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1. Introduction.

The conjecture that every fraction % (n > 1) can be expressed

as the sum of three simple fractions was originally stated by P. Erdds

and E.G. Straus in 1948. Since then, a considerable amount of atten-
tion has been given to this problem and a great deal of numerical
evidence has been compiled in support of the same. For instance,
Yamamoto [8] verified the conjecture for all n < 107, 1% is

also known that the conjecture holds for almost all n, and in
fact, the number of positive integers n < x for which the conjec-
ture fails is

0(x expl-c(log x)2/3])

¢ being a positive absolute constant >3. (See, for example,

Mordell [1], Ch. 10, for an account of the problem).

A. Schinzel and W. Sierpinski [4] posed the general question
whether for every positive integer a, there exists an N(a) so

that

=T
I
® |-
+
<
+
N

has positive integral solutions for every n > N(a). R.C. Vaughan
[7] proved in 1970 that for any given a > 0, the number of n < x

for which a/n does not have the desired representation is
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0(x expl-c(a)(1og x)2/31) ,

¢(a) > 3 being a positive number dspending on a.

A more tractable problem, also posed by A. Schinzel in 1956,
is whether

(1.2) +

B
I
M
I+
S
N =

has integral solutions x, y, z for a given (positive) integer a

and all sufficiently large n.

In the sequel, we shall refer to this as Schinzel's conjecture,
and show in this paper that this conjecture holds for all a < 40.
Previously, G. Palama [2], J. Seldlacek [3], and B.M. Stewart and
W.A. Webb [6] showed that the conjecture holds for all a < 35.
However, they worked out the details of proof for only some values
of a; they did not indicate a systematic approach to the solution,
as we believe we do in this note. (See, for example, Theorem 3.5

below.)

In Section 2, we analyze the equation

B
"
M

(1.3)

x

< |-

giving those a for which (1.3) has solutions for all n >a and
characterizing those n for which (1.3) does not have solutions,

especially for small velues of a.

In Section 3, we discuss equation (1.2) and use the results of
Section 2, namely Lemma 2.1 and Theorem 2.5 to prove its solvability
for all a < 40, giving a full and systematic account of the

various cases that arise. We may mention at this point that while
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Lemma 2.1 is an established tool for those working on this problenm,
Theorem 2.5 and its importance in discussing (1.2) does not seem to

have been noticed before.

In Section 4, we consider some general conjectures concerning
the number of divisors for integers in the neighborhood of a large
integer n and show how (1.1) and (1.2) would become solvable if

certain of these conjJectures were true.

Finally; in Section 5 we give bounds k A depending on the
numerator a which allow the representation of a/n as a sum or
difference of k simple fractions.

2. Representation of fractions as sum or difference of two
simple fractions.

2.1 Lemma. Let a, n be relatively prime positive integers. Then

the equation

X —

B®
<P

has solutions in positive integers x, y 1if and only if there are

two distinet divisors dl’ d,

(positive or negative) of n so
that 4, =4, (mod a). (Note that we may assume that (dl’d2) =1

since any common factor could be cancelled.)

Proof: This result is known (see, for example, Stewart and Webb

[6]). However, for the sake of completeness, we give a proof.

n, 4
Assume dlln, d2| »d, >4, and 4, =4, (mod a). Then

]
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q being an integer. Hence

(2.2)

a
=5

1 1
(an/d,)  (qn/a))
so that x = qn/de, y= qn/d1 gives the desired solution.

Conversely, assume that x > 0,

and set d = (x,n), x=dx), n=dn. Then
ax, - n
(2:3) Sy
11 Y
and
(ax; - n.5x) = (npox) =1,
=1.

(axl - nl,nl) = (&xl’nl) =

Thus (2.3) implies ax; - ny d1|d|n and d; = -n; (mod 2). Thus
if we set n, = -d2, then d1 # d2 and we get the necessity of the

condition.

2.4, Theorem. Equation (1.3) has solutions for every n > a - if
and only if a =1,2,3,4 or 6. Tor every other positive integer
a, there are infinitely many values of n for which (1.3) has no

integral solutions.

Proof: If ®(a) <2 and (a,n) =1, then n =+l (mod a) and
the conditions of ILemma 2.1 are satisfied by the divisors 1, n.
On the other hand, if ¢(a) > 2, then there exist infinitely many
primes p with p * a and p # +1 (mod a), and the conditions of
Lemma 2.1 are violated when n equals one of these primes.

(ef. Theorem 3 of [61).
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2.5. Theorem. If ®(a) < 2d(n), where d(n) is the number of

divisors of n, then (1.3) has integral solutions.

Proof: Since the number of distinct 4, d|n, (positive or nega-
tive) exceeds the number of reduced residues (mod a), there must

exist distincet divisors dl,d2 of n with d1 = d2 (mod a).

2.6. Corollary. Equation (1.3) has no solutions for the given
values of P(a) only under the following conditions on n. Here

Py Qy r stand for distinct primes.

P(a) \ n
2¢%a) <6 n=p
6 <P(a) <8 n=19% a=1 or 2
8 <9(a) <12 n=7% a=1,2,3
n =pq
12 < ¥(a) < 16 n=1% o=1,2...,6

16 s@(&)(zu n=p, a=1,2,...,10
(04
n=p4q, a=1,2,...,5
22
n=pgqg
n=pgqr

3. Verification of Schinzel's conjecture for small values
of the numerator.

We first observe that it suffices to prov: that (1.2) has
solutions for all sufficiently large prime values of n. Assume
that (1.2) has solutions for all primes n > N; then every

P(a)/2 . ,
integer n >N which has all of its prime factors < N
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satisfies 2d.(n) > ?(a), and thus by Theorem 2.5, every such
fraction can be expressed as the sum or difference of two simple
fractions. Hence we assume that n 1is a prime, n > 2a, and

write n = am + r where r_<_a./2, m > 2.

In view of Theorem 2.4, we also assume that a >5. Now

(3.1) %=%I%

and more generally,

(3.2)

B

3.3. Theorem. Equation (1.2), with n » 2a, n prime, has
integral solution x, y, z where 1/x is the simple fraction
nearest to a/n whenever ®(r) < 8; that is, for all r €R

= {1,2,3,%,5,6,7,8,9,10,12,14,18}. Thus such a solution exists for

all a <£22.

Proof: Since 1l <m<«<n and n is prime, we have d(mn) > 4, and

by Theorem 2.5,

ot

<
N =

z
mn

has integral solutions whenever ¢(r) < 8. Substituting in (3.1),
we get the desired solution of (1.2).

If a <22, then r <10 and hence r €R.

Since m is large when n is large, the argument at the
beginning of this section shows that we may restrict attention to
those m which have some large prime divisor. For our purpose, it

suffices to assume that m £ 2°%°.
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3.4 Theorem. If n is sufficiently large and a, r are both odd,
P(r) <16, that is r ¢ R = {11,13,15,21}, then (1.2) has an
integral solution x, y, z, where l/x is the simple fraction
nearest to a./n. Thus such a solution exists whenever

a =23, 25, 27, 29, 31 and n 1is sufficiently large.

Proof: If a and r are both odd, then m 1is even. Since we

have m £ 2, we get d(mm) > 8, and by Theorem 2.5,

t

<
N |-

X

mn
has integral solutions whenever ®(r) < 16. Substituting in (3.1)
we get the desired solution of (1.2).

For even a < 31, the only possible values of r which are
not included in R are 11, 13, 15.

In the cases not treated in Theorems 3.3 and 3.4 we will in
general not be able to solve (1.2) with x = m. We will therefore
have to use (3.2) with values of s £ 0.

We proceed to consider some outstanding cases successively
using Corollary 2.6.

(1) r =11, a even. If d(mn) >4, we are finished; so
we assume m prime and m+ 1 even, so d((m + 1)n) > 8 and the
choice 8 =1,

1

a .
o m-_i-_l-t(

a - 11
m+ 1)n

leads to a solution when ®(a - 11) < 16. This holds for a = 24, 26.
Unless m+ 1 =2p, p prime, we have d((m + 1)n) > 12 and we get
a solution for ®(a - 11) < 24. This holds for a = 28, 30, 32, 34,

36, 38. If m and (m + 1)/2 are both primes, then (m + 1) 1is
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divisible by 12 and the choice s = -1,

a
2" aF1 " s n

with a((m ¥ 1)n) > 24 leads to a solution whenever
®(a + 11) < 48. This holds for a =28, 30, 32, 34, 36, 38, 0.

Thus the case r = 11 is settled for all integers a < 40,
and since this was the only remaining case for a = 24, 26, the
conjecture is settled for these values.

(1) r =13, a even. If d(mn) > 6, we are finished, so we
assume that m 1is a prime or the square of a prime and have m + 1
even, so that d((m + 1)n) > 8.

Thus, as before, we get a solution if P(a - 13) < 16. This
holds for a =28, 34. Unless m+ 1 = 2p, p prime, we have
a((m + 1)n) > 12 and we get a solution for ®(a - 13) < 24. This
holds for a = 30, 32, 36, 38, L0, 46.

If m and (m+ 1)/2 are relatively prime to 6, then m ¥ 1
is divisible by 12 and d({m + 1)n) > 2k. Thus, as before we get
a solution when ®(a + 13) < 48. This holds for 30, 32, 36, 38.

Thus the case r = 13 is settled for all integers a < 38.
Since this was the only remaining case for a = 28, 30, the con-
jecture is settled for these values.

(111) r =15, a even. If d(mn) >4, we are finished, so
we again assume m prime, m+ 1 even. Unless m+ 1 = 2p we are.
finished when ®(a - 15) < 24. This holds for a = 32, 3%, 38. If
m+1l=2p, then m+1 is divisible by 12 and d((m + 1)n) > 24,
so that we are finished when ®{a + 15) < 48. This holds for

a = 32, 3)4-.
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Thus the case r =15 is settled for a = 32, 34. Since this
was the only remaining case for a = 32, 34, the conjecture is
settled for these values.

(iv) r=16. 1If d(mn) > L, we are finished, so m is prime,
m+1 even, d((m + 1)n) > 8 and we are finished when ®(a-16) < 16.

This holds for a = 37. Unless m+ 1 = 2p, we are finished
when @{(a - 16) < 24k. This holds for a = 33, 35, 39, 41, 43. If
m+1l=2p, then m ¥1 is divisible by 12 and we are finished
when P(a + 16) < 48. This holds for a = 33, 35, 39, %1.

The case r = 16 is settled for all integers < 41. Since this
was the only remaining case for a = 33, the conjecture is settled

in this case.

(v) = 17. Here we look directly at

o1 +a.-l7
"m+l-(m+1l)n°

a8
n

Hence if ®(a - 17) < 8, we are finished. This holds for a = 35.
Summing up, the conjecture is settled for all values of
a<35.
We now consider the cases a = 36, 37, 38, 39 not settled by
the enumeration for the values of r given above.

(vi) The case a =36, r = 17. 'This is the only case that

remains to be checked to settle the conjecture for a = 36.

We are finished unless

d(m)sg%'Zl:h
d(mil)g[g%gl}=h
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265) _ 3 .

We first prove that we are finished unless 3 + m. If m = 3p, then

+1

d(m + 1)

IN

d(m + 2)

IA

n=2m=6p (mod 17) ;
hence
_E_36__;;:_1L
3%m+ 17 m  3pn

and 3n = p (mod 17). So 17/(3 pn) is the sum of two simple fractions.
We next prove that we are finished unless 3 { (m + 1). Now if

m+l=3g wehave n=17(m+1) = -6q (mod 19) ,

36 _1 19
36m + 17 “m+1>3gn

and 3n = q (mod 19). Thus 19/(3qn) is the sum of two simple

fractions. Thus we may assume that 3|(m ¥ 1) and 3|(m + 2).
If 2|m, then m = 2p, p prime and u4|(m + 2), but then

12[(m + 2) end d(m + 2) >2d(12) = 12, so that we are finished.

We may therefore assume m+ 1 =2q, q prime and

m+1=12s .

Now write

n= -17(m ¥ 1) = 88 (mod 53)

n

and

% __1 .23
3n + 17 m+ 1 —12sn’
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where the divisors of 12sn are represented (mod 53) by +1, +2
+3, +4, +6,+12, +s, +28, + 38, + bs, + 65, + 125, + 8s, * 16s,
+ 2hs, + 21s, + 55, + 108, + 8s2, 116s2, + 21+s2, + 2132, + 5s2,
+ 1052.

If s=+1,+2 3 +4% 25 £6,+7,+£9,+10, + 11,
+12, + 13, + 14, + 15, + 16, + 17, + 18, + 19, + 20, + 21, + 22,
+ 23, + 25, + 26 (mod 53), then one of the multiples of s 1is
congruent to a divisor of 12 and we are finished.

This leaves the cases s = + 8, + 24 (mod 53) now 32 = 11,

7 (mod 53). But then 5(+ 8)% = 2(mod 53) and 8(+ 24)% = -3 (mod 53),
and we are again finished - and Schinzel's conject:are holds for a = 36.
(vii) a = 37. 1In view of the earlier results, we need only

consider r = 17. Since n = 37m + 17 1is an odd prime, we know that

m is even. We are finished unless
d(m) ¢ PQAT)/% = b,
that is, unless m = 2p, p prime. Now assume m = 2p. Since

37T _1 20

2 “"m+1-(m«1m’

we are finished unless d(m + 1) < ®(20)/4 = 2. Hence m+ 1l =gq
is a prime.
Now assume m = 2p, m+ 1 = q; then m ¥1 is a multiple of

3 and

Ir__ L = 5b4 I 18
n m¥Fl (@mFl)n mFl T
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and d((m + 1)/3) > 2 > P(18)/4. So the last fraction is the sum

or difference of two simple fractions byl Lemma 2.1.

(v:’l.ii) a = ﬁ By the above list, we need only consider the

cases r =15 and r =17. For r = 15, we have

We are finished unless d(m) < $(15)/4 = 2, that is, unless m = p,

7

B
Bl

a prime.

Now assume m = p. Since

8 _ 32 23
n -mili(mil)n ’

we are finished unless d(m + 1) < ®(23)/4% = 5.5, that is, unless

m+1l=2q, q prime.

Now assume m =p, m + 1 = 2q. We have

38 . T —2

1+ __53
n m+1l (@F1l)n

and

m+1=128, n=-15 (m+1) = -21s (mod 53) .

The residue classes (mod 53) of the divisors of (m + 1l)n are

therefore represented by + 1, + 2, + 3, + 4,

1+

6, + 12, + s, + 28,
+ 38, + 4s, + 6s,.+ 12s, + 21s, + 11s, + 10s, + 22, + 20s, + 13s,

2
+ 2152,_-!;11s » + 10s2, + 22s2, + 2032, 13s2, If s=+1,+2, + 3,

+4, £5,+6,+8, +9, £10, + 11, + 12, + 14, + 15, + 16, + 17,

+18, +19, + 20, + 21, + 23, + 2k, + 25, + 26, then one of the
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multiples of s 1is congruent to a divisor of 12. This leaves the
cases 8 =+ T, + 13, + 22; 8% = L, 10, 7, or 13 §° = 1, 10 $° = -6,
21 82 = -12. Thus in all cases, 53/(m ¥ 1)n is a sum or difference
of two simple fractions by Lemms 2.1. In the case r = 17, we are

finished unless
d(m) < ®(17)/4 = &,

that is, m = p, p2, p3

or pq with p,q primes. We are again
finished unless

d(m +1) <o((38 - 17)/4) = 3,

that is, m + 1 a prime or the square of a prime. Thus m is even

as the above analysis shows, m = 2p, p prime. Thus

BlH
|

==+

n

Y
%p

oy

where

n=3%m+ 17 = 76p = 8p (mod 17) .

Thus p = -2n (mod 17) and 17/(2pn) is the sum of two simple fractions
by Lemma 2.1.

(ix) a = 39. We need only consider the cases r = 17 and r = 19.

If r =17, we have n = 3%m + 17 and

Il

39-:
n

B
B

28 10 A

We are therefore finished unless d(m) < and since m

is even, this is possible only when m = 2p, p prime. Now

39__1 22

n ‘mili(mil)n
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We are therefore finished unless

d(mil)si(%gl=2.5 ’

that is, d(m + 1) <2, and hence m+ 1 is a prime.
If m satisfies these two conditions, then m + 2 1is divisable
by 12, say m+ 2 =128 and
39 _1 61
n

'miQ"—'(mt2)n

where 2n = 78m + 34 = 17(m + 2) = 17-12s (mod 61) so that
n= - 208 (mod 61).

Therefore the denominator {(m + 2)n has two divisors s and
3n with 2 = 3n (mod 61), and the fraction 61/(m + 2)n can be
expressed as the difference of two simple fractions.

If r =19 we have n = 39m + 19

1
mn

32:
n

¥

g

and m=n (mod 19). So the last fraction is the sum of two simple

fractions. Combining all the above results, we have the following.

3.5 Theorem. Equation (1.2) has solutions for all a < 40 and
sufficiently large n. In the cases a < 35, the fraction l/x

can be chosen among the three nearest neighbors of a/n.
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4. Some conjectures and their applications.

k.1 Conjecture. 1im sup d(n + 5) o,

n - s§>0 s+1

Tt is clear that sup d{n + s)/(s + 1) is attained for some
s

€
s = o(n”). The conjecture says that every sufficiently large
integer n has a "successor™ n' with many more divisors than

the distance [n' - n].

Remark. Conjecture (’+.1) implies the truth of the Schinzel -
Sierpinski conjecture (which is the strongest conjecture stated in
Section 1).

To see this, we write

n=am-r, 0<rc<a,
and
1 sa + r

= + s = 0,1,2,...
n m+ 8 (m + s)a ’ A

Conjecture (4.1) implies

d(m + 8) >a(s + 1) > ¢las + r)

for some s > 0 when n, and hence m, is sufficiently large.
Thus m + § has two divisors 4, d, with d; = -4, (mod sa + r)

and it follows from Lemma (2.1) that

sa + r 1 1
I
m + s)n v z

ha.é integral solutions.

For Schinzel's equation (1.2), we need the weaker conjecture:
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d(n + s
4.3 Conjecture. 1lim sup T =,

n—oe 820
In order to prove the Schinzel-Sierpinski conjectures, for
specific sets A of numerators a, we need the weaker form:

dln + s
L.k Conjecture. 1lim sup aég_—;} >1

n>o 820

forall 0<r<a, (r,a) =1 and all a ¢ A; and

dln + s 1
L.5 Conjecture. 1im sup aés—z—rg- >-§

n-» 8>0

for all 0<‘r<%, (r,a) =1 and all a € A.

Remark. As before, Conjecture 4.4 implies the Schinzel-Sierpinski
conjecture and Conjecture 4.5 implies the Schinzel conjecture.
We remark that P. Erd®s has conjectured a strong negation of

Conjecture 4.1, namely,

4.6 Conjecture. There exist arbitrarily lax:ge n for which
a(n + 8)/(s +1) €2 for all s =0,1,2,... . This would be
possible only if n 1is prime, n + 1 +twice a prime, n+2 a
prime or thrice a prime or nine times a prime or thrice a prime

square, etc.

In connection with the above conjectures the following ques-

tion appears to be of great interest in itself.

4.7 Question. For what functions f(s) do we have d(n + s)
<f(s) , s=0,+1, +2,..., and infinitely many n? P. Erd8s
has given us an argument using sieve methods to show that such

functions f(s) do in fact exist.
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It would also be interesting to get asymptotic quantitative
estimates. That is, for Conjectures 4.1, 4.3 and 4.6 we would like
to know an estimate for the number of integers n < x for which

the quantities sup d(n + s)/(s + 1) are less than a given con-
s>0

stant y. Similarly for Conjectures 4.4 and 4.5 we would like to
estimate the number of integers n < x for which the conjectured

inequalities fail for any given a and r.

5. Some remarks. We may ask the more modest question: what

bound k = k(a) can be given so that the equation

(5.1) * El e T
S (AT~

has solutions in (not necessarily positive) integers Xysee Xy

for all sufficiently large n? We can prove the following.

5.2 Theorem. k < % 1og2(3(a. + 2)) .

Proof. If, as before, we write n=am+r with r <a/2 and
gset xl =m, we get

e

Ble
I
Bk

X
piiie}

Thus, in trying to reduce the size of the numerator by as much as

= = T _ "
possible, we write m = ™My + Ty, no=TRy try, mn =T858 try with
1<ry, 19, r:'i <rf2. If two of r, r', r" are equal, then k < 3,
otherwise

1 " r _
min{rl: ryp i€ 3 3.

choosing the smallest remainder available in each case, we get
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r
E = i +...+ L + '_z"
m X Xg 9 n,
where
£-
d(n,) > 2 1

r

and either n—z- is the sum of two simple fractions or
£

r
2-1 2
5 -2 +1.

r, <

Iterating the inequality for r we get

k’
£
r, £ 23[-2(1+]Jf+...) + (1+-;=+...)

23[ - %-214-2.

IA

We know that r z/n g 1s the sum or difference of two simple fractions

once
CP(rz) <2 d(nz) < 2'&"'2 .
242 -
In particular, if r, <2 we get k < £+ 1. Combining (5.1)

and (5.2) we have r, < 2“2 whenever
or when o2hHk > 3(a + 2) , that is

1
£ >3 logy[3(a +2)] - 2.
we thus have

k = k(a) < [5 log,(3(a + 2))] .

- 578 -




(1]

(2]

(3]

(4]

(51

[é]

(7l

REFERENCES

L.J. Mordell, Diophantine equations, London Academic Press,

1969.

G. Palama, Su di congettura di Schinzel, Boll. Un. Mat. Ital.
(3) 14 (1959), 82-9%.

J. Seldlafek, Uber die Stammbriiche, Casopis Pést Mat. 84
(1959), 188-197.

W. Sierpinski, Sur les decompositions de nombres rationnels
en fractions primaires, Mathesis, 65(1956), 16-32.

W. Sierpinski, O rozk¥adach liczb wymiernych na ~uZami proste,
Warsaw 1957.

B.M. Stewart and W.A. Webb, Sumg of fractions with bounded
numerators, Canadian J. Math., 18(1966), 999-1003.

R.C. Vaughan, On a problem of Erd8s, Straus and Schinzel,
Mathematika, 17(1970), 193-198.

- 579 -




