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THE CHARACTERIZATION OF n” AS A
MULTIPLICATIVE FUNCTION

I. KATAI (Budapest), member of the Academy and M. V. SUBBARAO {Edmonton)*

Abstract. the following assertion is proved. If f is a completely multiplica-
tive function taking values of modulus 1, such that the set £ of limit points of
f(n+1)f(n) has k < 3 distinct values, then f(n) =n"F(n) with some r € R,

and F*(n) =1 for every n.

1. Let M be the class of those complex valued completely multiplicative
functions f for which !f(n)l =1(n=1,2,...) holds true. For some f € M
let & denote the set of all those z € C for which there exists an infinite

sequence 1, — oo such that f(n, +1)f(n,) — z (v — co0) holds true. Let
S). be the set of the k-th roots of unity, i.e. S; = {w\wk = 1}. We shall

formulate the following conjectures.

CoNJECTURE 1. If f € M, £; is a finite set #(&f) =k, then & = Sy
and f(n) = n'"F(n) with some 7 € R, where F¥(n) =1 (n € N).

CONJECTURE 2. If f € M and &; is infinite, then & = {z||z] = 1}.

REMARKS. 1. Conjecture 2 is not true for the whole set of the multi-
plicative functions f with [f(n)| =1 (neN). Eg. let f(n)=1 for odd
integers, and f(2%) = e?™/* (k. =1,2,...).

2. Conjecture 1 for £; — {1} has been proposed by I. Kétai, and solved
by E. Wirsing in 1984. His proof is published in [1].

3. Conjecture 1 contains as a special case the following assertion, which
we formulate now as

CONJECTURE 3. Let F € M, F(N) € Si. Assume that there is an ng
for which F(ng) is a primitive k-th root of unity. Then { F(n+ 1)F(n)|
n e N} = 5.

THEOREM. Conjecture 1 is true for k=1,2,3.

2. PROOF. Let f € M and £ = {a1,..., o} be a [inite set, § = minz,
|oi — aj|. For every large n (n > ny, say), there is exactly one o € & for

* This paper was written during the first author’s stay in the University of Alberta

in 1997 as a visiting Research Professor, fully funded by the second author’'s NSERC grant.

0236-5294/98/$5.00 © 1998 Akadémiai Kiadd, Budapest



350 I. KATAI and M. V. SUBBARAO

which | f(n+1)f(n) — a| <. Let ¢(n) := a, i.e. ¢(n) is that element of £y
which is closest to f(n + 1)f(n). Since

bl

f(n+1)_f(dn+1 Hfdn+]+1)
fln) fldn +j)

therefore for each n > n1(d) we have
d—1

(2.1) c(n) = H c(dn + j).
=0

Furthermore f(n? —1)f(n?) = f(n +1)f(n)f(n — 1)f(n), whence
(2.2) eln—1)=cln)e(n? —=1) if n>ny

follows, where ns is a suitable constant.

The case k =1. Then & = {ay}. From (2.2) we get that af = oy, i.e.
a1 = 1, and we can refer to Wirsing’s theorem.

The case k=2. Let & ={oi,as}. Since the sequence {c(n)|
n=12,... } takes both of the values aq, ay infinitely many times, there-
fore both of (v, a2), (a2, 1) occur in (e(n —1),¢(n)) for infinitely many n.
Consequently, from (2.2) we get that a1@ € &, ana@; € &5,

Assume first that ooy = ay@y, i.e. that oz% = a%, whence as = —ag.
Since Ep2 = {a?, a2} = {a?}, from the already proved part of the theorem
(casc k = 1) we get that o} = 1,ie. & = {1, ~1}. Since f2(n+ 1)72(77,) — 1,
therefore, from Wirsing’s theorem f?(n) = n'", consequently (f(r)n="/?) 2
= 1. Thus the theorem is true for I'(n) = f(n)n="/2.

Assume now that a)@s # asa;. Then either a1 @ = o and ay@; = ay,
or ajtvo = xg and agd; = «. In the first case @y = @ = 1, which is impos-
sible. In the second case oy = a%, vy = aff, whence a1 = ofll, 1= ai’ follows.
If a3 =1, then as =1, and this is impossible. So we may assume that
1 ¢ &. But then c(n — 1) = ¢(n) cannot hold for n > ny (see (2.2)). We
have £; = {w,@}, where w is a primitive third root of unity. From (2.1) we
obtain that

cn) =c(2n)c(2n +1) if n>n(2),

and this with c(2m) # ¢(2n + 1) imnplies thal ¢(n) = 1. This is a contradic-
tion.
We proved the theorem for & = 2.
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The case k =3. Let & = {a1, a9, a3}. Let G(&y) denote the directed
graph with nodes aq, a, a3 which is obtained by drawing arrows from o,
to aj for all those a;,«; for which ¢(n — 1) = o;, ¢(n) = a; occurs for at
least one n > ny. From (2.2) we obtain that a; — «; implies that «,;@; € &;.
Moreover, if there is an integer n > n1(2) such that ¢(2n) = ay, ¢(2n +1)
= ay, then ooy € £ as well.

Case A. Assume that 1 & &;. Then there is no loop in G(&y), since
oy — @y would imply that 1 = o, @, € &;.

Since c(n) = c(2n)c(2n + 1), and ¢(n) = a; holds for infinitely many n
for every «; € &y, there exists o, and a,, v = v is not excluded, such that
o = Qyty. Since 1 & &y, therefore oy, # i, oy # ;. Since c(n) # c(n +1)
holds for n > na, therefore oy = asas, @y = aias, a3 = ajas. Multiplying
these inequalities we deduce that ajasas = (0110[20.’3)2, araaag = 1, whence
a? =1 (j =1,2,3) holds. This is impossible.

Case B. &5 = {1, a, 8}.

Case Bl. Let o = —1. Then £ = {1,-1, 3}, and there exist infinitely
many n for which c(n—1) € {1,-1} and c(n) =5 Consequently
¢(n — 1)é(n) = £5, i.e. either —3 € &, or § € &. This is impossible, since
ﬁ # /87 17 —1.

Case B2. Let —1 € £;. Then 8 = a. Indeed, if n is such a large integer

for which c(n — 1) =1, ¢(n) # 1, then by (2.2), ¢(n) € &;.

If ¢(n — 1) = ¢(n) = a or @ occurs for some n > na, then o? (or &@?) € &,
and so o = @ (or @ = «), whence &; = {1,w,w}, w is a primitive third root
of unity. In this case £73 = {1}, and by Wirsing’s theorem f3(n) = n'.

If there is such an n > ny(2) for which ¢(2n) = ¢(2n + 1) # 1, then we
are ready as well, since c¢(n) = ¢(2n)e(2n + 1), which implies that a; (or @°)
belongs to &7, and as above, we conclude that & = {1, a, @}.

Hence we may assume that at least one of the elements ¢(2n), ¢(2n + 1)
is 1, if n > n1(2).

We can formulate now the following consequences:

(1) Let ¢(n) =a (or @), n>2n1(2), ny = [5]. Then c(n1) = c(2n1)
c(2n1 + 1), consequently ¢(n1) = « (or @, respectively).

(2) If ¢(n) = a (or @), n > n1(2), then exactly one of c(2n), c(2n + 1) is
o (resp. @), the other equals 1.

(3) Let N be a large number for which ¢(N)=a (or =@). Let
N =E2M +£2M~1 4 | + &y be the binary expansion of N, N = £y + 2N,
Ny =&p-1+2N5,... . Then there is a constant K = 27 depending on f such
that ¢(N;) = o (resp. @) for all those j for which N; > K. Observe that
N; 2 % j—1. Since ¢(n) = « occurs for infinitely many n, therefore for every

large ¢ the interval [2¢,2F!) contains an integer N such that ¢(N) = o
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(4) Let N < N NU) ¢ [2¢, 2041 be such integers for which c(ND)
= ¢(N®)) =« (or @). Then N — N > 52;—

We consider only the case c( N(l)) = q. To prove this, define
N = [E2] (1=0,1,2,...). We have ¢(N”)) = a, while N/’ > K. Let
I be the smallest integer for which Nl(l) = NI(Q). Then NI(E)1 — Nl(i)l =1,
c(Nl(i)l) = c(Nl(i)l +1) = o From (3) we obtain that Nl(i)l < K. Since Nl(i)l
e [25. 55 it follows that N®) - N > ol(N?) - V1) 2202 &

(5) One can prove similarly, that, if N < N3, c(N(l)) =&, c(N(z))
=¢, £ € {a,a}, then

N

N@ N > T

(6) From (4) and (5) we obtain immediately: for each fixed integer d
there is a constant m(d) such that for both values of £ = a, @,

—if n >m(d) and c(n) =&, then ¢ ([2]) = ¢,

—if N > m(d) and ¢(n) = & then one of ¢(dn+j) (j =0,...,d - 1) is €.

To finish the proof we deduce that ¢(2") = o = & holds for every large u.
This is impossible, since a # *1.

Let u be fixed, N be an integer such that c¢(N)=a, and
N > maxXyuggeoutr n1(d). Let N, be defined by N = N;2° +1, (0 S 1, < 2°),
where 2% < N, < 2%T1. Then, by (2.1), and from (6) we obtain that ¢ ([N%D

= . Since & =2° + (—?, [%] =25+ f,0Z5 f < 2°7", therefore

SR (AR

Starting from such an N for which ¢(N) = @, we deduce that @ = ¢(2").
The proof is complete.
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