ON A CLASS OF ARITHMETIC FUNCTIONS SATISFYING
A CONGRUENCE PROPERTY

J. Fabrykowski* and M. V. Subbarao**

I. INTRODUCTION AND PRELIMINARIES

A real or complex valued arithmetic function \(f(n) \) is said to be multiplicative whenever the relation \(f(ab) = f(a)f(b) \) holds for relatively prime integers \(a \) and \(b \).

In 1966 Subbarao [7] proved that if \(f(n) \) is multiplicative, integer-valued arithmetic function satisfying

\[
f(n+k) = f(n) \pmod{k}
\]

for all positive integers \(n \) and \(k \), then either \(f(n) = 0 \) or \(f(n) = n^r \) for a nonnegative integer \(r \). He also remarked that it is enough to take \(k \)'s as power of primes. Later Somayajulu [6] proved the same, taking \(k \)'s as primes but replacing the multiplicativity of \(f(n) \) by a stronger property. In 1955 de Bruijn [1] showed that an integer-valued arithmetic function satisfies (1.1) for all integers \(n > 0, k > 0 \) if and only if it can be written in the form \(f(n) = \sum_{i=0}^{\infty} c_i A(i) \left(\frac{n-1}{i} \right) \), where \(c_i \) are integers and \(A(i) = \text{l.c.m.} (1, 2, \ldots, i) \). His result was generalised by Carlitz [2]. It is clear that every polynomial with integer coefficients satisfies (1.1) but if \(f(n) \) is not a polynomial then Ruzsa [5] obtained that

\[
\lim_{n \to \infty} \frac{\log |f(n)|}{\log n} = \infty \text{ and } \limsup_{n \to \infty} \frac{\log |f(n)|}{n} > \log (e-1).
\]

In the present paper we generalize the result of Subbarao [7]. For this purpose, we introduce a certain class of arithmetic functions, called quasi-multiplicative functions—which includes the class of multiplicative functions on a proper subclass.

* Supported by NSERC Grant \#A-3062.
** Supported by part by NSERC Grant \#A-3103.

1980 Mathematics Subject Classification: 10A20.
A positive integer \(m \) is said to be squarefull (or powerfull) if for every prime \(p \mid m \) also \(p^a \mid m \) with \(a > 2 \). Using the convention that unity is both squarefree and squarefull we see that every positive integer \(n \) can be expressed uniquely as

\[
(1.2) \quad n = n_1 n_2, \quad (n_1, n_2) = 1
\]

where \(n_1 \) and \(n_2 \) are respectively squareful and squarefree integers.

1.3. Definition. An arithmetic function \(f(n) \) is said to be quasi-multiplicative whenever for every positive integer \(n \) we have

\[
(1.4) \quad f(n) = f(n_1) \prod_{p \mid n_2} f(p),
\]

where \(n_1 \) and \(n_2 \) have the meaning as in (1.2) and \(p \)'s are prime divisors of \(n_2 \).

It is easy to see that every multiplicative function is also quasi-multiplicative but not conversely, as the following example shows:

let

\[
f(n) = \begin{cases}
1 & \text{if } n = 1, \rho \text{ or } \rho^2 \\
1 & \text{if } n = n_2 \rho^a, n_2 \text{-squarefree } (n_2, \rho) = 1, a > 0 \\
2 & \text{otherwise.}
\end{cases}
\]

Next, we note that from Definition 1.3 we have the following:

1.5. Theorem. An arithmetic function \(f(n) \) is quasi-multiplicative if and only if for every integer \(m \) and prime \(p \) such that \(p \mid m \) or \(p = 1 \) we have:

\[
(1.6) \quad f(mp) = f(m) f(p).
\]

The proof is easy and is omitted. We may use (1.6) as an alternative definition of a quasi-multiplicative function.

2. THE THEOREM

We shall prove the following main result.

2.1. Theorem. Let \(f(n) \) be a quasi-multiplicative integer-valued function satisfying

\[
(2.2) \quad f(n + p) = f(n) \pmod{p}
\]
for all positive integers \(n \) and all primes \(p \). Then either \(f(n) = 0 \) or \(f(n) = n^r \) for a non-negative integer \(r \).

2.3. *Remark.* Theorem 2.1 fails to be true if we assume that the congruence (2.2) holds only for a finite set of primes. To show this, let \(\beta = \{p_1, p_2, \ldots, p_k\} \) be any finite set of primes \(p_i \). Let \(\lambda = \left(\prod_{i=1}^{k} p_i \right) + 1 \).

Take the multiplicative function \(f(n) \) defined by: \(f(1) = 1 \),

\[
f(p^a) = \begin{cases}
\lambda^a & \text{if } p \in \beta \\
1 & \text{if } p \notin \beta
\end{cases}
\]

so, if \(n = \prod_{p \in \beta} p^\alpha q^\beta \) then, since \(f \) is multiplicative \(f(n) = \lambda^{\omega(n_1)} \), where \(n_1 = \prod_{p \in \beta} p^\alpha \) and \(\omega(n_1) \) denote the number of distinct prime factors of \(n_1 \). We see that the values of \(f(n) \) are either 1 or \(\lambda^a \) for some positive integer \(a \). Therefore (2.2) holds every \(n \) and \(p \in \beta \) but \(f(n) \neq n^r \). This example shows how to construct infinitely many other functions with this property, since for \(\lambda \) one could take any polynomial of \(\prod_{i=1}^{k} p_i \) with integer coefficients and constant term 1.

In order to prove the Theorem we need the following result due to Polya [4]:

2.4. *Lemma.* If \(f(x) \) is quadratic polynomial in \(x \) with integer coefficient such that \(f(x) \neq a(bx + c)^2 \) and if \(p_n \) denote the greatest prime divisor of \(f(n) \) then

\[
l_{n \to \infty} p_n = \infty.
\]

2.5. *Remark.* We could use much stronger results of Coates [3], who obtained an explicit lower bound for the greatest prime factor of a binary form \(f(x, y) \), irreducible over \(\mathbb{Q} \), however Polya's result is good enough for our purpose.
Proof of Theorem 2.1.

If \(f(1) = 0 \), then by (1.6), \(f(n) = f(n) f(1) \equiv 0 \) for all \(n \). Suppose next that there exists an integer \(k > 1 \) such that \(f(k) = 0 \). We shall show that in this case also \(f(n) \equiv 0 \). By above reasoning it is enough to show that \(f(1) = 0 \). Take any prime \(p > k \). By the Dirichlet's Theorem there exist infinitely many primes \(q \) such that \((q, k) = 1 \) and \(kq \equiv 1 \) (mod \(p \)). Hence, using (1.6)

\[
0 = f(k) f(q) - f(kq) \equiv f(1) \quad (\text{mod } p),
\]

thus \(f(1) = 0 \).

Assume now that \(f(n) \) never vanishes. From (1.6) it follows that \(f(1) = 1 \).

For a prime \(p \) and a positive integer \(a \), let \(p^r \) be the highest power of \(p \) that divides \(f(p^a) \). Then we write

\[
f(p^a) = mp^r, \quad \text{where } r \geq 0 \text{ and } (m, p) = 1.
\]

Clearly \(m = \pm 1 \), for otherwise if \(q \) is any prime divisor of \(|m| \), then by the Dirichlet's Theorem there exists a prime \(t \), such that \((t, p) = (t, q) = 1 \) and \(p^a t \equiv 1 \) (mod \(q \)). By virtue of (1.6) we have:

\[
1 = f(1) \equiv f(p^a t) = mp^r f(t) \quad (\text{mod } q)
\]

thus obtaining a contradiction, since \(q \mid m \) and therefore \(mp^r f(t) \equiv 0 \) (mod \(q \)).

Let us now fix prime \(p \). For positive integers \(a, b, a \neq b \) we write:

\[
f(p^a) = m_a p^{r_a}, \quad f(p^b) = m_b p^{r_b},
\]

where \((p, m_a) = (p, m_b) = 1 \) and \(r_a, r_b \) have the meaning as above. We shall show that \(m_a = m_b \), that is for a fixed prime \(p \) the value of \(m \) in (2.6) is independent of \(a \).

Let \(d = |a - b|, R = |r_a - r_b| \). Since \(p \mid (p^a - p^b) \) than by (2.2) it follows that

\[
f(p^a) = f(p^b) \quad (\text{mod } p).
\]

Using (2.7) and (2.8) we infer that \(r_a \) and \(r_b \) are both zero or both positive. For if one of them were positive and the other equal to zero it would contradict (2.8) in view of \((p, m_a) = (p, m_b) = 1 \).
Consider first integers a and b for which $|a - b| \neq 2^c$ for any positive integer $c > 0$ and let $|a - b| = d = 2^ce$, where e is odd integer, greater than 1.

Now $p^e - 1$ primitive prime factor $q > 2$. Define

$$L = \begin{cases} p^R m_a - m_b & \text{if } r_a > r_b, \\ m_a - p^R m_b & \text{if } r_a < r_b, \end{cases}$$

then $L \equiv 0 \pmod{q}$. Assuming $m_a \equiv m_b$, we obtain $q \mid p^R + 1$, thus $q \mid p^{2R} - 1$, so $e > 2R$ and since $(e, 2) = 1$, therefore $e \mid R$. It follows now that $q \mid p^R - 1$ so $q \mid 2$ and thus, contradiction shows that $m_a \neq m_b$.

If $|a - b| = 2^c$ for some $c > 0$, then obviously one can find an integer k such that $f(p^k) = m_k p^r k$ and $|a - k| \neq 2^c$, $|b - k| \neq 2^c$. Therefore $m_a = m_k$ and $m_b = m_k$, thus $m_a = m_b$ for all positive integers a and b.

We next prove that $m_k = 1$ and $r_k = kr_1$ for all $k > 1$. Keep the prime p fixed. Corresponding to every prime $q \neq p$, there is a prime t such that $(t, p) = (t, q) = 1$ and

$$pt \equiv 1 \pmod{q}. \tag{2.9}$$

In order to show $m_k \equiv 1$, it suffices to prove $m_1 = 1$. Let $f(p^2) = m_2 p^r 2$.

$f(p) = m_1 p^{r_1}$ and $f(pt) = m_1 p^{r_1} f(t)$. By (2.9)

$$m_1^2 p^{2r_1} f^2(t) = f^2(pt) \equiv f^2(1) \equiv 1 \pmod{q}, \tag{2.10}$$

also

$$m_2^2 p^{r_2} f^2(t) = f(p^2)^2 f^2(t) = f(p^2) f(t) f(t) \equiv f(p) f(t) = f(p t) \equiv 1 \pmod{q}. \tag{2.11}$$
Note that \(f(p^2 t) \equiv f(p) \pmod{q} \) since \(f(n) \) is quasi-multiplicative and (2.9) holds. Using (2.10) and (2.11) we obtain that for every prime \(q \neq p \), \((t,p) = (t,q) = 1 \)

\[
m_2 p^{2 r_2} = m_1^2 p^{2 r_1} \pmod{q}
\]

thus

\[
m_2 p^{r_2} = m_1^2 p^{r_1}.
\]

Since \(m_2 = m_1 \), then \(m_2 = m_1^2 = (\pm 1)^2 = 1 \), so \(m_1 = 1 \) and moreover \(r_2 = 2 r_1 \). We now proceed by induction, and suppose that \(r_n = n r_1 \) for integers \(n < k - 1 \), where \(f(p^n) = p^{r_n} \). For all primes \(q \neq p \) and any prime \(t \) satisfying (2.9) we have:

\[
(2.12) \quad p^{n+1} (f(t))^{n+1} = f(p^{n+1} t) (f(t))^n \pmod{q},
\]

since \(p^{n+1} t \equiv p^n \pmod{q} \), and then \(f(p^{n+1} t) \equiv f(p^n) \pmod{q} \), so (2.12) follows by quasi-multiplicativity.

Using (2.11) we obtain modulo \(q \):

\[
\begin{align*}
p^{n+1} (f(t))^{n+1} & = f(p^{n+1} t) (f(t))^n = f(p^n) (f(t))^n \\
& = p^n (f(t))^n = p^{nr_1} (f(t))^n = (f(pt))^n = f(1) = 1
\end{align*}
\]

and

\[
1 = (f(pt))^{n+1} = p^{(n+1)r_1} (f(t))^{n+1},
\]

thus

\[
p^{n+1} = p^{(n+1)r_1}, \text{ so } r_{n+1} = (n+1)r_1
\]

and by induction \(r_k = kr_1 \) for all \(k \geq 1 \).
To prove the Theorem it only remains to show that if for any two distinct primes \(p \) and \(q \), \(f(p) = p^a \), \(f(q) = q^b \) then \(a = b \). For definiteness assume \(p > q \) and write \(d = |a - b| \) and \(N = p^{d+k}q - 1 > 1 \), where \(k \) is any positive integer. Letting \(x = p^{k/2} \) we consider \(N \) as a polynomial of second degree with respect to \(x \):

\[
N(x) = p^d x^2 q - 1.
\]

It is obvious that \(N(x) \neq a(bx + c)^2 \) and then by Lemma 2.4 the greatest prime factor \(p_n \) of \(N(n) \) goes to infinity with \(n \). Take \(k \) so large that \(N \) has a prime factor \(N_0 > q^d - 1 \). Since \(p^{d+k}q \equiv 1 \pmod{N} \equiv 1 \pmod{N_0} \) then:

\[
p^{a(d+k)}q^b = f(p^{d+k}q) = f(1) \equiv 1 \pmod{N_0}
\]

and

\[
p^{a(d+k)}q^a \equiv 1 \pmod{N_0}
\]

thus

\[
p^{a(d+k)}q^b \equiv p^{a(d+k)}q^a \pmod{N_0}
\]

and therefore \(q^d \equiv 1 \pmod{N_0} \), but \(0 < q^d - 1 < N_0 \), so \(q^d = 1 \) and \(d = 0 \), proving \(a = b \).

3. FINAL REMARKS

We make the following:

3.1. **Conjecture.** Theorem 2.1 holds even if we assume that a quasi-multiplicative function \(f(n) \) satisfies (2.2) for infinitely many primes \(p \).

We are not able to prove this generalization, however, we shall now show the following:

3.2. **Theorem.** If \(f(n) \) is quasi-multiplicative, integer-valued arithmetic function satisfying (2.2) for infinitely many primes \(p \), then \(f(q^a) = (f(q))^a \) for any prime \(q \) and non-negative integer \(a \).
Proof:

Suppose (2.2) holds for an infinite set of primes \(\beta = \{p_1, p_2, \ldots \} \), and let \(q \) be any prime. We may assume that \(q \not\in \beta \), since otherwise we use (2.2) with the set \(\beta' = \beta - \{q\} \). For any \(p_i \in \beta \) one can find a prime \(t \) such that \((q, t) = (p_i, t) = 1 \) and \(qt \equiv 1 \pmod{p_i} \). It follows that

\[
\begin{align*}
 f(q) f(t) &\equiv 1 \pmod{p_i}, \\
 q^2 t &\equiv q \pmod{p_i},
\end{align*}
\]

so

\[
\begin{align*}
 f(q^2 t) &= f(q^2) f(t) \equiv f(q) \pmod{p_i}.
\end{align*}
\]

Multiplying (3.4) by \(f(t) \) and using (3.3) we obtain

\[
\begin{align*}
 f(q^2) f^2(t) &\equiv 1 \pmod{p_i}.
\end{align*}
\]

Now \(p^3 t \equiv q^2 \pmod{p_i} \), so

\[
\begin{align*}
 f(q^3 t) &= f(q^2) \pmod{p_i}
\end{align*}
\]

and multiplying (3.6) by \(f^2(t) \) we have:

\[
\begin{align*}
 f(q^3 t) f^2(t) &\equiv 1 \pmod{p_i}
\end{align*}
\]

thus

\[
\begin{align*}
 f(q^3) f^3(t) &\equiv 1 \pmod{p_i}
\end{align*}
\]

by quasi-multiplicativity.

Proceeding further by the same way we infer that for any integer \(n \geq 1 \):

\[
\begin{align*}
 f(q^n) f^n(t) &\equiv 1 \pmod{p_i}.
\end{align*}
\]

From (3.3) it follows that
(3.8) \[f_n(q) f^n(t) \equiv 1 \pmod{p_i} \]

thus comparing (3.7) and (3.8)

\[f(q^n) = f^n(q) \pmod{p_i} \]

for infinitely many primes \(p_i \), therefore

\[f(q^n) = f^n(q). \]

In view of Theorem (3.2), we raise the following:

3.9. Problem. Is it true that if \(f(n) \) is an integer-valued and quasi-multiplicative function that satisfies (2.2) for infinitely many primes \(p \), then \(f(n) \) is multiplicative.

We note that even an affirmative answer to the above problem still leaves Conjecture 3.1. open.

REFERENCES

