^{7 / 12+\varepsilon} \leqslant h \leqslant x^{2 / 3-\frac{2 r}{3}}$, where r and ε are arbitrary positive constants. Then

$$
h^{-1} \sum_{x \leqslant m<x+h} z^{\omega(m)}=\varphi(z)(\log x)^{z-1}+\mathrm{O}\left((\log x)^{z-2}\right)
$$

here

$$
\varphi(z)=\frac{1}{\Gamma(z)} \prod_{p}\left(1-\frac{1}{p}\right)^{z}\left(1+\frac{z}{p-1}\right)
$$

Proof. Note that

$$
F_{1}(s)=\sum \frac{z^{\omega(n)}}{n^{s}}=\prod_{p}\left(1+\frac{z}{p^{s}-1}\right)
$$

and, thus, $F_{1}(s)=\zeta^{z}(s) h(s)$, where

$$
(h(s, z)=) h(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{z}\left(1+\frac{z}{p^{s}-1}\right)
$$

and it can be expanded into an absolutely convergent Dirichlet series in $\operatorname{Re} s>1 / 2$.
Using our Theorems 1 and 2 and Lemma 9.2 of Kubilius [4], we immediately obtain Theorem 3. Lemma 9.2 is the theorem of Selberg [5] (see also [6]).

THEOREM 3a. Let $x^{7 / 12+\varepsilon} \leqslant h \leqslant x^{2 / 3-\frac{2 r}{3}}$ with $\varepsilon, r>0$. Let $|z| \leqslant c_{1}$. Then

$$
\frac{1}{h} \sum_{x \leqslant n<x+h} z^{\omega(n)}|\mu(n)|=\psi(z)(\log x)^{z-1}+\mathrm{O}\left((\log x)^{z-2}\right),
$$

where

$$
\psi(z)=\frac{1}{\Gamma(z)} \prod_{p}\left(1-\frac{1}{p}\right)^{z}\left(1+\frac{z}{p}\right)
$$

Let, furthermore,

$$
\prod_{l}([x, x+h]):=\sum_{\substack{x \leqslant n<x+h \\ \omega(n)=l}}|\mu(n)| .
$$

Then

$$
\frac{1}{h} \prod_{l}([x, x+h])=\frac{6}{\pi^{2}} \frac{(\log \log x)^{l-1}}{(\log x)(l-1)!}\left(1+\mathrm{O}\left(\frac{1}{(\log \log x)}\right)\right)
$$

uniformly in $l \leqslant c \log \log x$ for an arbitrary constant c.
Proof. The first assertion follows from Theorem 2 by taking

$$
h(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{z}\left(1+\frac{z}{p^{s}}\right)
$$

$F_{1}(s)=\zeta(s)^{z} h(s)$, and the second one by estimating the coefficient of z^{l} in $\psi(z)$ (see Kubilius [4]).
3.2. Let $\Omega(n)$ be the number of prime power divisors of n, and let $|z| \leqslant 2-\delta$ with an arbitrary positive constant δ.

THEOREM 4. Let $x^{7 / 12+\varepsilon} \leqslant h \leqslant x^{\frac{2}{3}-\frac{2 r}{3}}$, and let $\varepsilon, r>0$ be arbitrary constants. Then

$$
h^{-1} \sum_{x \leqslant m \leqslant x+h} z^{\Omega(m)}=G(z)(\log x)^{z-1}+\mathrm{O}\left((\log x)^{\mathrm{Re} z-2}\right),
$$

where

$$
G(z)=\frac{1}{\Gamma(1+z)} \prod_{p}\left(1-\frac{z}{p}\right)^{-1}\left(1-\frac{1}{p}\right)^{z} .
$$

Proof. We note that

$$
\begin{gathered}
F_{1}(s)=\sum_{n=1}^{\infty} \frac{z^{\Omega(m)}}{m^{s}}=\prod_{p} \frac{1}{1-\frac{z}{p^{s}}}=\zeta^{z}(s) h(s), \\
h(s)=\prod_{p}\left(1-\frac{z}{p^{s}}\right)^{-1}\left(1-1 / p^{s}\right)^{z},
\end{gathered}
$$

and the statement immediately follows from Theorems 1 and 2.
3.3. On the sum $1 / d_{k}(n)$ over a short interval. Let $d_{k}(n)$ be the number of solutions of the equation $n=x_{1} \cdots x_{k}$ in positive integers x_{1}, \ldots, x_{k}. Then d_{k} is multiplicative, $d_{k}(p)=k$, and $d_{k}\left(p^{\alpha}\right)=\binom{k+\alpha-1}{\alpha}$.

Since

$$
F_{1}(s)=\sum_{n=1}^{\infty} \frac{1 / d_{k}(n)}{n^{s}}=\prod_{p}\left(1+\frac{1}{k \cdot p^{s}}+\frac{1}{d_{k}\left(p^{2}\right) p^{2 s}}+\cdots\right)
$$

and $F_{1}(s) \zeta(s)^{-1 / k}=h(s)$ can be expanded into a Dirichlet series which is absolutely convergent in $\operatorname{Re} s>1 / 2$, the conditions of Ramachandra's theorem are satisfied. We can apply our Theorems 1 and 2. We have

$$
\begin{equation*}
U(s)=h(s)(\zeta(s)(s-1))^{1 / k}, \tag{3.1}
\end{equation*}
$$

which is analytic in $|s-1| \leqslant r$ if $r<1 / 2$.
Theorem 5. Let $x^{7 / 12+\varepsilon} \leqslant h \leqslant x^{2 / 3-\frac{2 r}{3}}$ with $\varepsilon, r>0$.
Let $m \geqslant 0$ be an arbitrary fixed positive integer, and let

$$
U(s)=A_{0}+A_{1}(s-1)+\cdots+A_{m}(s-1)^{m}+(s-1)^{m+1} V(s),
$$

where $U(s)$ is defined in (3.1). Then

$$
\frac{1}{h} \sum_{x \leqslant n \leqslant x+h} \frac{1}{d_{k}(n)}=\sum_{l=0}^{m} A_{l} \frac{\Gamma(l-1 / k)}{(\log x)^{l+1-1 / k}} \frac{(-1)^{l+1} \sin \pi / k}{k}+\mathrm{O}\left(\frac{1}{(\log x)^{m+2-1 / k}}\right) .
$$

Proof. Theorem 5 is a direct consequence of Theorems 1 and 2.

Remarks

1. A similar theorem can be proved for $\sum_{x \leqslant n \leqslant x+h} 1 / g(n)$, where g is a multiplicative function, $g(p)=1 / \lambda$, and $g(n) n^{\gamma} \gg 1$ for some suitable constant γ.
2. Ivić [8] proved that

$$
\sum_{n \leqslant x} \frac{1}{d_{k}(n)}=\sum_{j=0}^{N} c_{k, j} x(\log x)^{1 / k-j}+\mathrm{O}\left(x(\log x)^{\frac{1}{k}-N-1}\right)
$$

for every fixed $N>0$.
3. On the sum $\sum_{x \leqslant n d(n) \leqslant x+h} 1$. An asymptotic formula for the number of integers n such that $n d(n) \leqslant x$ was first considered by Abbott and Subbarao [9], who proved that

$$
\sum_{n d(n) \leqslant x} 1 \sim c \frac{x}{\sqrt{\log x}} \quad \text { for a suitable } c>0 .
$$

THEOREM 6. Assume that $x^{\frac{7}{12}+\varepsilon} \leqslant h \leqslant x^{\frac{2}{3}-\frac{2 r}{3}}$ where ε and r are small positive constants. Then

$$
\sigma(x, h):=\frac{1}{h} \sum_{x \leqslant n d(n)<x+h} 1=\left(1+\mathrm{o}_{x}(1)\right) \frac{1}{\sqrt{\log x}}, \quad x \rightarrow \infty .
$$

Proof. Let us write each integer n as $K m$, where K is square full, m is square free and $(K, m)=1$. For fixed K and l, count those integers $n=K m$ for which $\omega(m)=l$ and $n d(n) \in[x, x+h]$. Then $m \in$ $\left[\frac{x}{K \cdot d(K) \cdot 2^{2}}, \frac{x+h}{K \cdot d(K) \cdot 2^{2}}\right]$.

Let us note that

$$
\sum_{l>l_{0}} \sum_{K} \frac{h}{K \cdot d(K)} \cdot \frac{1}{2^{l}} \ll \frac{h}{2^{l_{0}}}
$$

and

$$
\sum_{K>(\log x)^{2}} \frac{h}{K d(K)} \ll \frac{h}{\log x} .
$$

Let $l_{0}=\left(\frac{1}{2 \log 2}+\delta\right) \log \log x(<(1-\delta) \log \log x)$. We have

$$
\begin{equation*}
\sigma(x, h)=\frac{1}{h} \sum_{K \leqslant(\log x)^{2}} \frac{1}{K \cdot d(K)} \sum_{l=0}^{l_{0}} T(K, l)+\frac{\mathrm{o}_{x}(1)}{\sqrt{\log x}}, \tag{3.2}
\end{equation*}
$$

where

$$
\begin{equation*}
T(K, l)=\#\left\{m \in\left[\frac{x}{K \cdot d(K) \cdot 2^{l}}, \frac{x+h}{K \cdot d(K) \cdot 2^{l}}\right]|\omega(m)=l,(m, K)=1,|\mu(m)|=1\} .\right. \tag{3.3}
\end{equation*}
$$

Assume that $K \leqslant(\log x)^{2}$. We define

$$
\begin{gathered}
H_{K}(s, z)=\sum_{(m, K)=1} \frac{z^{\omega(m)}|\mu(m)|}{m^{s}}=\prod_{p \nmid K}\left(1+\frac{z}{p^{s}}\right) \\
T_{K}(s, z)=\prod_{p \mid K} \frac{1}{1+\frac{z}{p^{s}}}=\sum_{v \in \mathcal{B}_{K}} \frac{\lambda(v) z^{\omega(v)}}{v^{s}},
\end{gathered}
$$

where \mathcal{B}_{K} is the set of integers all prime factors of which divide K.
Thus,

$$
\begin{equation*}
T_{K}(s, z)=\left(\sum_{v \in \mathcal{B}_{K}} \frac{\lambda(v) z^{\omega(v)}}{v^{s}}\right) H_{1}(s, z) \tag{3.4}
\end{equation*}
$$

and, consequently,

$$
\begin{align*}
& \#\{m \in[Y, Y+H]|\omega(m)=l,|\mu(m)|=1\} \\
& \quad=\sum_{\substack{v \in Y+H \\
v \in \mathcal{B}_{K}}} \lambda(v) \#\left\{v \in\left[\frac{Y}{v}, \frac{Y+H}{v}\right]|\omega(v)=l-\omega(v),|\mu(v)|=1\} .\right. \tag{3.5}
\end{align*}
$$

Let us apply this relation with

$$
Y=\frac{x}{K \cdot d(K) \cdot 2^{l}}, \quad H=\frac{h}{K \cdot d(K) \cdot 2^{l}}, \quad v \leqslant(\log x)^{10}
$$

Then, by Theorem 3a,

$$
\begin{aligned}
\# & \left\{v \in\left[\frac{Y}{v}, \frac{Y+H}{v}\right]|\omega(v)=l-\omega(v),|\mu(v)|=1\}\right. \\
& =\frac{6}{\pi^{2}} \frac{H}{v} \frac{(\log \log x)^{l-\omega(v)-1}}{(\log x)(l-1-\omega(v))!}\left(1+\mathrm{O}\left(\frac{1}{\log \log x}\right)\right)
\end{aligned}
$$

For some fixed K and v, take the sum over $l \leqslant l_{0}$. Then

$$
\begin{aligned}
& \sum_{l=0}^{l_{0}} \frac{6}{\pi^{2}} \frac{h}{v K \cdot d(K) \log x} \frac{1}{2^{\omega(v)+1}} \frac{(\log \log x)^{l-1}}{2^{l-1}(l-1)!}\left(1+\mathrm{O}\left(\frac{1}{\log \log x}\right)\right) \\
& \quad=\frac{h}{K \cdot d(K) \cdot 2^{\omega(v)+1} v} \cdot \frac{1}{\sqrt{\log x}}\left(1+\mathrm{O}\left(\frac{1}{\log \log x}\right)\right)
\end{aligned}
$$

Let us estimate

$$
\sum_{l} \sum_{\substack{v \in \mathcal{B}_{K} \\ v>(\log x)^{10}}} \#\left\{\left.v \in\left[\frac{Y}{v}, \frac{Y+H}{v}\right] \right\rvert\, \omega(v)=l-\omega(v)\right\} .
$$

This is less than

$$
\frac{h}{K \cdot d(K)} \sum_{\substack{v \in \mathcal{B}_{K} \\ v>(\log x)^{10}}} \frac{1}{v} \ll \frac{h}{K d(K)(\log x)^{v}} \sum \frac{1}{\sqrt{v}} .
$$

Since

$$
\sum \frac{1}{\sqrt{v}} \leqslant \prod_{p \mid K}\left(1+\frac{1}{\sqrt{p}}+\frac{1}{p}+\cdots\right)<c \cdot 2^{\omega(K)} \leqslant \log x
$$

the contribution of these terms is small.

Furthermore,

$$
\sum_{v \in \mathcal{B}_{L}} \frac{\lambda(v)}{v \cdot 2^{\omega(v)}}=\prod_{p \mid K}\left(1-\frac{1}{2 p}+\frac{1}{2 p^{2}}-\cdots\right)=\prod_{p \mid K}\left(1-\frac{1}{2 p-1}\right) .
$$

Summing over K up to $(\log x)^{2}$, we get

$$
\sum_{K<(\log x)} \frac{1}{2 K \cdot d(K)} \prod_{p \mid K}\left(1-\frac{1}{2 p-1}\right)=c+\mathrm{O}\left(\frac{1}{\sqrt{\log x}}\right) .
$$

Hence, the theorem follows.

REFERENCES

1. K. Ramachandra, Some problems of analytic number theory, Acta Arith., 31, 313-324 (1976).
2. I. Kátai, A remark on a paper of Ramachandra, in: Number Theory, Proc. Ootacamund, K. Alladi (Ed.), Lecture Notes in Math. 1122, Springer (1984), pp. 147-152.
3. A. Sankaranarayanan and K. Srinivas, On the papers of Ramachandra and Kátai, Acta Arith., 624, 373-382 (1992).
4. J. P. Kubilius, Probabilistic Methods in the Theory of Numbers [in Russian], Vilnius (1959).
5. A. Selberg, Note on a paper by L. G. Sathe, J. Indian Math. Soc., 18, 83-87 (1954).
6. A. Rényi and P. Turán, On a theorem of Erdős-Kac, Acta Arith., 4, 71-84 (1958).
7. R. Balasabramanian and K. Ramachandra, On the theorem of integers n such that $n d(n) \leqslant x$, Acta Arith., 49, 313-322 (1988).
8. A. Ivić, Mat. Vesnik (Belgrade), 1(29), 79-90 (1977).
9. H. L. Abbott and M. V. Subbarao, unpublished.
