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NOTES 
Edited by William Adkins 

A Modified Problem of Pillai 
and Some Related Questions 

G. E. Hardy and M. V. Subbarao 

In memoriam: S. S. Pillai (1901-1950) on the occasion of his birth centenary. 

1. INTRODUCTION. The famous number theorist of India S. S. Pillai (whose name 
Paul Erdos always delighted in saying in full: Subbayya Pillai Sivasankaranarayana 
Pillai) posed the following problem more than seven decades ago [2]. 

1.1. Problem. Is it true that every prime divisor of n! + 1 is of the form 1 (mod n)? 

S. Chowla [2] remarked that there are at least two exceptions provided by 

14! + 1 _ 0(mod 23); 18! + 1 _ 0(mod23), 

in view of 23 # 1 (mod 14) and 23 # 1 (mod 18), and suggested further investigation. 
Actually, the smallest n for which we have a counterexample is provided by 

8! + 1 0(mod 61), _ 0(mod 661), 

in view of 61 and 661 being primes # 1 (mod 8). On the other hand, if we confine 
ourselves to those integers n for which n! + 1 is a prime (such primes are sometimes 
called factorial primes), then the answer to the question raised in Problem 1.1 is, 
trivially, affirmative. We do not know if there are infinitely many factorial primes. 
The largest known factorial prime is, to our knowledge, 32659! + 1 (44416 dig- 
its). This was found in the year 2000 by Steven L. Harvey, Prime Form (visit http:// 
www.utm.edu/research/primes/largest.html). 

Pillai's question did not attract any further attention until 1993 when, in correspon- 
dence with P. Erdos, we formulated the following problems. 

1.2. Problem. Are there infinitely many primes p for which there is an integer n such 
that 

n! + 1 _ 0(mod p), p = 1 (mod n)? (1.3) 

1.4. Problem. Are there infinitely many integers n for which there is a prime p satis- 
fying (1.3)? 

Astonishingly simple, but rather tricky solutions were found in 1993 by Paul Erdos 
and independently by the second author. We recently found another simple proof, 
which we give in the next section. Section 3 lists several unsolved problems and the 
final section is an appendix with extracts from two of Erdos's letters to the second 
author. It also gives a table of values pertinent to Problem A in Section 3. 
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2. THE THEOREMS. We first prove: 

2.1. Theorem. There are infinitely many primes p such that there is an integer n for 
which 

n! + 1 _ 0(modp), p I 1(modn). (2.2) 

A detailed proof. For each integer K = 1, 2, 3, ..., consider the largest prime p for 
which the following congruence holds: 

(1OK + 7)! + 1=O(mod p). (2.3) 

Clearly, for each value of K, there is a larger value of K for which the corresponding 
primes p are different. 

If p X 1(mod 1OK + 7) for infinitely many K, we are done. But if p 
1 (mod 1OK + 7) for a particular value of K, then we can write, for some even in- 
teger A > 0, 

p-=+A(lOK+7). (2.4) 

Wilson's theorem on primes says that 

(p - 1)! + 1 _ 0(mod p). (2.5) 

We now split (p - 1)! into two factors, the first of which is (p - 1OK - 8)!, so that 
the second factor is the product 

(p-(1OK + 8) + 1) (p-(1OK + 8) + 2) .(p-(1OK + 8) + IOK + 7). 

This product is clearly congruent modulo p to (-1OK - 7) . (-1OK + (1OK - 1)), 
that is, to (-1) lOK+7 (1OK + 7)!. 

Hence using (2.5), we have 

(p - 1OK - 8)! (1OK + 7)! _ 1 (mod p), 

which, on using (2.3), gives 

(p - 1OK - 8)! + 1 _ O(mod p). (2.6) 

Note that 

p # 1(modp - 1OK - 8), (2.7) 

for, if p _(modp - 1OK - 8), then 

p = 1 + B(p - 1OK - 8) 

for some integer B > 1, and using the value of K given by (2.4) would lead to 

1 +A(1OK +7) = 1 +B(1 +A(1OK +7) - OK -8). 

This would imply that A = (A - 1)B, so A + B = AB. Since A and B are posi- 
tive integers, A = B = 2. But if A = B = 2, (2.4) gives p = 1 + 2(10K + 7), or 
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p = (20K + 15), contradicting the fact that p is a prime. In view of (2.6) and (2.7), 
Theorem 2.1 follows. X 

2.8. Remarks. In the proof of Theorem 2.1, instead of 10K + 7, we can use any num- 
ber aK + b, where a is even and b odd with the restriction that gcd(a, 2b + 1) > 1. 
But other choices violating this restriction are possible, such as 6K + 5; see Section 4. 

In response to the second author's letter of April 1993, Paul Erdos replied on 
June 14, 1993, starting the letter with "the problems you wrote are probably very dif- 
ficult. .. ", but toward the end of the letter he mentioned a possible solution. He later 
gave a very concise proof of a few lines. His second proof is similar to our proof of 
Theorem 2.1. 

2.9. Definition. A prime p satisfying the property described in Theorem 2.1 is called 
a Pillai prime. Thus, p is a Pillai prime if there is an n so that n! + 1 _ 0(mod p), but 
p X 1 (mod n). The symbol 'P denotes the set of all Pillai primes. 

The first ten members of 'P are 23, 29, 59, 61, 67, 71, 79, 83, 109, and 137. 

2.10. Remark. The sequence of Pillai primes is now entered in the Encyclopedia of 
Integer Sequences; see http://www.research.att.com/-njas/sequences. 

2.11. Definition. S is the set of all those natural numbers m with the property that 
there is a corresponding prime p satisfying 

m! + _0(modp), p I1(modm). 

The first ten members of S are: 

8,9, 13, 14, 15, 16, 17, 18, 19, 22. 

We call the members of S EHS numbers. 

2.12. Theorem. The set S is infinite. 

Proof. Suppose S is a finite set. Let its members be mI, . . ., mr. Consider the set Q 
of all primes q satisfying the relation 

mi! + 1 _ 0(modq), q # 1 (mod mi) 

fori = 1,2,...,r. 
Since the set P of Pillai primes is infinite by Theorem 2.1, the following is possible. 

Choose a prime p E 'P such that p , Q. Since p E P, there is an integer m such that 

m! + 1 _ 0(mod p), p # 1 (mod m). 

The definition of S ensures that m E S. But m , S, for if m E S, p must belong to Q, 
contradicting the definition of p. Hence Theorem 2.12 follows. E 

2.13. Remark. One can show that Theorem 2.12 directly implies Theorem 2.1. 
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3. SOME OPEN PROBLEMS. Of the following problems, those marked with an 
asterisk are original to Erdos. Others, except Problem H, were raised in discussions 
with him. 

A. Let r (x) (respectively 7r (P, x)) denote the number of primes (number of Pillai 
primes) less than or equal to x. Does the ratio w (P, x)/7(x) have a limit as 
x -+ oc? From the table in the Appendix, it would appear that if the limit 
exists, it is perhaps between 0.5 and 0.6. But then there seems to be no reason 
why the ratio should not tend to 1, even though very slowly and certainly not 
monotonically. 

B. If f(x) denotes the number of EHS numbers not exceeding x does 
limx,+, f (x)/x exist, and if so, what is it? We have a list of all EHS num- 
bers up to 210, from which we obtained the following: 

For x = 100, 200, 300, 400, and 500, the corresponding values of f (x)/x are, 
correct to two decimals, 5.5, 5.25, 5.7, 5.45, and 4.98. If this trend continues, 
we expect limx,+, f(x)/x to be around 0.5, if it exists. The frequency with 
which the EHS numbers occur-most often in long sequences of consecutive 
integers-makes us believe that their asymptotic density exists and is unity. 
Erdos, though initially hesitant, later agreed with this view. See Section 4, Ap- 
pendix 4(i). 

C. If g(p) denotes the number of integers n < p (p prime) for which n! + 1 
0 mod p, is lim g(p) = oc? Perhaps g(p) -> oc for almost all p. 

D. For g(p) as in (C), the density of primes p for which g(p) = k probably exists 
for every k, and denoting this by ek, ]k=l ek = 1. 

E*. Are there many primes p for which n! (mod p) has p - 2 nonzero values? One 
example is p = 5. 

The referee remarks: I hazard a guess that p = 5 is the only one with residues 
1, 2, 1, 4 (5 - 2 different values). p = 3 is just an example of the Law of Small 
Numbers. Theorem 114 of Hardy and Wright shows that any other example must be 
-1 (mod 4), and I make a wild surmise that it could be proved that there are not many 
(more). If that is Erdos phraseology, then he may well have thought the same. The use 
of "many" (if that is what he used) seems to imply that he thought "a finite number" 
and a pretty small one at that. 

F*. Let A (x) denote the number of composite numbers u < x for which n! + 1 
Omodu. Examples of such numbers are 25, 121, 721. Is A(x) = o-(x)? 

G. Given a prime p, let f (p) denote the smallest integer for which f (p)! + 1 
0(mod p). We believe that there are infinitely many p for which f (p) = p -1, 
but probably the number of such p < x is o(x/ log x). 

Erdos believed that f (p)/p -> 0 for almost all p. 

H. For any given prime p > 5, (p - 1)! + 1 is not of the form pr, r > 1 [3]. 
Thus for all such p, (p - 1)! + 1 _ 0(modq) for some prime or primes q = 
q (p) > p. Are there infinitely many primes p for which there is a corre- 
sponding q satisfying q # 1 (mod p - 1)? The first four examples of such p, 
with the corresponding primes q written in parenthesis, are 17(61, 137, 139), 
19(23, 29, 61, 67), 37(83, 739, 1483), 41(59, 277). Equivalently, are there in- 
finitely many EHS numbers of the form p - 1, p being a prime? 

We believe that this is so and that the number of such primes < x is 0 (x/ log x). 
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4. APPENDIX. 

(i) For those readers who are curious to know Paul Erdos's first and second proofs 
of Theorem 2.1, we quote part of his letter dated June 14, 1993 and the full text of his 
letter dated July 2, 1993-both addressed to the second author. 

(a) "Perhaps I can prove that there are infinitely many primes p for which 

k! + 1 0 O (modp), p X 1(modk). 

(Perhaps you know that already.) 

(p-i1)! + 1- 0mod q for some q > p; 

if q X 1 (mod p), we have won, if not, then consider (q - p - 1)! + 1. 
This is a multiple of q, but q =1 mod(q - p - 1) unless q = 2p + 1 
and this can be excluded if we start with a p for which 2p + 1 is not a 
prime. I hope this is correct." 

(b) "Dear Subbarao, 

I write again about n! + 1 0 O(mod p), p # 1(modn). When I told the 
proof to Suranyi, a slip was discovered, but we easily corrected the 

Proof: (6k + 1)! +1 O0(mod p) if p X 1 (mod 6k + 1) for inf many k 
we are finished-if not then (p - 6k - 2)! + 1 0 0(modp) and p X 

1 mod(p - 6k - 2), which proves that there are inf p for which n! + 
1 0 O(modp), p # 1(modn). We do not see whether this holds for 
almost all p or whether for almost all n there is a p for which n! + 1 
0(modp), p # 1(modn). 

Kind regards and apologies for my carelessness. 

Au revoir Paul Erdos" 

Regarding Problem B, in a later letter dated July 29, 1993, he wrote: "I think that 
for almost all n there is a p, p X 1(modn), for which n! + 1- 0(modp), but I do 
not see how to prove it; but perhaps this is not hopeless." 

(ii) The first entry gives a select Pillai prime p and the second gives the ratio of the 
number of Pillai primes up to p over the number of all primes < p. 

23 0.111111 
193 0.295455 
499 0.410526 

1999 0.49505 
3559 0.50501 
5003 0.495522 

10009 0.498781 
20011 0.520548 
36007 0.526275 
44987 0.530053 
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Some Curious Sequences Involving 
Floor and Ceiling Functions 

M. A. Nyblom 

1. INTRODUCTION. Of all the well-known arithmetic functions in number theory, 
the integer part or floor function of a real number x, denoted by Lxj = max{n E 2: 
n < x 1, is perhaps the simplest. This function has a companion function known as the 
ceiling function of x, denoted by rxi = min{n E 2 : x < n}. Both the floor and ceil- 
ing functions exhibit many varied and curious properties, some of which have been 
extensively studied in [2, chap. 3]. In this note we illustrate how these functions, in- 
dividually and in combination, can be used to determine closed form expressions for 
the nth term of some unusual sequences. In the first half, the sequences considered 
are formed from either the addition or deletion of terms from a given sequence. As a 
consequence of the latter case, we derive a surprising formula for the nth positive in- 
teger that is not a perfect mth power. Finally, in the second half we solve a recurrence 
relation involving a floor function. We denote the set of strictly positive integers by N. 

2. ADDITION AND DELETION OF TERMS. Consider an arbitrary sequence of 
real numbers (an), from which we construct another sequence (bm) in the following 
manner. Let d E N be fixed, and for each m E N define bm to be the mth term of the 
sequence consisting of nd occurrences in succession of the term an, as follows: 

a I ,a,,a2, .... ,a2, a3 , .... ,a3 , ...(1) 

d, al terms 2d, a2 terms 3d, a3 terms 

For example, if a, = n and d = 1, then the resulting sequence (bm) would be 

1, 2, 2, 3, 3, 3,4,4,4,4, .... 

Can we usefully describe a function f : N -> N such that bm = af (m) ? For our first re- 
sult, we show that such a function can be constructed in terms of a ceiling and square 
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