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ON A CLASS OF ARITHMETIC FUNCTIONS SATISFYING
A CONGRUENCE PROPERTY

J. Fabrykowski* and M. V. Subbarao**
1. INTRODUCTION AND PRELIMINARIES

A real or complex valued arithmetic function f(n) is said to be multiplicative
whenever the relation f(ab) = f(a) f(b) holds for relatively prime integers a and b.

In 1966 Subbarao [7] proved that if f(n) is multiplicative, integer-
valued arithmetic function satisfying

amn f(n+k) = f(n) (mod k)

for all positive integers n and k, then either f(n) = O or f(u) = of for a nonnega-
tive integer r. He also remarked that it is enough to take k’s as power of primes.
Later Somayajulu [6] proved the same, taking k’s as primes but replacing the
multiplicativity of f n) by a stronger property. In 1955 de Bruijn [ 1 ] showed that
an integer-valued arithmetic function satisfies (1.1) for all integers n > 0, k > 0

if and only if it can be written in the form f(n) = = c,A(i) ‘n-i-l)' where c, are
i=0

integers and A() = Lem. (1, 2, . . ., i). His result was generalised by Carlitz[ 2 ].

It is clear that every polynomial with integer coefficients satisfies (1.1) but if f(n)

is not a polynomial then Ruzsa [ 5 ] obtained that

) log | f(n) | 1 log | f(n) |
lim —2———— = o and lim sup —————— > log(c—1).
Newoo logn =00 n

In the present paper we generalize the result of Subbarao [7]. For this
purpose, we introduce a certain class of arithmetic] functions, called quasi-
multiplicative functions—which includes the class of multiplicative functions on a

proper subclass.
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A positive integer m is said to be squarefull (or powerfull) if for every

. a . .
prime p | malsop” | m with a > 2. Using the convention that unity is both
squarefree and squarefull we sce that every positive integer n can be expressed

uniquely as

(1.2) n=mnny, (0,0 =1

where 1, and n, are respectively squareful and squarefree integers.

1.3. Definition. An arithmetic function f(n) is said to be quasi-multiplicative
whenever for every positive integer n we have

(1.4) fo) = f(n)) 1o f(p),
plnoy
where 0y a}nd n, have the meaning as in (1.2) and p’s are prime divisors of n,.
It is easy to sece that every multiplicative function is also quasi-multiplicative
but not conversely, as the following example shows:

let
fl'l if’n=1,porp2

fn) = <1 if n = an“, ny-squarefree (0, p) = 1, @ > 0

L 2 otherwise.
Next, we note that from Definition i.3 we have the following :

1.5. Theorer. An arithmetic function f(n) is quasi-multiplicative if and only
if for every integer m and prime p such that p | m or p = 1 we have:
(1.6) ' f(mp) = f(m) f(p).

The proof is easy and is omitted. We may use (1.6) as an alternative definition of
a quasi-multiplicative function.

2. THE THEOREM

We shall prove the following main result.
2.1. Theorem. Let f(n) be a quasi-multipiicative integer-valued function
satisiying

(2.2) f(n+p) = f(n) (meod p)
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for all positive integers n and all primes p. Then either f(n) = 0 or f(n) = n
for a non-negative integer 1.

2.3. Remark. Theorem 2.1 fails to be true if we assume that the congruence |
(2.2) holds only for a finite set of primes. To show this, let 8 = {pp» Pyr- -y pk}

k
be any finite set of primes p; - Let A\ = ( I pi) + L.
' i=1
Take the multiplicative function f(n) defined by : f(1) = 1,

a ..
f(pa)={)‘ ',fpeﬁ
1 if p ¢ B.

ul(nl)

’

so,ifn = 11 p* 1 q7 then, since f is multiplicative fin) = X\

peB q¢ep

where n, = 1I p® and w(nl) denote the number of distinct prime factors
pes : :

of n,. We see that the values of f(n) are either 1 or A\? for some positive

integer a. Therefore (2.2) holds every n and p ¢ B but{f(n) = nr. This
example shows how to construct infinitely many other functions with this property,
k

since for \ one could take any polynomial of.. 1Ir P; with integer coefficients
i=1

and constant te.rm’l.
In order to prove the Theorem we need the following result due to
Polya[4]: ' ‘

2.4. Lemma. If f(x) is quadratic polynomial in x u'»it_h‘integer coefficient Su_ch
that f(x) = a(bx + c)2 and if P, denote the greatest prime divisor of f(n) then

hm pn = 00,
N—o00

2.5. Re.zn'zark. We could use much stronger results of Coates [3 ], who obtained
'fm explicit lower bound for the greatest prime factor of a binary form fi(x, ¥),
irreducible over Q, however Polya’s result is good enough for our purpose.
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Proof of Theorem 2.1.

If f(1) = O, then by (1.6), f(n) = f(n) f(1) = O for all n. Suppose next
that there exists an integer k > 1 such that fik) = 0. We shall show that in this
case also f(n) = 0. By above reasoning it is enough to show that f(1) = 0. Take
any prime p > k. By the Dirichlet’s Theorem there exist infinitely many primes q
such that (q, k) = 1 and kq = 1 (mod p). Hence, using (1.6)

0 = f(k) f(q) = f(kq) = f(1) (mod p),
thus f(1) = 0.

Assume now that f(n) never vanishes. From [(1.6) it follows that f(1) = 1.
For a prime p and a positive integer a, let p* be the highest power of p that

divides f(p®). Then we write
(2.6) f(p?) = mp", where r > 0 and (m, p) = 1.

Clearly m = + 1, for otherwise if q is any prime divisor of | m |, then by the
Dirichlet’s Theorem there exists a prime t, such that (t, p) = (t, q) = 1 and

pat = 1(mod q). By virtue of (1.6) we have:
1 = f(1) = f(p%) = mp" f(1) (mod q)

thus obtaining a contradiction, since q | m and therefore mpr f(t) = 0 (mod q).

Let us now fix prime p. For positive integers a, b,a = b we write:

(2.7) e = maPta- £?) = m,p b
where (p, ma) = (p, mb) = 1 and T Ty bave the meaning as above. We shall
show that m, = m, that is for a fixed prime p the value of m in (2.6) is
independent of a.

Letd =ja-b|,R = |rg ~Tp]. Since p|(p* - pP) than by (2.2) it
follows that

2.8) \ 7p%) = 1(p°) (mod p).

Using (2.7) and (2.8) we infer that 1, and ry .10 poth zero or both positive.

For if one of them were positive and the other equal to zero it would contradict
(2.8) in view of (p,ma) = (p,mb) = 1. ’
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Consxder first integers a and b for whnch a=b 5 26"' 'fni)"rv any |

integer ¢ > 0 and let ]a-b | = d = 2 e, wherc e is odd mteger, greater ,
than 1. C

Now - Pt -1 pnmmve pume factor q > 2. Define  ?

lrpRm - m lf A > rb
L=< '
| R .
Lma-—p my if r, < Ty
then L =0 (mod g). Assuming m, > mj we obtain . q| pR 4+ 1, thus
q1p?R =1, s0 e ] 2R and since (e,2) = 1, therefore ¢ | B; It follows row that

ql pR ~1 so q|2 und thus contradiction shows that nia = my .

gyt

. If | _&-éb i = 2. for'some c > 0, them obviously one-can find an' i
integar k such that f(pk) - mkp':k-‘ and |4 = k|'= 2% 1b=k| »=2° "
Therefore m, = my and. my = m, thus m, = mp for all positive integers

a and b.

We next prove. that my = l and 1, = krl for all k> 1. Keep the

S

prime p ﬁxed. Correspondmg to every prime ¢ » p, there is a prime t
such that (1,p) = (t,9) = 1 and "

Q. 9) _ 4 pt =1 (mod q).

T

In, order to show m, = 1 it suffices to prove m, =1. Let f\p_z) = m2pr2,

T
f(p) = mlpﬂl and f(pt) - mlp f\t) By \2.9)

(2.10) mfp 1w = f2(pt) = f2(1) 1 (mod q),
also C
@41y .- m2p 2f © = 1 )r2<t) = 1p? or = f(p)f(t)

= f(Pl) =1 (mod q) .
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Note that "f(pzt) = f(p) (mod q) since f(n) is quasi-multiplicative and (2.9)
holds. Using (2.10) and (2.11) we obtain that for every prime q = p,.
tp) = (t,9) =1

r 2r
m,p 2 = mfp l(mod q)

thus
r 2r
2 2
myp = mlp‘ 1 .
Since my =m,, then m, = mf = (-_!-l)2 =1, so m, = 1 and moreover

r, = 2rl - We now proceed by induction, and suppose that r, =nr; for

r
integers n << k ~ 1, where f(pn) =p D For al primes q=p and any

prime ¢t satisfying (2.9) we have :

- r
2.12) p "N )™ = 1™y (1(0)" (mod q),
P+l = p% (mod q), and then fp" 1) = £(p") (mod q), s0 2.12)
follows by quasi-multiplicativity.

since p
Using (2.1/) we obtain modulo q:
r
p " )™ - 1"y w)® = " )"

T nr
=P )" =p @0 = ¢pv))® = 1)

]
—

and

+1)r
1= (fpy )2 T! = p(n Lew 21,

thus

(n+ l)r1

p = p > 80 I g = (n-!—_l)r1

n

and by induction 6= kr‘ for all k > 1.
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To prove the Theorem it only remains to show that if for any two distinct

primes p and q, f(p) = pa, f(qQ) = qb then. a = b. For definitness assume
p > q and write d = ja-b| and N = pd+kq — 1 > 1, where k is any
positive integer. Letting x = pk/2 we consider N as a polynomial of second

degree with respect to x:

N = pdx%q - 1.
It is obvious that N(x) = a(bx + c)2 and then by Lemma 2.4 the greatest prime
factor p, of N(n) goes to infinity with n. Take k so large that N has a

prime factor N() > qd — 1. Since pd+kq = l(mod N) = 1 mod NO)

then :
pREFO = 1 tEg) = 1) = 1(mod Np)
and |
p?@+K)g? = 1 (mod Ny
thus .

pa(d+k)qb = pa(d + k)qa (mod NO)

d d

and therefore qd = 1 (mod NO), but 0 < q - 1 < NO' so g = 1and

d = 0, proving a = b.

3. FINAL REMARKS

We make the following :

3.1. Conjecture. Theorem 2.1 holds even if we assume that a quasi-multiplicative
function f(n) satisfies (2.2) for infinitely many primes p.

We are not able to prove this generalization, however, we shall now show
the following :
3.2. Theorem. If f(n) is quasi-multiplicative, integer-valued arithmetic function

satisfying (2.2) for infinitely many primes p, then f(qa) = (f(q) )a for any

prime q and non-negative integer a.
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Proof :
Suppose (2.2) holds for an infinite set of primes 8 = {pl, Py - ..}, and

let q be any prime. We may assume that q 4 B, since otherwise we use

(2.2) with the set B/ = B — {q}. For any p; € B one can find a prime t

such that (q, t) = (p; t) =1and qt = 1(mod p;- It follows that

3.3) _ f(q)f(t) = 1(mod P,

and
2
q't = q(mod p)),
SO
2 2
(3.9) fla’) = f(q")f() = f(q) (mod p,.

Multiplying (3.4) by fit) and using (3.3) we obtain

(3.5) f(qz) f2 (1) = 1 (mod pi).
Now p3t = q2 (mod pi‘, £0

3., .2
(3.6) f@"t) = fi9") (mod p,)

2
and multiplying (3.6) by €7(t) we have:

() £°()) = 1(mod p)

¢thus
3,03 . T
fa)f (1) = 1{mod pi) by quasi-multiplicativity.
Proceeding further by the same way we infer that for any integer n > 1 :
n, n
3.7 f(@)f () = 1(mod p,).

From (3.3) it follows that
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(3.9) o) £°()) = 1(mod p))
thus comparing\ (3.7) and (3.8)

f@") = £'(q) (mod p,)
for infinitely many primes P, therefore

£ = ().

In view of Theorem (3.2), we raise the following:

3.9. Problem. Is it true that if f(n) is an integer-valued and quasi-multiplicative
function that satisfies (2.2) for infinitely many primes p, then f(n) is multipli-

cative.

We note that even an affirmative answer to the above problem still leaves

Conjecture 3.1. open.
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