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1. Let ¢(n) denote Euler’s function representing the number
of numbers less than and prime to n. Let @i (n) = q(n);
¢r(n) =@ (9-—1(n)),r=2,3, .... For a given n, ¢,(n) decreases

as r increases, and hence there is a least value of 7, say 7, such
that

o) =@rpi(n) =...=1.
S. S. Pillai proved that
log (n/2)] log n
_— < .
[ s 3| TISRM STop 1

where #; =R (n). In this paper I consider an analogous function
S(n) given by
S() =@1(n) +@2(n) + ..+ (n).
It is shown here that
log n

R(n) < Tog

if n is even

< log (n—1)

and <

Tog 2 +1 if n is odd,

which is an improvement over Pillai’s result;
Also
S(n) <n—1if n is even
<2n—-3 ,, odd,
while S (n) > 2[log (n/2) /Tog31+1__ 1,
I also consider the solutions of the equation S(n) = n, and show
that each one of the following values of n provides a solution :

n =mny, 3Ny, 3ng, ...
S. 8
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where n=23%k=0,1,2,....
ng=1-4n
ng =14 12n,
ng=1-+12n,, ....

provided these are primes. The question whether these are the
only primes remains open.

2. Theorem 1. If m is even,

log n
R(n) _QE'; S(n) <n—1

log (n—1)
log 2
S(n) <2n—3.

Proof: When n is even, ¢; (n) < (n/2);

If nis odd, R(n) < +1

1 1
@2 (n) <—2‘(P1(n) <Zn’

1
or(n) < E; .

Ifr=r,=R(n) we get
1
1S5
,‘ log n
<
Tl\log2 )]

If n is a power of 2, r; is actually <log n )

log 2
Again S(n) = @1 () + @2 (n) +... 4 @™

1 1 1
§?n+zn+ ..._+2~;1-n;

="n <1_i)
2m

<n(1-1) by @
Hence S(n) <n—1.
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If n is a power of 2, it is easily seen that S(n) = n — L

Let n be odd. Then ¢:(n) <1 ¢1(n);

L) S5 @) Sz o

1
(™
1
21‘1—1

or(n) <

¢ (n),

Hence 1<

log ¢ (n) <10g (n —1)
log 2 = log 2
If n is a prime of the form 2F 4 1, we get the equality sign. Again
Sn) <o) X434 ... + (1/2n7))
=2¢(n) (1 — (1/2™))
<2(n—1) A — (1/2m))
<2(n—1) (1 — (1/2n —1)), by (2)
=2n — 3.
Actually S(n) attains this value if n is a prime of the form
2k 1 L
3. Before considering the lower bounds of R(n) and S(n)
we prove the following :

TS +1 o @)

Theorem 2.% For a given value of R(n), the maximum
value of n is 2-3R(m)-1,

The proof of this depends on the

Lemma. R(pn) > R(n) + (log n/log p), if p is a prime > 3.
If p=23 it becomes an equality.

Proof by induction: Suppose the result is true for all primes
q < p so that

R(qn) = (3)

* This is equivalent to Pillai’s theorem II; but the proof by induction
given here is different from Pillai’s.
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for all n > 0 and all g < p. We will prove the same for p. Let
P — 1= 2“q1b1q2b2 cens

Then R(n) =1+ Rlp(n)] o (4)

assuming as we may that n > 2; for if n =2, the result of the
lemma is obvious.

Also R(pn) =14 R(q(pn)).
Assume that p is prime to » as a first case. Then
R(pn) =14+R[(p—De(n)]
- =14R[2%q%g" ... ¢(n)]
=1+R[q:"g" .... 9(n)] +¢q,
since @ (n) =2 and R(2m) =R(m) + 1 if m is even;

Hence R (pn) =1+ R[p(n)] +a -+ 3 (1°gg ‘;’) bi,

by using (3) repeatedly,

log (p—1)/2¢ }

=R(n) 4o+ o3

log (3/2)*(p—1)
log 3

log p
>mm+@%3>

=R(n) +

if (3/2)2(p — 1) = p which is true since ¢ > 1, and p>3. Since
the result is true for p =3, the lemma follovvs in the case when
p is prime to n. Next let (p, n) &= 1. Then in each of the pairs
(1 (pn); @1(n)); (@2(pn); @2(n));....p occurs upto a stage,
say in the first k pairs, and in the pair (¢z:1(pn); @ri1(n)) the
first member contains p while the second does not.

Let wus call @ry1(np) = pu; @ri1(n) =u; then (p, u) =1.
Hence by the above result,

4)

R@M:>Rw>+(hgp>

log 3
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But

R(pn) =k + 1+ R(pu)

R(n) =k+4+14+R(w)
Hence adding k 41 to both sides of (A) we get

R (o) >R(n)+( o 3) P>3

so that the lemma follows in this case also. To prove Theorem 2,
let R(n)=t (fixed), and consider all possible values of n satisfy-

ing this. The greatest of such #’s, say n;, must not contain a
prime factor p greater than 3, for then

e -x{3 ) 25 (3)+(3)
x(3)i[28]
-x(39).

:| +1, since R(3u) =R (u) 41 for all w.

log p
log 3

where K = [
But ™. 3k > n;. Hence n; is not the largest solution.
D

Let now n;=3u; then t=R(3u) =R(u) +1 so that
R(u) =t —1. Assuming that the theorem is true for all values
of R(n) <t, it follows that the maximum value of u is 2.3t-2
Hence 3u = 2.3%1 and the theorem follows by induction. From
the theorem it follows, as proved by Pillai, that

1 — log 2
R(n) > [—°g—7{3§-33g——:| +1 .. (5
Theorem 3. S(n) = [log (n/2)/log 3] + 1.

For S(n) = @1 (n) + q2(n) 4 ... 4 @:(n); t=R(n)
Now @:(n) =1; @i_1(n) =2; gr—2(n) =22 @s_s(n) > 23
Hence §(n) 212624, +24+1

=2t 1,
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The theorem now follows by using (5).
(4) S(n) as a function of R(n). We will show that
2R 1L S(n) <3RM,

For a given R(n) =t, proceeding as above we get S(n) =2t —1
—2Rm) _ 1, When n is a power of 2, this becomes an equality.
Again, by Theorem 2, .

@i (n) =1; @1 (n) =2; @r—2(n) <235 @rs(n) K2:3%....
@1(n) <2-3t1
Hence for a given i,

S(n) <2:3-142:324 ... +2:34+2+1
: 3to L

/ - \ :
S (n) actually reaches this value when n=2-3t-1,

4. Let us finally consider the solutions of the equation
S(n) =n. By Theorem 1, n can only be odd. It is easily verified
that two sets of solutions are n=23% (k=0, 1,...) and n=3p
where p is a prime =4. 3*+1, k=1, 2,...; we will prove

Teorem 4. If S(3p) = 3p then S((p—1)/4) = ((p—1)/4),
where p is a prime > 3.

Proof. 3p=S@p) =2(p—1) +8 @(@—1))
=2(p—1) +25(p—-1+1,
using 'S (2u) =2S(u) + 1 if u is even

=S (u) if u is odd.

Hence> S(p—1)= p:—'l

p—1

Since p > 3, is even,

—1
Hence S<p2 )

I
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I,
[~
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Since S(n) is always odd, p_4—:_? must be odd, p=4 k-+1 (k odd);

Pl ok kodd B (pT—1> _s (P2) == (12:_1)

=9 sincej‘?——il is odd.
Hence the theorem follows.

With the help of this result, we can derive an infinite sequence
of classes of solutions of S(n) =n.

One is n = 3p, where i

=3% or p=4-3*4+1=1p, say.

—1
Another is n =3 p, where p, is a prime given by Pz

or p, = 12p; 4- 1.

=3ps

This sequence of solutions can be continued indefinitely. It is con~
jectured that this sequence exhausts all solutions.
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