Two New Combinatorial Identities

M. V. SUBBARAO

Subbarao, M.V. 1972.: Two new combinatorial identities. K. norske Vidensk. Selsk. Skr. 21, 1-4.

Separating the partitions of an integer into two classes according as the largest (smallest) part of the partition is repeated or not, we obtain two apparently new

identities for $\phi(a,\,x)$ and $1/\phi(a,\,x),$ where $\phi(a,\,x)=\prod_{n\,=\,1}^{\infty}\,(1-ax^n)$.

M.V. Subbarao, University of Alberta, Edmonton, Alberta, CANADA.

1. The identities. In this paper, we establish the following two apparently new identities by purely combinatorial arguments.

$$(1.1) \quad \prod_{n=1}^{\infty} \left(1-ax^{n}\right) \equiv 1 - \frac{ax}{1-x} + \frac{a^{2}}{1-x} \sum_{r=1}^{\infty} x^{2r+1} (1-ax) \dots (1-ax^{r-1}) ;$$

$$(1.2) \quad \prod_{n=1}^{\infty} (1-ax^n)^{-1} \equiv 1 + \frac{ax}{1-x} + \frac{a^2}{1-x} \sum_{r=1}^{\infty} \frac{x^{2r}}{(1-ax)\dots(1-ax^r)}$$

(For convergence purposes, we assume throughout that |x| < 1).

These identities are in contrast to the well known Eulerian expansions (Bellman 1961, p. 49):

(1.3)
$$\prod_{n=1}^{\infty} (1-ax^n) = 1 + \sum_{r=1}^{\infty} \frac{(-1)^r a^r x^{r(r+1)/2}}{(1-x)...(1-x^r)};$$

(1.4)
$$\prod_{n=1}^{\infty} (1-ax^n)^{-1} = 1 + \sum_{r=1}^{\infty} \frac{a^r x^r}{(1-x)...(1-x^r)}$$

We observe in passing, that (1.2) for a = 1 is the same as (1.4) for a = X.

2. Proof of identity (1.1). Throughout the paper, we use the notation:

$$\varphi(a,x) = \prod_{n=1}^{\infty} (1-ax^n);$$

$$\varphi_r(a, x) \equiv \prod_{n=1}^r (1 - ax^n), r > 0;$$

$$\varphi_0(a, x) = 1.$$

Let $S_0(n)$ denote the set of all the unrestricted partitions of n; $S_1(n)$ (respectively $S_2(n)$) the subset consisting of those partitions of n for which the smallest part is unity (respectively, greater than unity); and $S_3(n)$ (respectively, $S_4(n)$) the subset of partitions of n for which the smallest part is repeated (respectively, not repeated).

Associate with each partition of n a weight a^r , where r denotes the number of parts used in the partition (repeated parts being counted according to their multiplicities). Let $w_i(n) = w_i(a, n)$ denote the sum of all the weights associated with all the partitions of n that belong to $S_i(n)$, (i = 0, 1, 2, 3, 4,). Following the convention that empty sums have the value 0 and empty products the value unity, we have $w_2(1) = w_3(1) = 0$.

We observe the following obvious relations:

(2.1)
$$w_0(n) = w_1(n) + w_2(n)$$
.

(2.2)
$$w_0(n) = w_3(n) + w_4(n)$$
.

$$1+\sum_{n=1}^{\infty} w_0(n)x^n=\frac{1}{\phi(a,x)}$$

$$(2.4) \qquad \quad \sum_{n=1}^{\infty} \quad w_1(n) x^n = \frac{ax}{\phi(a, x)}.$$

Next, we shall show that

$$(2.5) \quad \sum_{n=2}^{\infty} w_3(n-1)x^n = \frac{a^2}{\varphi(a,x)} \sum_{r=1}^{\gamma} x^{2r+1} \varphi_{r-1}(a,x).$$

For $n \ge 3$, consider all partitions of n-1 in $S_3(n-1)$ for each of which the smallest part is $r(r \ge 1)$. By the definition of $S_3(n-1)$, his smallest part occurs at least twice in each of these partitions. Hence the sum of the weights of all such partitions of n-1 is the coefficient of x^{n-1} in

$$\frac{ax^{r} \cdot ax^{r}}{(1-ax^{r}) \ (1-ax^{r+1}) \ \dots} = \frac{a^{2}x^{2r}\phi_{r-1}(a,x)}{\phi \ (a,x)} \, .$$

Letting r = 1, 2, ..., and taking the sum of the weights in each case, we obtain (2.5).

In the next place, (2.2) gives

$$\sum_{n=1}^{\infty} w_4(n-1)x^n = \sum_{n=2}^{\infty} w_0(n-1)x^n - \sum_{n=2}^{\infty} w_3(n-1)x^n ,$$

so that, on using (2.3) and (2.5), we obtain

$$(2.6) \quad \sum_{n=2}^{\infty} \ w_4(\ n-1) x^n \ \equiv \frac{x}{\phi\left(a,\,x\right)} - x \ - \frac{a^2}{\phi\left(a,\,x\right)} \ \sum_{r=1}^{\infty} \ x^{2r+1} \phi_{r-1}(a,\,x) \ .$$

Finally, for any n > 1, we set up a one-to-one mapping F of $S_2(n)$ onto $S_4(n-1)$ as follows: given any member β of $S_2(n)$, we define its map $F(\beta)$ to be the partition of n-1 obtained by reducing the smallest part of β by unity. Clearly, $F(\beta)$ belongs to $S_4(n-1)$ and the weights of β and $F(\beta)$ are the same, so that

$$w_2(n) = w_4(n-1), (n = 2, 3, ...)$$

Recalling that $w_2(1) = 0$ and using (2.6) we have

(2.7)
$$\sum_{n=1}^{\infty} w_2(n) x^n = \frac{x}{\varphi(a,x)} - x - \frac{a^2}{\varphi(a,x)} \sum_{r=1}^{\infty} \varphi_{r-1}(a,x) x^{2r+1}.$$

Hence (2.1), (2.3), (2.4) and (2.7) give

$$\frac{1}{\varphi(a,x)} = 1 + \frac{ax}{\varphi(a,x)} + \frac{x}{\varphi(a,x)} - x - \frac{a^2}{\varphi(a,x)} \sum_{r=1}^{\infty} \varphi_{r-1}(a,x) x^{2r+1}.$$

Multiplying both sides by $\varphi(a, x)$ this gives (1.1) after some simplification.

2. Proof of identity (1.2). We use similar arguments, taking this time the largest part in the partition. Let $S_5(n)$ (respectively $S_6(n)$) denote the set of those partitions of n in which the largest part is not repeated (respectively, repeated), and $w_5(n)$ and $w_6(n)$ the sum of the weights of the partitions belonging to $S_5(n)$ and $S_6(n)$ respectively.

For any n > 1, there is a one-to-one mapping G of $S_5(n)$ onto $S_0(n-1)$ defined as follows: if β belongs to $S_5(n)$, $G(\beta)$ is defined as the partition of n-1 obtained by reducing the largest part in β by unity. Evidently, G preserves the weight of β : $w(\beta) = w(G(\beta))$. Noting that w(1) = a, we thus obtain

(3.1)
$$\sum_{n=1}^{\infty} w_5(n)x^n = ax + \sum_{n=2}^{\infty} w_0(n-1)x^n = ax + \frac{x}{\phi(a,x)} - x.$$

Also, arguing as for the proof of (2.5) we have (with $w_6(1) = 0$)

$$\sum_{n=1}^{\infty} w_{0}(n)x^{n} = \sum_{n=1}^{\infty} \frac{a^{2}x^{2n}}{(1-ax)...(1-ax^{n})}.$$

Since $w_0(n) = w_5(n) + w_6(n)$, (n = 1, 2, ...), we have finally

$$\begin{split} &\frac{1}{\phi \; (a,\, x)} \equiv 1 \, + \, \sum\limits_{n \, = \, 1}^{\infty} \; w(n) x^n \equiv 1 \, + \, \sum\limits_{n \, = \, 1}^{\infty} \; w_5(n) x^n \, + \, \sum\limits_{n \, = \, 1}^{\infty} \; w_6(n) x^n \\ & \equiv 1 \, + \, a x \, - x \, + \frac{x}{\phi \; (a,\, x)} \, + \, a^2 \, \sum\limits_{n \, = \, 1}^{\infty} \; \frac{x^{2r}}{\phi \; r \; (a,\, x)} \, , \end{split}$$

from which (1.2) follows.

REFERENCES

Bellman, R. 1961. A Brief Introduction to Theta Functions. Holt Rinehart and Winston, New York

Submitted at a joint meeting 11th October 1971, by Mr. S. Selberg. Printed June 1972.

© The Norwegian Research Council for Science and the Humanities 1972. Section: F. 08. 00-2T.