I. Introduction. For any arithmetic function \(f(n) \), we denote its iterates as follows:

\[
 f_1(n) = f(n); \quad f_k(n) = f_1[f_{k-1}(n)] \quad (k > 1).
\]

Let \(\sigma(n) \) and \(\sigma^*(n) \) denote, respectively, the sum of the divisors of \(n \), and the sum of its unitary divisors, where we recall that \(d \) is called a unitary divisor of \(n \) if \((d,n/d) = 1 \). Makowski and Schinzel [3] proved that

\[
 \liminf \frac{\sigma_2(n)}{n} = 1,
\]

and conjectured that

\[
 \liminf \frac{\sigma_k(n)}{n} < \infty \quad \text{for every } k.
\]

This is not proved even for \(k = 3 \). On the other hand, Erdős [2] stated that if we neglect a sequence of density zero, then

\[
 \frac{\sigma_k(n)}{\sigma_{k-1}(n)} = (1 + o(1)) \, e^{\sqrt[3]{\log \log \log n}}.
\]

This implies, in particular, that

\[
 \frac{\sigma_2(n)}{\sigma_1(n)} \to \infty
\]

on a set of density unity.

In contrast to this, we show here the following result.

Theorem 1.

\[
 \frac{\sigma^*_2(n)}{\sigma^*_1(n)} \to 1 \quad \text{on a set of density unity}.
\]
2. Some lemmas. The proof makes use of the following lemmas. Throughout what follows, \(h, q, r, r_1, r_2 \) represent primes, and \(\epsilon, \eta \) small positive numbers. Almost all \(n < x \) will mean: all but \(o(x) \) integers \(n \leq x \).

Lemma 1. For almost all \(n < x \), every \(p < (\log \log x)^{1-\epsilon} \) satisfies \(p^2 | \sigma^*(n) \).

Lemma 2. For almost all \(n < x \) and for any given \(\eta \), we have

\[
\sum_{\substack{p \mid \sigma^*(n) \\ p > (\log \log x)^{1+\epsilon}}} \frac{1}{p} < \eta,
\]

where \(\epsilon = \epsilon(\eta) > 0 \) is sufficiently small.

Lemma 3. For almost all \(n < x \) and all \(p < t \) (\(t \) fixed but arbitrary),

\(p^\alpha | \sigma^*(n) \)

for every fixed \(\alpha \).

We only outline the proofs of the lemmas and the theorem.

Proof of Lemma 1. For a given \(p < (\log \log x)^{1-\epsilon} \) for which \(p | \sigma^*(n), n < x \), it is enough if we show that there are at least two primes \(r_1, r_2 \) such that

\(r_1 \equiv r_2 \equiv -1 \pmod{p} \),

and

\(r_1 | n, \quad r_2 | n, \quad r_1^2 | n, \quad r_2^2 | n. \)

For this purpose we use the Page-Walfisz-Siegel formula for primes in arithmetic progression (Pracher [6], p. 320) which states that if \(\pi(a,d,y) \) denotes the number of primes \(\equiv a \pmod{d} \) and \(\leq y \), then for \((a,d) = 1 \),

\[
\pi(a,d,y) = (1 + o(1)) \frac{y}{\phi(d) \log y}
\]

uniformly in \(a \) and \(d \) for \(d < (\log y)^t \) for every fixed \(t \). Hence, for primes \(r \) such that \(r | n, \ r \equiv -1 \pmod{p} \), we have
\[\sum_{r = -1 \pmod{p}} \frac{1}{r} > c (\log \log x)^\epsilon. \]

\[\log \log x < r < x \]

Hence we easily obtain by the sieve of Brun or Selberg that the number of integers \(n < x \) which are divisible by just one prime is less than \(x \exp(-c (\log \log x)^\epsilon) \). There are fewer than \((\log \log x)^{1-\epsilon} \), and \((\log \log x)^{1-\epsilon} \exp(-c (\log \log x)^\epsilon) = o(x) \), and the number of integers which are divisible by the square of a prime \(> \log \log x \) is \(o\left(\frac{x}{\log \log x}\right) \). Thus these numbers can be ignored. Thus Lemma 1 is proved.

Proof of Lemma 2. We consider the sum

\[S = \sum_{n=1}^{x} \sum_{p \mid \sigma^*(n) \mid p > (\log \log x)^{1+\epsilon}} \frac{1}{p}. \]

For a fixed \(p \), we see that every prime \(r \) such that \(r = -1 \pmod{p} \), \(r \mid n \), contributes a factor \(p \) to \(\sigma^*(n) \). Since the number of integers \(n < x \) for which \(r \mid n \) is \(\left\lfloor \frac{x}{r} \right\rfloor \), it follows that for a given \(p \) the number of times the term \(\frac{1}{p} \) occurs in the sum \(S \) corresponding to each prime \(r = -1 \pmod{p} \) is less than \(\left\lfloor \frac{x}{r} \right\rfloor \). Also, on using the Brun-Titchmarsh estimate for primes in arithmetic progression [6, p. 320] we have

\[\sum_{r = -1 \pmod{p}} \left\lfloor \frac{x}{r} \right\rfloor < \frac{c x \log \log x}{p}. \]

Hence

\[S < c x \log \log x \sum_{p > (\log \log x)^{1+\epsilon}} \frac{1}{p^2} = o(x). \]

Proof of Lemma 3. Given a \(p < t \), we see, on using the sieve of Eratosthenes and the fact that

\[\sum_{r = -1 \pmod{p}} \frac{1}{r} = \infty, \]

\(r = -1 \pmod{p} \)
that the number of integers \(n \leq x \) such that \(n \) is divisible by at most \(j \) primes \(q \) of the form \(q \equiv -1 \pmod{p} \), each of them occurring to the first power in \(n \), is \(o(x) \), \(j \) being an arbitrary positive integer. Hence the number of such integers \(n \leq x \) is \(o(x) \). Since for each such \(n \) we have \(p^j | \sigma^*(n) \), the lemma follows at once.

3. Proof of the theorem. Let \(\eta \) be chosen arbitrarily small and then keep it fixed. We shall then choose \(t \) and \(\alpha = \alpha(t) \) sufficiently large so that

\[
\prod_{p < t} \left(1 + \frac{1}{p^{\alpha}}\right) < 1 + \eta
\]

and

\[
\prod_{p \geq t} \left(1 + \frac{1}{p^{2}}\right) < 1 + \eta.
\]

The latter inequality is possible because of the convergence of \(\prod(1 + \frac{1}{p^{2}}) \).

Since almost all \(n < x \) satisfy Lemmas 1, 2, 3, we have for almost all \(n \),

\[
\frac{\sigma^*(n)}{\sigma_1(n)} \leq \prod_{p \leq t} \left(1 + \frac{1}{p^{\alpha}}\right) \prod_{p > t} \left(1 + \frac{1}{p^{2}}\right) \cdot \prod_{(\log \log x)^{1-\epsilon} < p < (\log \log x)^{1+\epsilon}} \left(1 + \frac{1}{p}\right),
\]

on noting that

\[
(\log \log x)^{1-\epsilon} \leq \sum_{\frac{1}{p} < (\log \log x)^{1+\epsilon}} \frac{1}{p} < \eta
\]

for a suitably chosen \(\epsilon = \epsilon(\eta) \).

Combining Lemma 2 and the result (3.4), we get

\[
\prod_{p \sigma^*(n) \leq t} \left(1 + \frac{1}{p}\right) < 1 + \eta.
\]
It then follows from (3.3) that for almost all \(n \), i.e., except for values of \(n \) with density zero,
\[
\frac{\sigma_2^*(n)}{\sigma_1^*(n)} < 1 + \eta,
\]
and the proof of the theorem is complete. Our theorem implies that \(\frac{\sigma_2^*(n)}{n} \) has the same distribution function as \(\frac{\sigma_1^*(n)}{n} \).

4. Some remarks and problems. Let \(\phi^*(n) \) be the unitary analogue of Euler's totient function (see E. Cohen [1]). Then \(\phi^*(n) \) has the evaluation
\[
\phi^*(n) = \prod_{\mathfrak{p} \mid \mid n} (\mathfrak{p}^a - 1).
\]

Following the method of proof of Theorem 1, we can show that
\[
\frac{\phi_2^*(n)}{\phi_1^*(n)} \to 1 \quad (\phi_1^*(n) = \phi^*(n))
\]
except for a sequence of values of \(n \) of density zero. We shall not give the details of proof.

Let \(R = R(n) \) be the smallest integer such that \(\phi_R(n) = 1 \). This function was first considered by S. S. Pillai [5] who proved that
\[
\frac{\log(n/2)}{\log 3} + 1 \leq R(n) \leq \frac{\log n}{\log 2} + 1.
\]

Others who considered this function include Niven [4], Shapiro [7] and Subbarao [8].

Let
\[
T(n) = \phi_1(n) + \phi_2(n) + \cdots + \phi_R(n).
\]
Since \(\phi_2(n) = o(\phi_1(n)) \) for almost all \(n \), and \(\phi_j(n) \) is even for \(j \geq 1 \), we easily obtain that for almost all \(n \)
\[
T(n) = (1 + o(1))\phi(n),
\]
so that \(T(n) < n \) for almost all \(n \).
There are many problems left about $T(n)$ and we state a few of them below.

Denote by $F(x, c)$ the number of integers $n \leq x$ for which $T(n) > cn$. For every $1 < c < 3/2$ we have for every $t > 0$ and $\epsilon > 0$, if $x > x_0 = x_0(c, t, \epsilon)$,

\begin{equation}
\frac{x}{\log x} \left(\log \log x \right)^t < F(x, 1+c) < \frac{x}{(\log x)^{1-\epsilon}}.
\end{equation}

This follows easily from Theorem 1 of [2]. Further we have

\begin{equation}
F(x, 1) = (c + o(1)) \frac{x}{\log \log \log \log x}.
\end{equation}

The proof of (4.2) can be obtained by the methods used in this paper and by those of [2].

It seems likely that for $1 < c_1 < c_2 < \frac{3}{2}$,

\[\lim_{x \to \infty} \frac{F(x, 1+c_1)}{F(x, 1+c_2)} = \infty. \]

Put

\[L = \lim_{n} \frac{T(n)}{n}. \]

Trivially $L \leq 2$ ($L = 2$ if there are infinitely many Fermat primes). It is easy to show that

\[\lim_{n} \frac{T(2n)}{2n} = 1. \]

We can show that $T(n) > \frac{3n}{2}$ for infinitely many n, which implies $L \geq \frac{3}{2}$. We cannot show that $L > \frac{3}{2}$.

Equation (3) of Theorem 1 of [2] implies that for $c > \frac{3}{2}$ and every $\epsilon > 0$,

\[F(x, c) = o\left(\frac{x}{(\log x)^{2-\epsilon}} \right). \]

Probably,

\[F(x, \frac{3}{2}) = o\left(\frac{x}{\log x} \right). \]
but we have not worked out the details.

Some other questions that are still unanswered are the following:

(i) Does \(\frac{R(n)}{\log n} \) have a distribution function?

(ii) Does \(\frac{R(n)}{\log n} \) approach a limit for almost all \(n \)? If this limit exists, is it equal to \(\frac{1}{\log 2} \) or \(\frac{1}{\log 3} \)?

Similar questions arise in the case of the function \(R^* = R^*(n) \) defined as the smallest integer such that \(\varphi^*_R(n) = 1 \). Here \(\varphi^*_R(n) \) is the unitary analogue of the Euler totient, introduced by Eckford Cohen [1], which is defined as the multiplicative function for which \(\varphi^*_R(p^k) = p^k - 1 \) for all primes \(p \) and all positive integers \(k \). We do not even know of any nontrivial estimate for \(R^*(n) \). Probably \(R^*(n) = o(n^\epsilon) \) for every \(\epsilon > 0 \). It is not clear to us at present if \(R^*(n) < c \log n \) has infinitely many solutions for some \(c > 0 \).

REFERENCES

3. A. Makowski and A. Schinzel, On the functions \(\varphi(n) \) and \(\sigma(n) \), Colloq. Math. 13 (1964), 95-99.

5. S. S. Pillai, On a function connected with \(\varphi(n) \), Bull. Amer. Math. Soc. (1929), 837-841.

8. M. V. Subbarao, On a function connected with \(\varphi(n) \), J. Madras Univ. B. 27 (1957), 327-333.