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Abstract: Some theorems are proved for o4 r41(n).

1. Introduction. Let P be the set of primes, p, ¢ with or without suf-
fixes denote general elements of P, w(n) = the number of distinct prime
divisors of n, P(n) = the largest and p(n) the smallest prime divisor

of n. We shall write z; = logz, x> =logzs,..., and e(a) := e,
Let p(n) = Euler’s totient function, i its k-fold iterate.
Let 04 ry1(n) = > dg -d3®...d>%. Then

dodidz...dr=n

(1.1) ZL“(”) =((s)¢C(s —a)...C(s —ra).
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The special case r = 1 gives: 042(n) = > d$ which is the same
d1|n
as 04(n) in the usual notation.
We may assume that a > 0. Let us observe that

1z  Zernl)_ B R ]
and so
(1.3) Z%‘E@:C(s+ra)§(s+(r—1)a)...((s).
Let Fr(s) =((s+ra){(s+ (r—1)a)...{(s). Since
(1.4) Fr(s) = C(s +ra)Fr_1(s),
therefore
(1.5) O_gr+1(n) = —a ZU"”‘ -dre.

d|n

Since o_4 r41(n) is multiplicative, therefore

O'a1+1<pﬁ

(1.6) — _Z e

VI:_IO( oo ) o=

1
Let ( = 1/p®, A = e From (1.6), by writing it as partial
fractions,
(1.7)
1 ' A N A R A,
l-z)1—-Az)...(1—-A"z) 1-z 1-Az =~ 1-Arx
=> (Ao + AAF+ .+ A,A7F) 2
E=0

where
18 A==

a-n 11 (1-(%)7)

(- ()

vFE] v#j

Thus
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(1.9) { T_ar+1(p*) = Ag + A1A% + AgA>* + .+ A - AT,

. A= p-

Let nm(p) = lH 1-— 2—953 . By easy calculation we have
=1
R ai{j+1)

(1.10) UGl Vi)

. e

nr—;(P)n; (D)

whence especially

1 1
h o-ars1lp) =1 o < )
( ) +1(p) po p_ga

follows.

There exists a lot of interesting and important theorem for the
function o_,(n):

a. The mean-value of o_,(n) with good remainder term.

b. The mean-value of o_, on some special subsets of integers.
c. The distribution of o_4(n).

d. The maximal order of o_,(n).

2. Let f(n) =logo_q(n) Assume that N is a “champion” in the sense
that f(n) < f(N) if n < N. From (1.9) it is obvious that f(p*) <
< f(p) if k > 2, therefore N should be a square-free integer. Since
f is monotonically decreasing on the set of primes, therefore N =

= p1pa...px (p1 < p2 < ...,px) is the product of the first k¥ prime
numbers, consequently

logN =logpy + ... +logpr =pr + O (—p—}”————>,

(10gpk)‘4
log N
—loeN+O [ —232""
Pk og iV + <(1og log N)A> k

FIN) = flp1) + .. + f(pw)-

1 1
Since f(p;j) =logo_q,r(pj) = — + 0O (—,,—a> therefore
p; Dy

J
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Pk log p

k
du g~v(a=1)
e ey
2 2

Thus f(V) = O(1 )1fa> 1. If a =1, then f(N) =loglogpr + O(1) =
= logloglog N + O(1), while in the case 0 < a < 1:

e(l—a) loglog N 1
N) = 1+0 ——= 1} }.
FV) (1 —a)loglog N < T <loglogN>>
Hence we obtain the following

Theorem 1. We have
(a') U—a,r-{-l(”) = O<1) ’Lfa > la

=c¢, where () < c < o0,

(log N)1—@ 1
—a,r = &2 1 T aA ,
nen o +1(n) = exp ((1 —a)loglog N +0 (loglog N)4
holds for every fixed A.

3. A. S. Fajnleib [5] proved the following theorem which is referred
now as
Lemma 1. Let ¥(m) be an additive arithmetical function for which:

2( kK
1. Zd’;i’ )

ers p®,
2. () = ()] > o

where b 15 a suitable constant.
Then uniformly in u,

< oo, the summation is extended for all prime pow-

if n % m, for square-free integers n, m
7 ) ) ]

1 P(p) N
E# n < zlY(n ;\]-p— — F(u) =
_0 loglog1/ps

(log i) <log log log ﬁ;) ’

where F' is the distribution function, the corresponding characteristic
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function of which is
1 o it (p®) .
o(t) = H <1 — _> 1+ Z € k e_nwb;p)’

pp = Z Y*(p) .

Let ¥(n) =logo_-1 r+1(n). Then ¢ (n) = log ELTTtl(—@ (by (1.2)),
furthermore oy ,+1(n) is an integer. Let n,m < z, n and m be square
free, n # m.

We would like to estimate from below the quantity

Ul,T+1(n) m’
B I - i) = flog (222 ),

We may assume that (n,m) = 1, n,m > 2. Let P(r) denote the
largest prime factor of v.

Let P(mn) = p*, and p*|n say. Then p* { m, p* { o1r41(n),
therefore the argument on the right hand side of (3.1) is # 1, and so
(3.1) is larger than > v, say.

Therefore the condition 2 of Lemma 1 holds.

The fulfilment of condition 1 is obvigus.

1 1
From (1.11) we have 9¥(p) = ’ + O <—p§> and so

pr=(1+0z(1) >  1/p°, =exp (—23;1 -a:3> K

3
p>exp(£1£3-> 2 T1%s

and by an easy computation

<log i) (log log log ;1:) L173
From Lemma 1 we obtain

Theorem 2. Let ¥(n) =logo_1 ,11(n). Let Hr-(u) be the distribution
function the characteristic function ¢,(t) of which is defined by

or(t) =[] (1 - %) (1 + g ei;ipk> .

p 1

Then
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1 T3

S#nse | v <) - B =0 (2],
Remark. If -1 < a < 0, then it is not known, whether the condition
(1) in Lemma 1 holds for ¥(n) = logo_g,r4+1(n) or not. Naturally,
the limit distribution exists, since the conditions of the Erdés—Wintner
theorem [4] are satisfied.

According to the Erd6s—Wintner theorem an additive arithmetical

function g(n) has the limit distribution F if and only if the series

$ 9(p) T 9*(p) 3 1
p’ p p

lg(p)l<1 lg(p)i<t la(p)iz1
are convergent, Furthermore,

ex =T (1-3) (1+Zp tgp>>>

P
(pp(t) is the characteristic function corresponding to F').
F can be interpreted as the distribution function of the random

variable n = )" (p, where (, are independent random variables with the
purely discrete distribution, and

v, (t) = <1——)<1+Zp e(tg(p )

P. Levy [7] proved: If > {, = 7 is a convergent sum, then F(= F},)
is continuous (everywhere) if and only if

(32) > P(Gp#0) =00

If (3.2) holds, then F;, is of pure type, either absolutely continuous
or singular (Lukécs [8]).
For some distribution function F' let

(3.3) Qr(h) == sup(F(z + h) — F(2)),
the concentration function of F'. It was proved that
1 1
3.4 1/t — (t>2
(34) oy €O/ < oy (> 2)

holds for the following additive function g(n):
(Tjan [10]),

a. g(n)=log
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o) (Erass [2)),
n
c. if g is strongly additive and

Z I_g%p_)_l <1/t, |g(p1) —g(p2)| > %,

p>t4

b. g(n) =log

if p1 # py < t%, (p1,p2 Tun over the primes) hold with suitable positive
constants A and ¢ for every large ¢ (Erdds and Katai [3]).

Easy to see that the assertion remains valid if the “strongly addi-
tiveness” is changed to additiveness.

The last conditions are clearly satisfied for g(n) =logo_g r+1(n),

1 1
thus the following assertion is true, since g(n) = — + O (ﬁ)
- D D

Theorem 3. Let F' be the limit distribution function of logo_g r11(n),
and Qr be defined by (3.3). Then (3.4) holds true.

A similar theorem can be proved for logo_,,+1(P(n)),
logo_g.r+1(P(p)), where P is an integer valued polynomial, and p runs
over P.

These follow from a theorem of Indlekofer and Kétai [6].

4. Let A(n) = o1,+1(n) and Ax(n) be the k fold iterate of A(n). We
can estimate w(Ag(n)).

Theorem 4. Let k,r be fized positive integers. Then
A A - k+1
rTlH# {n <z w(Ar(n) = ok - T <zpy—®(z)

lim sup T R
k" 4g

T00 2eR

where
1 o]
G+ 7T ENV2E+1
The assertion with w(pk(n)) instead of w(Ag(n)) is proved in the

paper of Bassily, Kdtai and Wijsmuller [1]. Th. 4 can be proved on the
same way. We omit the proof.

ap =

5. Assume that 0 < a < 1,

(5.1) Aarir(@) = 3 0 arsr(n).

n<x

Since
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Agi(z) = ;SI d_lcf [%} =z <§(1 +a) — ‘T;a> +0 (z'7%) =

(1+a)z+0 (277

and
1 T
Agria(z) = Z WAa,r (3) )
d<z
by induction on r, we can deduce that
Aa,r-{—l(x) = C(l + a') U C(l -+ ra)ac +0 (‘,El—a) :

The error term can be reduced, by using some more complicated method.

We hope to return to this question in our forthcoming paper.
We consider only the case a = 1. It is known that

1
Ai1(z) = ; o_1(n) =¢2)z — 3 logz + A(z),
where
A(z) < (log )3,
From the obvious identity

Aor(@) = dz dtlwA (3)

s

we obtain that

/
Al,z(m)=§:a13<c<2)§—%1og§>+o Z%(logg)ls _

d<z
= ((2)z ( alg‘ — %(log:n) Z Elj +0 ((1og a:)l/?’) =
d<z3 d<z ,
— (@) -((3) ~ 3llorx)((2) + O (log ) ).
We can prove by induction that
(5.2) Are(z) =¢(2). . C(t'H)ﬂ?—%C('Z) ... C(t)logz+0O ((loga:)1/3) ,

(t=1,2,...).
This is clear:




]
-1
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‘ 1
Ay pa(z) = Z qt+1 Api(z) =

::E-C(Q)...g(t+l)2—dt—1+T—%C(‘Z)...C(t}-Z——l—,—llogg—F

dr+
d<z d<z

+0 ((log :17)1/3) =

1 .
=z((2)...Ct+1)¢(t+2) — 5g(z.) L E(t+1)logz + O((log2)'?).
Thus the assertion (5.2) holds for every fixed t.
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