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Some New Identities Involving
the Partition Function p(n)

J. Fabrykowski and M.V. Subbarao

Here we give some partition identities of a recursive nature. They resemble the well
known Euler recursions for the partition function p(n).
1. Introduction

Let p(n) denote as usual, the number of unrestricted partitions of . Throughout this
paper, ¢(x) denotes the Euler product defined by

o) = La-x". lxl<1

n=1

It is well known, as first proved by Euler, that

(p(x)=2(—l) x3k +k/2
> 2 2
-1 +Z(_1)k * 3k +k/2+ x3k —-k/Z) )
1
and
Vo@)= X pm)x", pO)=1. @
n =0

We use the convention that p(n) = 0 whenever n is a negative integer.
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From the above two relations we get the well known recursion relation for p(n):

2 2
p(n)= Z(—l)k{p[n - 3"%]* p(n _ 3k +k - k ]} 3)

k=1

The above formula has been proven to be useful in investigation of the problem of
parity of p(n). For example in 1959 O. Kolberg using (3) proved that p(n) takes
both even and odd values, each of them infinitely often. This result is a special case of
an old conjecture of M. Newman (1960); which states that for all m > 2
p(n)=r modm), 0<r < m-— 1, has infinitely many solutions in n. It has been
proven for m=2, 5,7, 13, 17, 19, 29, 31, 65 and 121. Also it is a special case of
another conjecture of M.V. Subbarao (1966) which says that for all integers a > 1, each
of the congruences: p(an + b)= 0(mod 2), p(an + b)= 1(mod 2) has, for each b
(0 £ b £ a - 1), infinitely many solutions. So far it is known to be true for a = 1,
2,4,8 and 16. See [1].

In this paper we shall obtain some recursion identities for p(n) which are believed to
be new. For this purpose we need to utilize, in addition to the Euler expansion of

¢(x ), the following identities due to Jacobi.

3 - k k(k+1)/2
¢ )= 2-1) (2 + I)x . lxl<1 @)
k=0
and the Triple Product Identity:
(= -] o0 2
2 2n -1 -1 2n -1 k k
oH] La+ v Ha+y 2 hH= Dyte ®
’l=1 k:—oo

where |z] < 1, y #0.

2. New Recursion Identities for p(n)
Analogous to the Euler recursion formula (3), we shall prove:

Theorem 1.

2 2
p(2n + 1)+ Z[p(Zn +1- 8k —2k))+pQ@n+1-(8k +2k)))
k>0

2 2
=p@n)+ D (p(2n - Bk —6k)+ p(2n — 8k +6k))) ©
k>0
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k 2 2
p(2n)+ z(—l) {p2n - @k —k)+p@2n -Gk + k)
k>0

2 2

—p)+ D Ap (- @k — k) +pln— @k + k) ™
k>0
k 2 2
p(2n+ 1)+ 2(—1) p@n+1-3Bk —k))+p(@2n +1- Bk + k)}
k>0

2 2

—p()+ D, (pn— @k —3k)+ pln — 4k + 3k ) @®

k>0

Proof. By applying the Jacobi triple product identity (5) we have:

o0 2— o0 _ _
2x2n nzn(l_x4n)(1+x4n 3)(1+x4n 1)
e n=1

_Iogl(l+x4n—2)(1_x4n)
- 2n -1

n=1 1-

_ = l—xzn

- 2n —1
n=1l— X

ﬁ(l _x2n )2
_ n=1
[T-»
n=1

=D D pon"
n=0

= FaH L pnx T 10 e H Dpn + 1" )
n =0 n=0

Now

2 > 2 ki 2
2n—-n 8n“-2n 8n “—6n +1
E,x = z,x " + E " (10)
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From (9) and (10) we obtain
2 2N 2 8 2-2
CaHp@nx = Db an
n =0 n ==
and
o0 o0 2
(pz(x 2)Zp(2n D 2741 _ 2x8n —6n +1 12
n =0 n=—oo
that is
o0 o0 2
FEHYpn+ DxP = 2 a3)
n=0 n=—

To prove (6) we eliminate the (p2 (x 2) term from (11) and (13) and equate coefficients

of like powers of x.

To prove (7) we rewrite (11) in the form:

<P(x2)ip @n)x 2" = 2 8k > -2k

n=0 (px )k——oo

and using (1) and (2) we derive:

Z("l) 3k +Ic Zp(2n)x zp(n)XZn ExSk —2k (14)

k =—o00 k =— o0
now (7) follows from (14) on equating coefficients of x. Similarly (8) follows from
(13).
3. Further Identities For p(n)

Let N be a non-negative integer and let k, /, r, s be integers. Define:

q, = Z(—l )k ,

48N +5=4(6k +1) 2r(241+1)2

by = ey,

2 2
48N +5=4(6r +1) +(24s+7)
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k
- 21 :

ASN +29=4(6k +1) 24+(241 +19)2

> ,

2 2
48N +29=4(6 +1) +(245 +13)

r\
Il

%

Then the following holds:

Theorem 2.

S @ +p@m+ 1) v+ Dpdm+ D= a, b, .
v20, m20 v20, mz20

lzv v +1)+2m =N lzv (v +1)+2m =N -1

15)

e @ +Dp@m++ DD @ +Dp@m+3)=cy—d,. (16)
y20, m20 v20, m20

lzv v +1)+2m =N %v(v +D+2m =N — 1

Proof. We use the formulas (1.5), (1.7) and (3.7) as given in [2]. Thus

(- - o0 2
Y pamu® + Y pam v = o0 ), an
0 0 ¢ (x)
where
(120 +1) N (35 +1) (ds +1
(p(x24)Al(x)=Zx( +)_2x(s+)( +1) as)

Combining the above formulas we obtain

(P3(x ){ZP(4m)x oy Zp(4m + 2)x2”l H}
0

0
— 2 2 - 2 2
3k " 4k 4121 74 T3 4125 %+7s +1

= D)z DN E :

k] =—o0 Ts ==

N

= 2 @, -byx". (19)

N =0

Now (15) follows on equating the coefficients of like powers of x in (19).
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The proof of (16) actually follows the lines of the previous case, but we do not have a
formula analogous to (18), but which we now develop. Using the formulas (1.6) and
(1.8) in [2] we have:
2
o)

Doplm+ D™ + 2 pm+ e = B 206,y o)
0 0 ¢ (x)

where

A3(x )= H(l + x24m—17)(1 +x24m—7)

m=1

_x2n(l+x24m—23)a+x24m—l) @1)
m=1

(See [2], page 348.) We need to have ¢(x 24 A 3(x ) expressed in the form of an

e . -5 12 .
infinite series. Letusput y = x ~, z=x "~ in(5). Then

o0 L--] 2
- — k=
(‘)(1624)11(1 + x24m 17)(1 + x24m 7) _ le2 Sk
m=1

k =—o0

— (I+1)(12[ +7T)
= Dx @)

= —o00

Similarly letting y = x "' and z = x'? we get

o0 -] 2
2 24 24m — 4m-— kT -11k
2ok )Z(1+x m 23)(1+x2 m 1): 2 12 11k +2

m=1 k =—oo

— (45
) Zx( #3)(35 +1). 3)

§ =—o0

Combining (20), (21), (22) and (23) we derive

¢ (x ){ Zp(4m + x4 2p(4m + 3 “}

m =0 m =0

2 | & w+nau+7 o (ds +3)(3s +1)
= @x ){ Zx - Zx } 24)

] =—o0 m =0

Now (16) follows on the lines of the proof of Theorem 2.
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Corollary 1. If 48N + 5 is not a sum of two squares then:

145

Dp@m) +  Dpm+3) =0(mod4) 25)
v20, m=20 v 20, m20
lzv v +1)+2m =N lzv(v +D+2m =N -1
If 48N + 29 is not a sum of two squares then:
Ddom+ 1)+ Dp@m+3) =0 (mod4) (26)
v20, m20 v20, m20
1~2v W +1)+2m =N 1—2v v +1)+2m N -1
3 n(n+1)/2 .
Proof. Since ¢ (x )= Zx (mod 4), then (25) and (26) follow immediately
n=0

from (15) and (16) respectively.

Remark 1. We apply (6) to provide a new proof of Kolberg's result, that is p(n)

takes both even and odd values, each of them infinitely often.

2
Assume first that p(n)=0(mod 2) for all n > ¢, and let 2n =8¢ +6¢. Then
2 2
pBt +61 +1)+..+p8 + 1)+ p(4r +1)=0(mod 2) and p(8t +6¢)+...

...+ p(A2t)+ p(0) = 1 (mod 2) contradiction.
2
If p(n)=1(mod 2) for all n >, then we set 2n = 8t + 2t and:

2 2 2
p(8t +2t +1)+ Z{p(8t +2t+1-8k +2k)
0<k <t -1

+p(8t2+ 2t +1- 8k2 2k} +{p@t+ 1+ p())=1(mod 2)

since we have an odd number of odd terms. On the other hand:

2 2 2
P8 +2) 4 D ApBi + 2 — 8k +6k)
O<k < -1

2
+p BT+ 2t — 8k —6k)) + p(8t)=0(mod 2)

since now, there are an even number of odd terms.
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Added in Proof: F. Garavan and D. Stanton (unpublished) have recently verified the
Subbarao conjecture for a = 3,5 and 10.
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