DISTRIBUTION
OF 2–ADDITIVE FUNCTIONS
UNDER SOME CONDITIONS

I. Kátai (Budapest, Hungary)
M.V. Subbarao†

Abstract. Distribution of 2-additive functions under the condition
α(n) = k is investigated, where α(n) is the sum of digits in the binary
expansion of n.

1. Introduction and formulation of the theorems

Let ε_j(n) be the j' th digit in the binary expansion of n,

(1.1) \[n = \sum_{j=0}^{\infty} \varepsilon_j(n) \cdot 2^j, \quad \varepsilon_j(n) \in \{0, 1\}. \]

Let \(A_2 \) be the class of 2-additive and \(M_2 \) be the class of 2-multiplicative
functions.
A function \(f : \mathbb{N}_0(= \mathbb{N} \cup \{0\}) \rightarrow \mathbb{R} \) belongs to \(A_2 \), if

\[f(0) = 0, \text{ and } f(n) := \sum_{j=0}^{\infty} \varepsilon_j(n) f(2^j), \]

The research of second author supported in part by a grant from NSERC.
He died February 5, 2006.
The research of first author supported by the Applied Number Theory
Research Group of the Hungarian Academy of Sciences, the Hungarian National
Foundation for Scientific Research under grant OTKA T46993.
Mathematics Subject Classification: 11K65, 11P99, 11N37
and \(g : \mathbb{N}_0 \to \mathbb{C} \) belongs to \(\mathcal{M}_2 \), if

\[
g(0) = 1, \quad \text{and} \quad g(n) := \prod_{j=0}^{\infty} g(e_j(n) \cdot 2^j).
\]

Let \(\overline{\mathcal{M}}_2 \) be the set of those \(g \in \mathcal{M}_2 \) for which additionally \(|g(n)| = 1 \) \((n \in \mathbb{N}_0) \) holds.

Let \(\alpha(n) = \sum_{j=0}^{\infty} e_j(n) \) be the so called "sum of digits" function.

Let \(\mathcal{E}_{N,k} = \{ n < 2^N \mid \alpha(n) = k \} \), and

\[
\eta = \eta_{N,k} = \frac{k}{N}.
\]

Here we continue our work [1].

Theorem 1. Let \(g \in \overline{\mathcal{M}}_2 \) be such a function for which

\[
\sum_{j=0}^{\infty} (1 - g(2^j))
\]

is convergent. Let

\[
M_\eta := \prod_{j=0}^{\infty} ((1 - \eta) + g(2^j)\eta).
\]

Let \(\delta > 0 \) be a constant. Then

\[
\max_{\delta \leq \frac{k}{N} \leq 1 - \delta} \left| \frac{1}{N} \sum_{n \in \mathcal{E}_{N,k}} g(n) - M_{\eta_{N,k}} \right| \to 0 \quad (N \to \infty).
\]

Theorem 2. Let \(f \in \mathcal{A}_2 \) such that \(\sum f(2^j) \), \(\sum f^2(2^j) \) are convergent. Let \(\varphi_\eta(z) \) be the characteristic function of \(\Theta = \xi_0 + \xi_1 + \ldots \), where \(\xi_0, \xi_1, \ldots \) are independent random variables,

\[
P(\xi_0 = 0) = 1 - \eta, \quad P(\xi_0 = f(2^j)) = \eta.
\]
Thus
\[\varphi_\eta(\tau) = \prod_{j=0}^{\infty} \left((1 - \eta) + \eta \cdot e^{i\tau f(2^j)} \right). \]

Let \(F_\eta(y) \) be the distribution function of \(\Theta \).

Then
\[\max_{\delta \leq \tau \leq 1 - \delta} \sup_{y \in \mathbb{R}} \left| \frac{1}{N \choose k} \# \{ n \in \mathcal{E}_{N,k}, \ f(n) < y \} - F_\eta(y) \right| \rightarrow 0 \quad (N \to \infty). \]

Here \(\delta > 0 \) is an arbitrary small constant.

Theorem 3. Let \(f \in A_2, \ f(2^j) = O(1) \). Let \(A_N = \sum_{j=0}^{N-1} f(2^j), \ m_N(\eta) := \eta A_N, \)
\[\sigma_N^2(\eta) = (1 - \eta)\eta \sum_{j=0}^{N-1} \left(f(2^j) - \frac{A_N}{N} \right)^2 \]
\(\eta \in [\delta, \ (1 - \delta)], \ \delta > 0 \) be a constant.

Assume that \(\sigma_N^2 \left(\frac{1}{2} \right) \to \infty \quad (N \to \infty). \) Then
\[\lim_{N \to \infty} \sup_{\delta \in [\delta, \ 1 - \delta]} \sup_{y \in \mathbb{R}} \left| \frac{1}{N \choose k} \# \left\{ n \in \mathcal{E}_{N,k}, \ \left| \frac{f(n) - m_N(\frac{k}{N})}{\sigma_N(\frac{k}{N})} < y \right\} - \Phi(y) \right| = 0. \]

The proof of this last theorem is very similar to the proof of Theorem 3 in [1], so we omit it.

2. Proof of Theorem 1 and 2

It is enough to prove Theorem 1. Theorem 2 follows hence, if we consider \(g_\tau(n) = e^{i\tau f(n)} \) and apply Theorem 1.

The proof is almost the same as that of Theorem 2 in [1].
Let M be a large fixed integer, $\arg g(2^j) = h(2^j), \ h(2^j) \in [-\pi, \pi]$. From (1.2) we obtain that
\[
\sum |1 - g(2^j)|^2 < \sum h^2(2^j) < \infty,
\]
and that $\sum h(2^j)$ is convergent. Thus $g(2^j) \to 1 \ (j \to \infty)$. Let h be defined on \mathbb{N}_0 as a 2-additive function. Then $g(n) = e^{ih(n)}$.

Let
\[
g_M(n) = \prod_{j=0}^{M-1} g(\varepsilon_j(n) \cdot 2^j), \quad h_M(n) = \sum_{j=0}^{M-1} h(\varepsilon_j(n) \cdot 2^j),
\]

\[
h_M^*(n) = \sum_{j=M}^{N-1} h(\varepsilon_j(n) \cdot 2^j).
\]

We have
\[
\frac{1}{\binom{N}{k}} \sum_{n \in \mathcal{E}_{N,k}} h_M^*(n) = \sum_{j=M}^{N-1} h(2^j) \cdot \binom{N-1}{k-1} \cdot \binom{N}{k},
\]

\[
\frac{1}{\binom{N}{k}} \sum_{n \in \mathcal{E}_{N,k}} h_M^2(n) = \sum_{j=M}^{N-1} h^2(2^j) \cdot \binom{N-1}{k-1} \cdot \binom{N}{k} +
\]

\[
+ \sum_{M \leq j_1 < j_2 \leq N-1} \binom{N-1}{k-2} \cdot \binom{N}{k} \cdot h(2^{j_1}) h(2^{j_2}).
\]

Furthermore
\[
\frac{(N-1)}{\binom{N}{k}} = \frac{k}{N} = \eta, \quad \frac{(N-2)}{\binom{N}{k}} = \frac{k(k-1)}{N(N-1)} = \eta^2 \left(1 + O\left(\frac{1}{N}\right)\right).
\]
Hence we obtain that
\[
\frac{1}{N} \sum_{n \in \mathcal{E}_{N,k}} \left(h_M(n) - \eta \sum_{j=M}^{N-1} h(2^j) \right)^2 \ll \eta \sum_{j=M}^{N-1} h^2(2^j) + \frac{1}{N} \sum_{M \leq i, j \leq N-1} |h(2^i)| \cdot |h(2^j)|.
\]

The right hand side tends to zero as \(M \to \infty \). It implies that
\[
\limsup_{N \to \infty} \max_{\frac{1}{2} \leq \delta \leq 1-\delta} \left| \frac{1}{N} \sum_{n \in \mathcal{E}_{N,k}} (g(n) - g_M(n)) \right| = \Delta(M) \to 0 \quad \text{as } M \to \infty.
\]

To estimate \(\frac{1}{N} \sum_{n \leq 2N} g_M(n) \), we write each \(n \in \mathcal{E}_{N,k} \) as \(n = t + q^M m \).

For a fixed \(t, n \in \mathcal{E}_{N,k} \) if and only if \(m \in \mathcal{E}_{N-M, k-\alpha(t)} \), thus
\[
\frac{1}{N} \sum_{n \leq 2N} g_M(n) = \sum_{t=0}^{2^{M-1}} g(t) \cdot \frac{N-M}{(N/k)^{\alpha(t)}} =
\]
\[
= \sum_{t=0}^{2^{M-1}} g(t) \left(\frac{\eta}{1-\eta} \right)^{\alpha(t)} (1-\eta)^M (1+o_N(1)) =
\]
\[
= (1+o_N(1))(1-\eta)^M \sum_{t=0}^{2^{M-1}} g(t) \left(\frac{\eta}{1-\eta} \right)^{\alpha(t)} =
\]
\[
= (1+o_N(1))(1-\eta)^M \prod_{j=0}^{M-1} \left(1 + g(2^j) \frac{\eta}{1-\eta} \right) =
\]
\[
= (1+o_N(1)) \prod_{j=0}^{M-1} \left((1-\eta) + g(2^j)\eta \right).
\]
The relation is uniform as \(\frac{k}{N} \in [\delta, 1-\delta] \). Hence the theorem is immediate.
3. Final remarks

We can prove the following assertions.

Theorem 4. Let \(g \in \mathcal{M}_2, \delta > 0 \) and assume that there is a sequence \(k_N = k \) such that

\[
\frac{1}{\binom{N}{k}} \sum_{n \in \mathcal{E}_{N,k}} g(n) - M_{\eta_N,k} \to 0 \quad \text{as} \quad N \to \infty, \quad k = k_N.
\]

Then (1.2) is convergent.

Theorem 5. Let \(f \in \mathcal{A}_2, \delta > 0 \), and assume that for a suitable sequence \(k = k_N \) such that \(\eta \in (\delta, 1 - \delta) \) we have

\[
\sup_{y \in \mathbb{R}} \left| \frac{1}{\binom{N}{k}} \# \{ n \in \mathcal{E}_{N,k}, f(n) < y \} - F_{\eta_N,k}(y) \right| \to 0
\]

as \(N \to \infty, \ k = k_N \). Then the series \(\sum f(2^j), \sum f^2(2^j) \) are convergent.

We shall prove these assertions in more general form in a subsequent paper.

Reference

(Received March 20, 2006)
Distribution of 2-additive functions under some conditions

I. Kátaı
Department of Computer Algebra
Eötvös Loránd University
and Research Group of Applied
Number Theory of the
Hungarian of Academy of Sciences
Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
katai@compalg.inf.elte.hu

M.V. Subbarao
University of Alberta
Edmonton, Alberta T6G 2G1
m.v.subbarao@ualberta.ca