
ON THE ITERATES OF SOME ARITHMETIC FUNCTIONS 

P. Erd~s, Hungarian Academy of Sciences 

M. V. Subbarao, University of Alberta 

I. Introduction. For any arithmetic function f(n), we denote its 

iterates as follows: 

fl(n) = f(n); fk(n) = fl[fk_l(n)] (k > i). 

Let q(n) and ~*(n) denote, respectively, the sum of the 

divisors of n, and the sum of its unitary divisors, where we recall 

that d is called a unitar~ divisor of n if (d,n/d) = i. Makowski 

and Schinzel [3] proved that 

~2 (n) 
lim i n f -  = i, 

n 

and conjectured that 

lim inf ~k(n) - -  <co for every k. 

This is not proved even for k = 3. On the other hand, Erd~s [2] 

stated that if we neglect a sequence of density zero, then 

qk (n) 
~k_l(n ) = (i + 0(1))ke~logloglog n. 

This implies, in particular, that 

~2 (n) 

on a set of density unity. 

In contrast to this, we show here the following result. 

Theorem i. 

~2 (n) 

u I (n) 

- -  ~ 1 on a set of density unity. 
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2. Some lemmas. The proof makes use of the following lemmas. 

Throughout what follows, h, q, r, r I, r 2 represent primes, and ¢, 

n small positive numbers. Almost all n < x will mean: all but 

0 (x) integers n ~ x. 

Lemma I. For almost all n < x, every p < (log log x)i-~ satisfies 

p I~* (n) 

Lemma 2. For almost all n < x and for any given 7, we have 

!<7, 
P 

P l @* (n) i+( 
p > (log log x) 

where ( = ¢(~) > 0 is sufficiently small. 

Lemma 3. For almost all n < x and all p < t (t fixed but 

arbitrary), 

p~]~* (n) 

for every fixed 5. 

we only outline the proofs of the lemmas and the theorem. 

Proof of Lermaa I. For a given p < (log log x) for which 

P l~2(n), n < x, it is enough if we show that there are at least two 

primes r I, r 2 such that 

r I ---r 2 =--i (mod p), 

and 

2 
rlIn, r21n, r21n, r21n- 

For this purpose we use the Page-Walfisz-Siegel formula for primes in 

arithmetic progression (Pracher [6], p. 320) which states that if 

~(a,d,y) denotes the number of primes ~ a (mod d) and ~ y, then 

for (a,d) = i, 

~(a,d,y) = (i + 0(1))~(d)~logy 

uniformly in a and d for d < (log y ) t for every fixed t. Hence, 

for primes r such that rln, r =- -i (mod p), we have 
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Z > c(loglogx) 
! 
r 

r --- -1 (mod p) 
log logx < r < x 

Hence we easily obtain by the sieve of Brun or Selberg that the 

number of integers n < x which are divisible by just one prime is 

less than x exp(-c(log log x) E) . There are fewer than (log log x)i-( 

primes < (log log x) l-E, and (log log x) l-(x exp(-c(log log x) E) = 0(x), 

and the number of integers which are divisible by the square of a 

( X '~. ThUS these numbers can prime > log log x is O\-logl~g xj be 

ignored. Thus Lemma 1 is proved. 

Proof of Lemma 2. We consider the sum 

S = 

X 

!. 
Z p 

n=l P l ~* (n) 
p > (log log x) i+( 

For a fixed p, we see that every prime r such that 

r =- -i (mod p), rln , contributes a factor p to G*(n). Since the 

number of integers n < x for which rln is kXJ, it follows that 
1 for a given p the number of times the term -- occurs in the sum S 

corresponding to each prime r m -i (mod p) is less than . Also, 

on using the Brun-Titchmarsh estimate for primes in arithmetic pro- 

gression [6, p. 320] we have 

~ Ex3 < cx i°@ !°~ x 
P 

r -= -I (nod p) 

Hence 

1 
S < cxlog logx = 0(x). 

i+( 
p > (log log x) 

Proof of Lemma 3. Given a p < t, we see, on using the sieve of 

Eratosthenes and the fact that 

r -=-i 

1 
~ CO l 

r 

(mod p) 
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that the number of integers n K x such that n is divisible by at 

most j primes q of the form q m -i (mod p), each of them occur- 

ring to the first power in n, is 0(x), j being an arbitrary 

positive integer. Hence the number of such integers n ~ x is 0(x). 

Since for each such n we have pJla*(n), the lemma follows at once. 

3. Proof of the theorem. Let ~ be chosen arbitrarily small and 

then keep it fixed. We shall then choose t and G = ~(t) suffi- 

ciently large so that 

(3.1) ~ (l+!> <i + ~ 
p <t p(X 

and 

(3.2) 

P pat 

The latter inequality is possible because of the convergence of 

P 

Since almost all n < x satisfy Lemmas i, 2, 3, we have for 

almost all n, 

(3.3) 
~ (n) 

p ~ t p >t P 

(log log x) l-¢ < P < (log log x) 

on noting that 

(3.4) 

(log log x) 
i+~ p 

< p < (log log x) 

for a suitably chosen c = ((~). 

Combining Lemma 2 and the result (3.4), we get 

P 
> t 

p~* (n) 

p2~, (n) 
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It then follows from (3.3) that for almost all n, i.e., except for 

values of n with density zero, 

~ (n) 

~i--~-~ < 1 + W, 

and the proof of the theorem is complete. Our theorem implies that 

~ (n)/n has the same distribution function as G[(n)/n. 

4. Some remarks and problems. Let ~*(n) be the unitary analogue of 

Euler's totient function (see E. Cohen [13). Then ~*(n) has the 

evaluation 

~*(n) = ~ (pa _ i) 
palln 

Following the method of proof of Theorem i, we can show that 

~2 (n) 
4 1 (~(n) = ~*(n)) 

except for a sequence of values of n of density zero. We shall not 

give the details of proof. 

Let R = R(n) be the smallest integer such that ~R(n) = i. 

This function was first considered by S. S. Pillai [5] who proved that 

log n 
log(n/2)log 3 + 1 ~ R(n) ~ log 2 + i. 

Others who considered this function include Niven [4], Shapiro 

[7 ] and Subbarao [8]. 

Let 

T(n) = ~l(n) + ~2(n) + ... + ~R(n)- 

Since ~2 (n) = 0(@ I_ (n) _> for almost all n, and ~j (n) 

j ~ l, we easily obtain that for almost all n 

is even for 

T(n) = (i + 0(1))~(n), 

SO that T (n) < n for almost all n. 
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There are many problems left about T(n) and we state a few of 

them below. 

Denote by F(x,c) the number of integers n ~ x for which 

T(n) > cn. For every 1 < c < 3/2 we have for every t > 0 and 

= x O ( > O, if x > x ° (c,t,() , 

x (log log x) t < F(x,l+c) < .... x 
(4.1) log x (log x ) 

This follows easily from Theorem 1 of [2]. Further we have 

(4.2) F(x,l) = c + 0(i) log log [oglog x" 

The proof of (4.2) can be obtained by the methods used in this 

paper and by those of [2]. 

3 
It seems likely that for 1 < c I < c 2 < ~ , 

lim F(x,I+c l)/F(x,l+c 2) = co. 
x4~ 

Put 

L -- lira T (n) 
n 

Trivially L ~ 2 (L = 2 if there are infinitely many Fermat 

primes). It is easy to show that 

iim T (2n) = i. 
2n 

We can show that T(n) >~ for infinitely many 
3 3 

implies L a 7" We cannot show that L > ~. 

n, which 

3 
Equation (3) of Theorem 1 of [2] implies that for c >~ and 

every E > 0, 

x 
F(x,c) = 0( (iogx)2_ ¢ . 

Probably, 
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but we have not worked out the details. 

Some other questions that are still unanswered are the following~ 

(i) 

(ii) 

Does R(n) have a distribution function? 
log n 

Does ~ approach a limit for almost all n? 
log n 

limit exists, is it equal to log 2 or log----~ " 

If this 

Similar questions arise in the case of the function R* = R*(n) 

defined as the smallest integer such that %,(n) = i. Here ~*(n) 

is the unitary analogue of the Euler totient, introduced by Eckford 

Cohen [i], which is defined as the multiplicative function for which 

~,(pk) = pk _ 1 for all primes p and all positive integers k. We 

do not even know of any nontrivial estimate for R*(n). Probably 

R*(n) = 0(n E) for every E > 0. It is not clear to us at present if 

R*(n) < c log n has infinitely many solutions for some c > O. 
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