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1. Introduction. For any arithmetic function £(n), we denote its
iterates as follows:

£,(n) = £(n); £, () = £[f ;0] (k>1).

Let o(n) and 0*(n) denote, respectively, the sum of the
divisors of n, and the sum of its unitary divisors, where we recall
that d is called a unitary divisor of n if (d4,n/d) = 1. Makowski
and Schinzel [37] proved that

0'2 (n)
lim inf Y 1,

and conjectured that

{n)

lim inf <o for every K.

This is not proved even for k = 3. On the other hand, Erdés [2]
stated that if we neglect a sequence of density zero, then

O'k(n) N
my (1 + o{l))k e” log log log n.
k-1

This implies, in particular, that

0, (n)

o
on a set of density unity.

In contrast to this, we show here the following result.

Theorem 1.

a3 (n)

+ 1 on a set of density unity.
*
oy (n)
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2. Some lemmas. The proof makes use of the following lemmas.
Throughout what follows, h, g, r, s T, represent primes, and €,
n small positive numbers. Almost all n < x will mean: all but
o{(x) integers n < Xx.

Lemma 1. For almost all n <x, every p < (loglog)ﬂl_€ satisfies
o° o™ (n)

Lemma 2. For almost all n < x and for any given 1, we have
] ien
& p
plo*(n) j.e
P > (log log x)

where € = €(n) >0 is sufficiently small.

Lemma 3. For almost all n <« x and all p <t (t fixed but
arbitrary),

p%|o* (n)
for every fixed .
We only outline the proofs of the lemmas and the theorem.

Proof of Lemma 1. For a given p < (loglogx)l'€ for which

p|c§(n), n < x, it is enough if we show that there are at least two
primes i, X, such that

]
"
W

ry -1 (mod p),

and
2 2
rl{n, rlin, r2§n, rzln.

FPor this purpose we use the Page~Walfisz-Siegel formula for primes in
arithmetic progression {(Pracher [6], p. 320) which states that if
7{a,d,y} denotes the number of primes =a {(mod d) and =<y, then
for (a,d) = 1,

T@,dy) = (1 + o)) gErissy

uniformly in a and d for d < (logy)t for every fixed t. Hence,
for primes r such that r|n, r = -1 (mod p), we have
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% > c{log log x) €.

r = =1 (mod p)
loglogx < r < x

Hence we easily obtain by the sieve of Brun or Selberg that the
number of integers n < x which are divisible by just one prime is
less than xexp(~c(log log Xx) ‘) . There are fewer than (log logx) 1-¢
primes < (log log x) l—e' and (log log x) }'-ex exp(-c(log log x) & = o(x),
and the number of integers which are divisible by the square of a
prime > loglogx 1is O(W{:Dg-;c-)' Thus these numbers can be

ignored. Thus Lemma 1 is proved.
Proof of Lemma 2. We consider the sum
x
S = z z "]-.‘
P
n=

1 p|o* (n)
p > (log log x) 1*¢

For a fixed p, we see that every prime r such that

r = -1 (mod p), r|n, contributes a factor p to o*(n). Since the
number of integers n < x for which r|n is B_?], it follows that
for a given p the number of times the term - occurs in the sum S

corresponding to each prime r = -1 (mod p) is less than [3;-]. Also,
on using the Brun-Titchmarsh estimate for primes in arithmetic pro-
gression [6, p. 320] we have

z [}_c_]<cxloglggx
r P '
r = -1 (mod p)
Hence
1
S < ¢xloglogx = o(x).
z 1+¢ '{;2'

p > (log log x)

Proof of Lemma 3. Given a p < t, we see, on using the sieve of
Exratosthenes and the fact that

r = -1 (mod p)
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that the number of integers n < x such that n is divisible by at
most Jj primes g of the form gq = -1 {(mod p), each of them occur-
ring to the first power in n, 1is ¢(x), J being an arbitrary
positive integer. Hence the number of such integers n < x is o(x).
Since for each such n we have pj |o* (n), the lemma follows at once.

3. Proof of the theorem. Let g be chosen arbitrarily small and
then keep it fixed. We shall then choose t and o = o(t) suffi-
ciently large so that

(3.1) 1 (1+-l&)<1+n
p<t P

and

(3.2) ” (1 + —%—) <1+
pz2t P

The latter inequality is possible because of the convergence of

e - 3.

Since almost all n < x satisfy Lemmas 1, 2, 3, we have for
almost all n,

o% (n)
(3.3) ?i,(T)s 1M (1 +;1—a) 1 (1+;12)-
p st p>t
. ﬂ 1 + .]_' ,
(log log x) 1€ < p < (log log x) 1*€ ( p)
on noting that

(3.4) )

i < n
l-¢ P
(log log x) < p < (log log x)

l+e

for a suitably chosen € = €(7).

Combining Lemma 2 and the result (3.4), we get

ﬂ (l+%‘)<l+n.

pT0*>(r§)

pz/(cr* (n)
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It then follows from (3.3) that for almost all n, i.e., except for
values of n with density zero,

0% (n)

m<l+ﬂ,
1

and the proof of the theorem is complete. Our theorem implies that
c;(n)/n has the same distribution function as c{(n)/n.

4, sSome remarks and problems. Let ¢*(n) be the unitary analogue of
Euler's totient function (see E. Cohen [1]). Then ¢*(n) has the
evaluation

@*(n) = il (% - 1).
p?|n

Following the method of proof of Theorem 1, we can show that

w; (n) * &
EETET -+ 1 (¢ (n) = @™ (n))

except for a sequence of values of n of density zero. We shall not
give the details of proof.

Let R = R(n) be the smallest integer such that ¢R(n) = 1,
This function was first considered by S. S. Pillai [5] who proved that

doa(n/2) , 1 < r(n) 2298 41,
log 3 log 2

Others who considered this function include Niven [4], Shapiro
[7] and subbarao [8].

Let
T(n) = ‘pl(n) + ¢2<n) Foeee + ‘PR(n)-

Since wz(n) = o(¢l(n)> for almost all n, and ¢j(n) is even for
j 21, we easily obtain that for almost all n

T(n) = (1 + o(l))e(n),

so that T{(n) <n for almost all n.
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There are many problems left about T(n) and we state a few of
them below.

Denote by F(x,c) the number of integers n < x for which
T{n) >cn. For every 1l <c¢ < 3/2 we have for every t >0 and
€ >0, if x>xo=xo(c,t,e),

. S
log x

X

(log log x)t < F(x,14+c) < ¢
(log x )

(4.1)

This follows easily from Theorem 1 of [2]. Further we have

X
log log x°

(4.2) F(x,1) = (c + o(l)) o5 TS

The proof of {(4.2) can be obtained by the methods used in this
paper and by those of [2].

nlw

It seems likely that for 1 < ¢, <c, <

1 2

n
8

lim F(x, l+cl) /F(x, l+c2)
X4

Put

L = Tim 240
Trivially L <2 (L = 2 1if there are infinitely many Fermat
primes). It is easy to show that

We can show that T(n) >~3.‘2_z_1_ for infinitely many n, which

implies L =2 % We cannot show that L >%.

Equation (3) of Theorem 1 of [2] implies that for ¢ >
every ¢ > 0,

and

o w

Fi{x,c} = o'———rx .
("{logx} _J

Probably,

F(x,3) = G(E%}—(-)
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but we have not worked out the details.

Some other questions that are still unanswered are the following;

(1) Does %égdﬁ have a distribution function?

(ii) Does Rin) approach a limit for almost all n? If this
log n 1 1

0 . v .‘ > . 9
limit exists,is it equal to IEEE or 1363 7

Similar questions arise in the case of the function R* = R*(n)
defined as the smallest integer such that ¢ _(n) = 1. Here ©* (n)
R

is the unitary analogue of the Euler totient, introduced by Eckford
Cohen [1], which is defined as the multiplicative function for which

¢*(pk) =p -1 for all primes p and all positive integers k. We
do not even know of any nontrivial estimate for R*(n). Probably
R*(n) = o(ne) for every ¢ > 0. It is not clear to us at present if

R*{n) < clogn has infinitely many solutions for some ¢ > O.
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