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0. Introduction. In this paper we first review some of the known 

arithmetical convolutions with particular reference to a class of 

convolutions which may be called Lehmer's ~-products. These products 

are general enough to include as special cases the well known Dirichlet 

and unitary products and other Narkiewicz-type products. We indicate 

a few new cases of ~-products, and in particular study in some detail 

a new convolution, called "exponential convolution", which is a variant 

of Lehmer's ~-product. 

For arbitrary arithmetic functions ~, 8, this is defined by the 

equations 

(5 ® ~)(i) : G(1)~(1), 

and if n > 1 has the canonical form 

then 

a I a 
n = Pl "''Pr r' 

b. C, 
(5 ® ~)(n) = ~ 5(~pj3)~(~pj3). 

b.c. = a. 
3 3 3 

j = 1 ..... r 

This is unlike most known arithmetical convolutions. For example, it 

is not of the form 

or of the form 

dln 
5 (d) ~ (n/d) 

Z 5(a) ~(n-a) . 

a ~ n 

Yet it is commutative and associative. For n > i, among the 

divisors over which it is summed, the smallest is not i, but the 

core of n, namely the product of the distinct prime factors of n. 
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We obtain some of the simplest properties associated with this 

convolution. For example, calling d an exponential divisor of 

a I a if d = bl br where bj and denoting the n = Pl "''Pr r Pl "''Pr Iaj ' 

number of such divisors by r~e~ (n), we obtain fairly satisfactory 

results for the order of 7(e) (n). For example, 

lim log 
n~ 

(e)(n) log log n/logn = ½log 2. 

Analogous to the Dirichlet divisor problem, we have here the 

corresponding divisor problem for exponential divisors, namely to 

find the exact order of the error function for the summatory function 

v ~ (e) 
T (x) = ~ r (n) . 

n < x 

We can show that T(x) = Ax + E (x) where E (x) = 0(x ½ + E) for every 

positive E. But the exact order of E(x) is still an open question. 

The commutative semigroup of arithmetic functions defined by the 

exponential convolution ® has zero divisors. Whether the sub- 

semigroup formed by the non-zero-divisors has the unique factorization 

property is another of the unsolved problems associated with this 

convolution. Some other problems appear in the last section. 

i. Definitions and Notations. By an arithmetic function ~(n) we 

mean a complex-valued function defined for all positive integers n 

(and in some cases for n = 0 also). We denote the set of positive 

integers by Z, the set of arithmetic functions by S, and arbitrary 

arithmetic functions by ~, 8, ~- We write n, m, a, b, c, a I .... , a r, 

b I, ..., b r, c I, .... c r to mean always positive integers, while 

h I, h 2, ... represent non-negative integers. We denote the sequence 

of all primes by ql' q2 .... ' so that ql = 2, q2 = 3, etc. Also 

Pl" P2 .... ' Pr denote arbitrary primes. If n > i, its canonical 

form is always assumed to be 

a I a 
(i.i) n = Pl "''Pr r 
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Note that every n ~ 1 has the unique representation 

(1.2) n = q 2..., 

where all but a finite number of the h's are zero. 

Let (a,b) and [a,b~ denote, respectively, the g. c. d. and 

i. c. m. of a and b. 

An arithmetic function ~ is said to be multiplicative if 

~(ab) = ~(a)~(b) 

for all a, b such that (a,b) = i. The notion of multiplioativity 

can be generalized or specialized in many ways. 

An illustration of each kind is provided by the following defini- 

tions (which we require later on). 

An arithmetic function ~(n) is said to be 

(1.3) semi-multiplicative [29] if for all a and b, 

~(a)~(b) = ~((a,b))~([a,b]) ; 

(1.4) exponentially multiplicative if ~ is multiplicative and, 

whenever (a,b) = i, 

(pab) = ~(pa)~(pb) 

for all primes p. 

There are several other classes of arithmetic functions including 

completely multiplicative, completely unmultiplicative and almost 

multiplicative (Goldsmith [22, 23~). 

2. Some types of convolutions. Given two arithmetic functions 

and ~, their sum (also called natural sum) is defined by 

(5 + ~) (n) = ~(n) + ~(n) (n 6 Z). 

However, their product may be defined in several ways, thus 

giving rise to different types of arithmetical convolutions. Among 

the simplest and most widely known are the following three: 
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(2.1) 

(2.2) 

(2.3) 

Natural product ~ (also written as G × 8) 

(~) (n) = ~(n)~(n); 

Dirichlet product ~.~ given by 

(~.~) (n) = ~ ~(a)~(b) ; 

ab=n 

Unitary product ~ , ~ defined by 

defined by 

(5 . 8) (n) = ~(a) B(b) . 

ab=n 
(a,b) =l 

The theory of arithmetic functions connected with Dirichlet 

convolutions was first investigated by E. T. Bell [I, 2, 3, 4], and 

later extensively by R. Vaidyanathaswamy [42, 437, who also introduced 

the convolution now known as unitary product. This convolution was 

later extensively studied, among others, by Eckford Cohen [12~. The 

ring (S,+,,) has the unique factorization property, as was shown by 

Cashwell and Everett [8], but the ring (S,+,*) is not even an 

integrity domain. 

(2.4) The i. c. m. product ~ ~ B of ~ and ~ is defined by 

(~ • ~) (n) = ) ~(a)~(b). 

[a,b~=n 

This convolution was studied in detail by D. H. Lehmer [25]. In view 

of Von Sterneck's theorem [24, p. 955] that if 7 = ~ • 8, then 

aln aln aln 

the calculation of i. c. m. products is essentially reduced to that of 

Dirichlet and natural products, since if ~ is the M~bius function, 

we have from (2.5), 

(2.6) Y = (~.E)(@,E),~ 

where E is the arithmetical function defined by 

(2.7) E(n) = 1 for all n6 Z. 
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(2.8) The Cauchy product of ~ and ~ is given by 

~(a) @(b) 

a+b=n 
a ~ 0 

(n E Z). 

We here require that ~(n) and ~(n) be defined for n = 0 also. 

The Cauchy product was studied by several authors including 

E. T. Bell [I] and Eckford Cohen [i0, ii]. The set S with natural 

sum and Cauchy product is an integrity domain in which there is 

essentially a single prime ~ defined by ~(i) = i, ~(n) = 0 (n ~ I). 

(2.9) The Lucas-Carlitz product. Recently, L. Carlitz [6, 7] intro- 

duced this product which is analogous to the Cauchy product. Let p 

be a fixed prime and put 

n = n O + niP + n2p2 + .-- 

r = r 0 + riP + r2p2 + ... 

(0 < n < p), 
3 

(0 < r < p). 
3 

Then, a result dating back to Lucas (see [6], p. 583) states that 

(2.10) <n> = /noh{nlh n2) (mod p) 
\r01krll<r •.. 

Hence the binomial coefficient 

only if 

(2.11) 0 ~ r. < n. 
] 3 

<~> is relatively prime to p if and 

(j=0, i, 2 .... ). 

Using this fact, Carlitz defines the new product of 

by the expression 

(~ and 

~ ~(a)~(n-a) , 

where the sum is restricted to those a that satisfy (2.11). (Here 

~(0), 8(0) are assumed to be defined.) Carlitz calls this the 

Lucas product of ~ and 8" However, since Lucas did not even think 

of a convolution based on (2.10), it would be more appropriate to call 

this the the Lucas-Carlitz product. Carlitz has an unproved conjecture 
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regarding the zero divisors of the ring constituted by S, natural 

addition and Lucas-Carlitz multiplication [6]. 

(2.12) Narkiewicz's convolution [28]. For each positive n, let A 
n 

be a non-empty set of positive divisors of n. For each ~, ~ £ S, 

the product ~o~ is defined by Narkiewicz by the relation 

(~o~) (n) = ~ ~(a)~(b). 

ab=n 
a 6A 

n 

Narkiewicz gives conditions on A under which this convolution is 
n 

commutative and associative and shows that the semigroup (S,o) has 

an identity element if and only if {l,n] ~ A n for every n £ Z, and 

then the identity element is the arithmetic function ~ defined by 

(2.13) ~(n) = 

i, n = l, 

0, n >l. 

Further, Narkiewicz shows that the units of 

6 S for which G(1) ~ 0. Also, the convolution 

multiplicativity (that is, ~o8 is multiplicative whenever 

are) if and only if 

Amn = A m x A n (m,n £ Z), 

represents the set 

{ab: a 6 A m , b 6 An}. 

where A × A 
m n 

(S,0) are those 

o preserves 

and 

All these properties hold of course in the case of Dirichlet and 

unitary convolutions. 

There are some unsolved problems about this convolution such as in 

[28, p. 87]. 

The Narkiewicz product is not general enough to include the 

convolutions defined by the i. c. m., Cauchy, Lucas-Carlitz or natural 

products. 

(2.14) The k-product (Gioia and Subbarao [19, 38, 39]) of ~ and 

is defined by 
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I ~(a) ~(b) k((a,b) ) 

ab=n 

where the function k satisfies the condition for associativity, 

namely, 

(2.15) k((a,b))k((ab,c)) = k((a,bc))k((b,c)) 

for all a, b, c £ Z. The commutativity of the product is automatic. 

The k-product convolution appears to be the first generalization in 

the literature involving a kernel. It extends in an elegant manner 

m~ny of the nice properties and identities associated with Dirichlet 

and unitary products. We refer to [19, 38, 39] for details. 

The k-product is further generalized by T. M. K. Davison [15] as 

follows. 

(2.16) Davison's product of ~ and ~ is given by 

I ~ (a) ~ (b)A (a,b) 

ab=n 

where A(a,b) is a function of the two variables 

of being a function of their g. c. d. as in (2.14). 

[18]. 

a and b, instead 

See also Gesely 

(2.17) Remark. It is possible to construct a variety of interesting 

special cases of the products (2.12), (2.14) and (2.16). As examples 

which should be worthy of a detailed study, we mention the following. 

(2.18) The Semi-unitary product of ~ and ~ may be defined by 

I e(a) B(b) . 

ab=n 
(a,b),=l 

Here (a,b),, called the semi-unitary g. c. d. of 

largest divisor of a which is a unitary divisor of 

called a unitary divisor of b if clb and (c,b/c) = i.) 

a to b, is the 

b. (c is 

(2.19) Bi-unitar~ product of ~ and B, denoted by e**~, 

defined by 

may be 
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co(a) ~ (b) , 

ab=n 
(a,b) **=i 

where (a,b)** denotes the largest positive integer which is a unitary 

divisor of both a and b. 

In fact some divisor functions related to these convolutions are 

already considered respectively by Chidambaraswamy [9 3 and 
Suryanarayana [413 . 

Some interesting convolutions that await detailed study, all 

special cases of (2.12) and (2.16), are defined by the following 

products: 

(2.20) ~(a) ~8 (b) ; 

ab=n 
)' (a) =~, (n) 

(2.21) ¢x(a) 8(b) ; 

ab=n 
7 (a) =7 (b) 

(2.22) ¢x(a) ~ (b) . 

ab=n 

(a, b) k=l 

Here 7(a), the core of a, denotes the product of the distinct 

prime factors of a; and (a,b)* denotes the greatest k-th power 

divisor of a which is a unitary divisor of b. (See [34].) 

We shall not refer to several other convolutions, in the litera- 

ture, such as those associated with the work of L. Weisner [44], 

e. C. aota [32], H. H. Crapo [14], D. A. Smith [35, 36, 37 3 , 

D. L. Goldsmith [22, 23 3, as well as E. Cohen's convolution of arith- 

metic functions of finite abelian groups [13]. It should be pointed 

out that the bibilography at the end of the paper gives only an 

illustrative list of some of the work done on convolutions. 
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3. The Lehmer ~-product ~ O 8- All the convolutions listed above, 

with the exception of (2.12) and (2.14), are special cases of the so 

called b-products of D. H. Lehmer developed in [24, 26]. Lehmer's 

important paper [24] on these products, published in 1932, does not 

seem to have received adequate attention. For this reason, and also 

because we later introduce a variant of a Lehmer ~-product, we shall 

mention it in some detail. 

Let ~(x,y) be a positive integral-valued function defined for a 

prescribed set T of ordered pairs (x,y), x,y 6 Z. The b-product 

© ~ of G and ~ is defined by 

(3.1) (~ O 8)(n) = ~ ~(a)~(b) (n £ Z). 

b (a, b) =n 

Lehmer assumes that ~ satisfies the following postulates. 

(3.2) Postulate 7. For each n 6 Z, ~(a,b) = n has a finite number 

of solutions. 

(3.3) Postulate II. ~(a,b) = ~(b,a). 

(3.4) Postulate Ill. ~(a,$(b,c)) = ~($(a,b),c). 

These ensure that ~ © ~ is defined by a finite sum and that 

© is commutative and associative. 

(3.5) Postulate IV. For any n 6 Z, ~(a,l) = n ~ a = n. 

This ensures that the semigroup (S,©) has the identity element 

~(n) defined in (2.13). 

If ~(x,y) = n has a solution x for some y, then x is 

called a ~-divisor of n, and x and y are called conjugate 

S-divisors of n. Let d(n) denote the largest ~-divisor of n, and 

61(n), 62(n) ..... 6 r(n) 

be the ~-conjugates of d(n). 

Lehmer assumes another postulate, namely, 

(3.6) Postulate V. The equation d(n) = m has for each m > 0 one 

and only one solution m = n and d(1) = i. 
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He then derives a number of theorems such as the following: 

(3.7) The semigroup (S,O) has the identity ~ given by (2.13). 

(3.8) ~ is a unit in (S,©) if and only if 

r(n) 

I ~(6k(n)) ~ 0 (n = i, 2 .... ). 

k=l 

Lehmer then develops a calculus of ~-convolution introducing 

notions such as ~-multiplicative functions. We shall not go into 

these details. 

Among the examples Lehmer gave of his ~-products is the product 

of two functions ~, ~ defined by 

(~ O 8) (i) = e(1)~(1), 

and if n > 1 is given by (i.i), then 

bi-l- ci-l. 
(3.9) (60 8)(n) = I ~(~ Pi ) ~(~ Pi )" 

b.c.=a +i i i 
i i 1 

i = l,...,r 

(3.10) Remark. By varying Lehmer's Postulates I to V on ~(x,y), it 

is possible to construct convolutions which vary from Lehmer's 

products. In particular, the author has replaced Postulate IV by the 

following: 

~(n,y) = n = y = y(n) 

where ~(n) denotes the core of n with y(1) = i. We shall not go 

into the details of the new results obtained, but shall consider in 

detail a special convolution with this property. We call this 

"exponential convolution" and study it in the next section. 

4. Exponential convolution. For arbitrary ~ and 8, we define 

their exponential product, denoted by ~ ® 8, as follows: 

(~ e ~) (1) = ~(1)~(1) 
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C. 

(4.1) (~ @ ~Xn) = ~ ~<~ p~j> ~<~ pj3>, n > l, 

b. c .=a . 
3 3 3 

j = 1 .... ,r 

where n > 1 has the representation given in (i.i). 

(4.2) Remark. This convolution is clearly commutative and associa- 

tive. This is not of Narkiewicz type, not being of the form 

~(d)@(n/d). In fact, it is not a Lehmer-type product, because it 

violates his Postulate IV in (3.5). 

a a 
(4.3) Exponential divisors. If n = pll..'pr r, by an exponential 

divisor of n, we mean a divisor of the form 

b I b r 
d = Pl "''Pr " 

a 1/b 1 
We call the divisor Pl 

(bj laj, j = 1 ..... r) . 

ar/b r 
"''Pr the exponential conjugate of d. 

We now state some of our results about this convolution. 

(4.4) Theorem. (i) The system (S,®) is a commutative semigroup 

with identity element I,I (where I~l is the arithmetic function 

defined by I ~(n) I, ~(n) being the M~bius function) . 

(ii) The units of (S,®) are those ~ for which ~(n) ~ 0 

whenever n is a product of distinct primes, and ~(i) ~ 0. 

(iii) The semigroup (S,®) has an infinity of zero divisors. An 

element ~ of (S,®) is a non-zero-divisor only if, given any finite 

number of primes Pl ..... Pr " there exist corresponding positive 

integers el, ..., a r such that 

(iv) (S,®) has no non-trivial nilpotent elements. 

Proof. Result (i) is easily proved. For if PI' .... Pr are 

distinct primes, and ~ any arithmetic function, 

(~ @ ~&) (Pl'''Pr) = ~(PI'''Pr) I~(PI'''P r) I 

= ~(pl---pr ). 
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a I a 
If n = Pl "''Pr r and al..-a r > i, then 

(~" { ~{)  (n) = 
b.c a 
1 1 1 

i = 1 , . . . , r  

= 5(n) I~(PI'''P r) I, 

since, recalling the definition of ~(n), the only non-vanishing term 

in the sum on the right corresponds to the case c I = .... c r = i. 

Thus I~I is an identity element of (S,e), but there cannot be 

more than one identity. 

To prove (ii), first we note that the condition is necessary. 
-I 

For if we denote the inverse of ~ by ~ whenever it exists, we 

have for distinct primes Pl" "''" Pr ' 

1 = I~(pl---pr ) I = (G ® G-l) (PI'''Pr) 

= ~(PI" ° "Pr)~-i (Pl" " "Pr ) ' 

which implies that G(pl-.-pr ) ~ 0. 

On the other hand, suppose that ~(pl---pr) ~ 0 for every finite 

set of primes PI' .... Pr' and ~(i) ~ 0. We can construct ~-l(n) 

for all n by induction on n. Thus the relation 5(i)~-i(i) = 1 
-i 

gives ~ (i) = 1/5(1). Similarly 5-1(2) = i/a(2). 

al...p~ r Take any n = Pl > 2 and assume that ~-l(m) is known 

for all m < n. Then from the relation 

I~(n) I = (5 o G -1) (n) 

= 5(pl---pr)~-l(n) + 

b, c.=a 
1 1 1 

b 1 • . . b r > l  

C. 

-i 
we can solve for 5 (n) uniquely. 



259 

The proof of (iii) is as follows. The stated condition for 

to be a non-zero-divisor is necessary. For suppose there exist primes 

Pl' "''' Pr (r > 0) such that 

~<pll..-par~ = 0 

for all positive integers a I, .... a r 

follows: 

Then 

showing that 

Define the function B as 

$(pl...pr ) = i, 

B(n) = 0, n ~ pl--°pr. 

(~ ® ~)(n) = 0 for all n 6 Z, 

is a zero divisor. 

Remark. The question whether the above condition is also suffi- 

cient for a non-zero-divisor remains open. 

To prove (iv), we proceed as follows. Suppose there is an 

such that 

Then we show that 

(4.8) 

~(k) , G ® ~(k-l) - 0. 

~(n) = 0. 

This clearly holds for n = I, and also whenever n 

since then 

~(k) (n) = (~(n)) k. 

We next show that (4.8) holds for N a of the form 

a 
Na = PlP2 "''pr (a > 0). 

We proceed by induction on a, this being true for 

a 1 
that ~(Na) ~ 0 and ~(Pl P2"''Pr> = 0 for a I < a. 

is square-free, 

a = I. Assume 

Then 
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~(2)(p12p2..pr ). = (~.~)<pl 2a p2...pr) 

= ~(Na) ~(N a) 

~0 

Let b be the smallest positive integer for which 

~(2) b 
(plP2...pr) ~ 0. 

Then 

ab (~(2) ab . 
(3){pl P2"''Pr) = (~ ® )(Pl P2 "'Pr) 

a .. b 
= ~(PlP2 "Pr) ~(2)(plp2" ..pr) 

~0. 

Continuing this argument, we produce an n such that 

~(k) (n) ~ 0, leading to a contradiction. Hence ~(Na) = 0 for 

a = i, 2, .... 

We now continue the induction successively on a 2, a 3, ... to 

a I a 
show that ~Pl ! p22p3" " "Pr) \ = 0, etc, and thus for any integer 

a I a r 
n = Pl "''Pr ' completing the proof. 

(4.9) Exponential analogue of M~bius function. Let us define 

~(e) (n), the exponential analogue of the M~ius function, as follows: 

~(e) (i) = 1 

and for n > 1 given by (I.I), 

~(e) (n) = ~(a I) ...~(ar) - 

Clearly, ~(e) (n) is a multiplicative function and also exponentially 

multiplicative (see (1.4)). We can also verify that if E(n) is the 

function which equals 1 for all n, then its exponential inverse is 

~(e) (n). It follows that for any ~ and B, 
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(~ = ~ ® E ~ ~ = ~ Q ~(e). 

We know that in (S,,) the semi-multiplicative functions form a 

semigroup [30] and the multiplicative functions a group. We note the 

following analogous result without proof. 

(4.10) In (S,®) the set of all unit multiplicative functions form a 

group. 

5. The connection between exponential convolution and Dirichlet 

convolution. The Dirichlet convolution of arithmetic functions ~(n) 

of a single argument can be extended to functions ~(nl,...,n k) of k 

arguments, k being an arbitrary finite number. In fact such an 

extension was already considered by Vaidyanathaswamy in [43]. 

If S k denotes the set of all arithmetic functions ~(n I ..... n k) 

of k arguments, we define the Dirichlet product ~.~ by 

(~,~) (n I ..... n k) = 

a b =n. 
3 3 3 

j = 1 ..... k 

~(a I ..... a k) ~(b I ..... bk). 

The system (Sn,,) is a commutative semigroup having as the identity 

the arithmetic function ~k given by 

t 
f i, n I ..... n k = i; 

n k ) 
/ 

O, o t h e r w i s e .  

The units of (Sn,,) are those functions ~ for which 

5(1 ..... i) ~ 0. It can be shown that the system (Sn,+,,) is a com- 

mutative ring, and in fact a domain of integrity. Following the 

method of Cashwell and Everett [8], one can study the unique factori- 

zation property for (Sn,+,®). 

The M~bius function for (Sn,°) is the function ~(n I ..... n k) 

defined by 

~(n I ..... n k) = ~(nl)--.~(nk). 

(See [43, sec. 4]. 
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we wish to point out that some of these results can be extended 

to the set S of complex-valued arithmetic functions ~ = ~(h) whose 

arguments h are vectors of the form 

h = (h l,h 2 .... ) , 

where h I, h 2, ... are non-negative integers all but a finite number 

of which are zero. We denote the set of all such vectors by Z. 

Let 

(5.1) 

(5.2) 

= (Sl,S 2 .... ), 

t = (tl,t 2 .... ) 

be two such vectors. We then define that ~ and 

type" if and only if 

sj = 0 ~ tj = 0 (j = i, 2 .... ). 

If ~ and • are of the same type and are given by (5.1) and (5.2), 

we define the vector st as follows: 

(5.3) st = (Sltl,s2t2 .... ). 

It should be noted that the vector s~ is not defined unless s and 

are of the same type. 

Let ~, B, 6 S. We define their Dirichlet product, denoted by 

~.~, by the relation 

(h) = ~ G(s) B(t) (~ E Zo). (~.~) 

st=h 

are of the "same 

(5.4) 
m 

~(h) = ~(hl)~(h 2) ... 

Finally, we write I~I for max hj, whenever it exists. We now 
3 

have the following result. 

We recall the definition ~(n) given in (2.13) and extend it by 

defining 7(0) = 1. For ~ = (h I .... ), we define the function ~ by 
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We can now define ~ alternately as 

_ _  f l ,  I~l ~ l ,  
(5.5) n(h) = 

0, ;~l >1. 

(5.6) Theorem. (S, .) is a commutative semigroup for which 

(i) the identity element is ~; 

(ii) the units are those ~ for which 

~(~) ~ 0 for I~] ~ 1; 

(iii) if E £ S is defined by E(~) = ~ for all ~ 6 ~, and if~ 

is the inverse of E (so that p(h) is the M~bius 

function of (S,.)), ~ is given by 

(5.7) ~(h) = ~(hl) ~(h2) ..., h = (hl,h 2 .... ), 

with the convention that ~(0) = 0. 

The proof is similar to that for the semigroup (S,,), and is 

omitted. 

We next recall that any n q Z has the representation given in 

(1.2), so that the mapping 

n < > h = (hl,h2,...) 

is one-to-one on Z onto Z. Further, to each ~ E S, there corres- 

ponds in a one-to-one manner the element ~ in S given by 

h I h 2 
(5.8) ~(n) < > ~(h), n = ql q2 "''' h = (hl,h 2 .... ). 

Further, this correspondence preserves the semigroup operation, 

that is, if 

then 

Thus we have proved the following result. 
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(5.9) Theorem. The semigroups (S,@) and (S, 0) are isomorphic to 

each other. 

(5.10) Remark. From the mapping given in (5.8), we could at once 

deduce the results (i), (ii) of Theorem (4.4) and the results in (4.9) 

from Theorem (5.6). 

6. 

T (e) (n) to be the number of exponential divisors of n, T (e) (i) 

If n > 1 has the representation (i.i), we have 

(6.1) T (e) (n) = T(al) T(a2) ---T(ar), 

T(a) denoting the number of divisors of n. We now prove: 

(6.2) Theorem (Erd6s) . 

lira 109 T(e)(n) lOg log n = ½ log 2. 
n4~ log n 

Proof. We first prove that for any given E > O, there are 

infinitely many positive integers m for which 

T (e) (m) > 2 (l-()lOgm/2 log logm 

Let 

primes. 

The order and avera@e order of T (e) (n). We have already defined 

= i. 

and k = ~(qk) = ~(y) ~ y/logy , where ~(x) 

Hence 

log T (e)(m) = k log 2 

(log 2~/log y 

(log 2)½ log m/log log m, 

from which we get the inequality stated above. 

To complete the proof of the theorem, it remains only to show 

that given any ¢ > 0, 

T(e) (n) < 2 (l+E) lOg n/2 lOglOgn (n > no(E)). 

2 2 2 
m = qlq2-.-qk' where ql' "''' qk are the first k 

Then by the prime number theorem, ½ log m ~ y where Y = qk' 

= number of primes < x. 
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Put 

F(n) = max r(e) (m) 
1 ~m < n 

and assume that t is the smallest integer for which 7 (e) (t) = F(n). 

Put t = tlt 2 where all the prime factors of t 1 

2 
log n/(log log n) and all prime factors of t 2 are 

log n/(log log n) 2. We have 

are less than 

/log nhlog n/(log log n) 3 
Y(e) (tl) < \log 2/ < 2{ log n/2 loglog n 

for all n ~ no(E), because t I has fewer than 

(I+E) log n/(log log n) 3 prime factors and the exponent of each prime 

factor in the canonical form of t I is < log n/log 2. 

b I b 
Let us now look at t 2. Put t 2 = Pl "''Pr r' where PI' "''" Pr 

2 
are consecutive primes ~ log n/(log log n) We have 

b I + ..- + b r ~ (i + O(1)) log n/log log n 

bl+.--+b r 
since n ~ t 2 k Pl , or b I + ... + b r ~ log n/logpl. We can 

assume that all the b's are > 1 and are even, since if b is 
3 

odd, there is an even c < b with y(c) ~ T(b) (recall the minimal 

nature of t) and if b = i, it makes no contribution to r(n). 

Now, if we have even numbers whose sum is given, their product is 

maximal if all are 2, as can be easily proved, for instance, by 

induction. Thus 

r r 

T (e) (t2)= ~ T(bj) < ~ bj 

j =i j =i 

2(i + 0(1))logn/2 log log n, 

which is what we set out to establish. Theorem (6.2) is thus proved. 

Remark. The result of the theorem may be compared with the well 

known result: 
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(6.3) Theorem. Let 

lim log 7(n) log 109 ~ = log ~ 

Then 

where 

T(x) = ~ r(e) (n). 

n K x 

T(x) = Ax + 0(x ½log x) 

co 

p k=2 

Proof. Let 

r(e) (n), 
f(s) = S 

n=l n 

This is regular for (7 = Re(s) > i. 

on using (6.1), 

Since T (e) (n) is multiplicative, 

where 

f(s) = ~ ~i + r(1)p-S + T(2)p-2S + .-- r(a)p -as + ---} 

P 

-2s 
( -s + - - +  - - - P  } 

=:~ I+ P 
II l_p -s l_p -2s 
P 

=: ~ (I-p-S)-I~(s) 

P 

=-- ~(s)~(s) 

~(s) is the Riemann zeta function and 

co 

p k=2 

l} 
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Clearly, ~(s) is regular for a > ½. 

theorem now gives 

An application of Ikehara's 

<T(x)~ = ~(1) -- A (6.5) lim x " 
x4~ 

The usual contour integration method, applied to (6.4), gives the 

order estimate of the error term of the theorem after considerable 

laborious calculations. The details will be given elsewhere. 

(6.6) Remark. We can extend (6.5) as follows: 

Let 

T (k) (x) = ~ [r(e) (n) ]k. 

n ~ x 

Then 

where 

lim < T(k)x (x)l 
x4~ 

exists for every k and = A k , 

co 

p n=2 

- (T(n-l))k~p -n }. 

Another result of interest is as follows. Let an integer n be 

said to be exponentially square-free if in its canonical form each 

exponent is square-free, with the convention that 1 is taken to be 

exponentially square-free. Let Qte)(x) denote the number of 

exponentially square-free integers K x. Then we have 

(6.7) Theorem. Q(e) (x) = Bx + 0(x ½) 

where 

P 

where a ranges over all non-square-free numbers for which a-1 is 

square-free, and b ranges over all square-free numbers for which 

b-i is non-square-free. 
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Proof. We proceed as in the proof of (6.3) and use a result of 

H. Delange [16], namely, if ~(n) is a multiplicative arithmetic 

function with ~(n) = 0 or I, and for primes p, ~(p) = i, then 

~(n) = Cx + o(x½), 

n < x 

C being a constant. 

7. Exp0nentially perfect numbers. Many of the usual problems asso- 

ciated with Dirichlet convolution have their counterparts in exponen- 

tial (or, in fact, any other) convolution. As an example, we mention 

the question of determination of all exponentially perfect numbers, 

which by definition are positive integers n for which 

~(e) (n) = 2n, 

where ~(e) (n) denotes the sum of the exponential divisors of n. An 

example of such a number is 36. It is easy to see that there exist 

an infinity of them; for if m is exponentially perfect, so is mk 

(called the associate of m) where k is any square-free integer 

relatively prime to m. 

Some examples of exponentially perfect numbers are: 

22.33.52; 23.32.52 ; 24.32.112; 

26.32.72.132; 27.32.52.72.132; 

28,32.52.72.1392" 

We raise the following questions. 

(7.1) Is there an odd exponentially perfect number? 

(7.2) Are there an infinity of exponentially perfect numbers such 

that no two of them are associates of each other? 

We obtained some necessary conditions for an odd integer to be 

exponentially perfect, which will be published elsewhere. 

8. Remark. We finally remark that to every given convolution of 

arithmetic functions, one can define the corresponding exponential con- 

volution and study the properties of arithmetical functions which arise 

therefrom. For example, one can study the exponential unitary 
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convolution, and in fact, the exponential analogue of any Narkiewicz- 

type convolution, among others. 
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