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A CLASS OF ARITHMETICAL EQUATIONS
BY

M. V. SUBBARAO

1. This note arose essentially in attempting to generalize the
following problem which appeared recently in the American Mathe-
matical Monthly [3]: Determine the arithmetic function f satisfying

5 fA)fn/d) =1 n=1223,..).
The solution appears later in this note (in Section 3). Our interest

here is to devise a method of finding all the solutions in f of the
functional equation

=g

for a given g, where f = f-f-f- -f is the #th iterate of f with
respect to a prescribed binary operation ‘-’ acting on the set S
of all (complex valued) arithmetic functions.

Throughout sections 1-3 of this note we confine ourselves to the
two important cases when the operation is the Dirichlet product

(given by (f-g)(n) = dZ/l Hd)g(n|d))
n
or the unitary product
(given by (f-g)n) = X f(d)g(n/d))-
(d,g//dn)=1
We refer to f® as the r-th Dirichlet or unitary iterate of f as the

case may be. Its values in the two cases are given respectively by

fOm) = X fd) (@) .- Hdr), m=12, ..

didz...dr=n

fOm)= T fd) f(do) ... [(dr).

didz...dr=n
(di,ds)=1,4+#7

and
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2. We recall that an arithmetic function f is said to be multi-
plicative if f(1) =1 and f(mn) = f(m) f(n) whenever (m,n) = 1.
If /0 is the Dirichlet or unitary iterate of f, it is known that the
multiplicativity of f implies that of f(0. The direct converse of this
result is false. However, we have the following conditional converse,
which is useful for us in the sequel.

Theorem 1. Let f0 be the r-th Dirichlet or unitary iterate of f.
Then the multiplicativity of f zmgblzes the multiplicativity of f if and
only if (1) = 1.

Proof. The “only if” part is trivial, and so we proceed to the
proof of the “if” part. We consider only the Dirichlet case, the
unitary case being similar.

Let P(n) denote the property that for any positive integers a and
b for which (a, 8) = | and ab = #, we have f(n) = f(a) f(b). Obvi-
ously P(1) holds, and we now proceed by induction on %#. Assume
that P(1), P(2), ..., P(n — 1) all hold, » being > 2, and consider any
two natural numbers a and & such that ab = n. We exclude the
trivial case when a or b is unity. We have

fOm) = fO@b) = 3 ]‘(albl .. f(ardr), (2.1

ar...Qr=
bl...br=b

and, by the induction hypothesis, f(a:b:) = f(a:) f(bs) for all a;|a
and b;[b except possibly for a; = a, b; = b. Thus (2.1) yields
fOm) = X fla) ... far) p2 f(b1) --- f(br) +

ar...an=a b1...br=b

+ 7(f(1))* flad) — (/‘(1 )2r=2 fa) 1(6) =
= [®(a) f"(®) + 7(f(ab) — f(a) /()

on using f(1) = 1. Since fM(n) = f®(a) {"(b), it follows that f(ad) =
= f(a) f(b), thus establishing the truth of P(n) and completing the
proof.

Remark. If /) is replaced by f1-fa-...-fr, in which at least two
of the functions f1, fo, ..., fr are distinct, the theorem fails. Spe-
cifically, suppose F = f1-...-fr (# > 1) and not all the functions
f1, .-, Jr are identical. Then the conditions (i) I is multiplicative;
(i) f1(1) = ... = fr(1) = 1, do not ensure the multiplicativity of
any of the functions fi, ..., fr. In fact, given a multiplicative
function F and integers #, s such that » > 1, 0 <<s <7, I can be
expressed in an infinity of ways as the Dirichlet or unitary product
of » functions f, ..., fr, of which at least s are non-multiplicative;
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and this result holds even if we prescribe that f(1) = ... = f;(1) =
= 1. (This could be generalized in various ways). To see this, we
first recall that the (Dirichlet or unitary) inverse f~1 of a function f,
which is uniquely defined by (f-f1)(#) = 1 or O according as #» = 1
or # > 1, exists if and only if f(1) % 0. Thus we can choose f1, ...,
fr-1 to be any non-multiplicative functions subject only to the con-
dition that f;(1) £ 0 (# = 1, ..., # — 1). Then we choose for f, the
function f;y1-. .. £ F. (Vide, for example, [1] and [2] in this
connection).

However, we can show

Theorem 2. Let F = f1-.. .- fr (v > 1 be multiplicative and f1(1)
= ... = fr(1) = 1. Also let fi(ab) — fi(a) f:(b) = O whenever (a, b) =
= 1foralli(z =1, 2, ..., 7). (Alternately we can replace > 0by < 0).
Then F is multiplicative if and only if f; is multiplicative (1 =1, ...,
7).

The proof of this is along the same lines as that of theorem 1.

In the sequel, we denote the »-th roots of unity by wy = 1, we,
..., Wy, # being a positive integer. If 4 is a complex number, the
function af is given by

@h(m) = af(n) (=12 ..).

Theorem 3. Let g be a given multiplicative function. The equation
1 = g has r solutions, of which only one is multiplicative. Denoting
this solution by h, all the solutions are given by f = wih, wah, ..., wrh.

Proof. From f = g, one has 1 = g(1) = (f(1))7, so that f(1)

has the values 1 = w1, w3, ..., wy. Let the solution corresponding
to the case f(1) = 1 be denoted by f = 4. By theorem 1, % is a
multiplicative function. Let f; (# =1, ...,7) be the solution for

which fi(l) == Wy (SO that fl == h)
The theorem is proved if we show that for i = 1, 2, ..., 7, we have

iln) = wih(n) 2.1)
for w =1,2, ....

Obviously (2.1) holds for #» = 1; we keep ¢ fixed and assume
that (2.1) holds for » = 1,2, ..., m — 1) (m > 2) and use mathe-
matical induction. The equations which determine A(m) and fi(m)
are respectively (taking the case of Dirichlet Products):

BB+ S B ) =g @2
T<deam
®=1,...,7)
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and

mfim)(f(1))m 1+ X fildy) - fildr) = g(m).  (29)

dy...dr=m
1<de<m
(k=1,...,7)

Noting that fi(dx) = wik(dr) (1 < dr < m) by the induction hy-
pothesis, and that w] = 1, we observe that each term in the sum-
mation in the left member of (2.2) is in fact equal to the corre-
sponding term of the summation in the left member of (2.3). Hence,
equating the left members of (2.2) and (2.3), we obtain

mwl " i(m) = mh(m),

thus giving f;(m) = wih(m), and completing the induction proof.
The proof for the unitary case is similar. Actually in this case
we can say a little more, namely.
Theorem 4. If g is multiplicative and {0 the r-th unitary itevate
of 7, the equation [ = g has r solutions in f given by

g=wih (k=12 .),

where b 1s a multiplicative function determined by h(p*) = (1/r)g(p¥),
P being an arbitrary prime and k = 1,2, ... .

Proof. This follows from Theorem 3 together with the fact that
for £ > 0,

g(pr) = [0 (pF) = »({(1)) " (BF).

Similarly one can show
Theorem 5. If g is any arithmetic function £ 0, the equation
I = g has exactly r distinct solutions which can be represented in
the form
= wih =12, ..,7),

h being any one of the solutions. One of these solutions is a mulbi-
plicative function if and only if g is multiplicative.

Remark. This result can also be proved from group-theoretic
considerations, in view of the fact that the set of all arithmetic
functions form a group G (with respect to Dirichlet or unitary
multiplication) with identity e given by e(n) = 1 or 0 according as
n=1 or » > 1; and that the set of multiplicative arithmetic
functions form a subgroup of G. (See for example [1] and [2]).

3. The use of gemerating series. Given an arithmetic function g,
its generating series g(p(x) to the base p, a prime, is defined by
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the formal power series

gw) = % g(p®)x°.
a=
If {0 = g, we then have, formally, in the case of Dirichlet products,

(f@)" = g (%)

Hence the ““formal r-th roots” of the series denoted by gy (¥) give
the » values for f5)(x), and hence for f(p¥) (¢ =0, 1, 2, ...).

If g is multiplicative, the unique solution f = 4 of f® = g, which
is multiplicative, is formally given by the equation

(1 + hp)x + B2 + .7 = (1 + gB)x + 92 + ...)

or,

14 A(p)x + B(p2)a2 + ... = (1 + g(p)x + g(p2)a2 + ...)1".

This relation is specially helpful in determining % when the series
1 -+ g(p)x + g($p2)»% + ... adds up to a simple function, as illus-
trated by the following examples. Once % is determined, all the so-
lutions of /0 = g are, by Theorem 3, given by wih (t = 1, 2, ..., 7).
Example 1. To determine f satisfying [3]
S H@)fnjd) =1, n=12 ...

din
Here,

1
1l —x

gmx) =1+x4+224 ... =

>

so that

1

h =—

(%) ==t
This gives for & > 0,

1-3-5... (2t —1)

246 ... (2k)

h(p¥) = (3.1

for all primes $. The two solutions are f = 4 and f = —4, and are
completely determined by (3.1).
Example 2. To solve for f satisfying

nd%b {(@)f(n]d) = o2(n),

where o3(n) denotes the sum of the squares of the (positive) divisors
of n.
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Here, g(p¥) = oa(p¥)/p* (R = 0, 1, ...).
A simple computation shows that

1

1
1—(75—[—;)96—}—952.
\

The two solutions are given by f==4, —A, where 4(1) = 1 and,
for £ > 0, h(p*) = Py(p + 1/p), where Py(x) is the Legendre poly-
nomial of degree #.

Example 3. Let Pu(x), Th(x) (n =1, 2,...) be the usual Le-
gendre and Tchebichef polynomials with the convention Po(x) =1,
To(x) = %; and Pgu(x) = Taw) =0 for w << 0. Let g(n) be the
multiplicative function given by

g(*) = 2(Tx(x) — Tn—2(®)),

where $ is any prime and x is fixed (the same for all ). Then the
solutions of the functional equation

%Lf(d)g(%/d) = g(n)

Em(®) =

are given by f(n) = h(n), —h(n), where A(n) is the multiplicative
function determined by A(p¥) = Pg(x) — Px-2(x), B =0,1,2, ...,
$ being an arbitrary prime.

Example 4. The equation

Y f@fmjd) =1, n=12 .,
(d,nd/{iw)/ =1
has the two solutions f(»n) = h(n), —h(n), where

a 1 n=1
(n) = —w(m) n> 1,

where w(n) denotes the number of distinct prime divisors of #.

4. A furiher generalization. Theorem 1, 2 and 3 can be generalized
in various ways. For instance, we can take for ) the »-th iterate
of f with respect to the operation of “K-product” [4, 5]. If K is
any arithmetic function such that K(1) = 1 and for all positive
integers a, b and c,

K((a, b)) K((ab, ¢) = K((a, be)) K((b, ¢)), (4.1)
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the K-product of two arithmetic functions f and g is defined as

2 f(d1) g(d2) K((d1, d2)).

didz=n

The function K with the above restrictions should necessarily be
multiplicative; and (4.1) ensures that the K-product is an associ-
ative operation. The proof that theorems 1, 2 and 3 are valid for
K-products is left to the interested reader. It is easy to see that
Dirichlet and unitary products are special cases of K-products.

(1
(2]

(3]
(4]

(5]
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