THE CHARACTERIZATION OF n^{ir} AS A MULTIPLICATIVE FUNCTION

I. KÁTAI (Budapest), member of the Academy and M. V. SUBBARAO (Edmonton)*

Abstract. the following assertion is proved. If f is a completely multiplicative function taking values of modulus 1, such that the set $\mathcal E$ of limit points of $f(n+1)\overline{f}(n)$ has $k \leq 3$ distinct values, then $f(n) = n^{ir}F(n)$ with some $r \in \mathbf{R}$, and $F^k(n) = 1$ for every n.

1. Let \mathcal{M} be the class of those complex valued completely multiplicative functions f for which |f(n)| = 1 (n = 1, 2, ...) holds true. For some $f \in \mathcal{M}$ let \mathcal{E}_f denote the set of all those $z \in \mathbf{C}$ for which there exists an infinite sequence $n_{\nu} \to \infty$ such that $f(n_{\nu}+1)\overline{f}(n_{\nu}) \to z \ (\nu \to \infty)$ holds true. Let S_k be the set of the k th roots of unity, i.e. $S_k - \{\omega | \omega^k - 1\}$. We shall formulate the following conjectures.

Conjecture 1. If $f \in \overline{\mathcal{M}}$, \mathcal{E}_f is a finite set $\#(\mathcal{E}_f) - k$, then $\mathcal{E}_f = S_k$ and $f(n) = n^{i\tau} F(n)$ with some $\tau \in \mathbf{R}$, where $F^k(n) = 1$ $(n \in \mathbf{N})$.

CONJECTURE 2. If $f \in \mathcal{M}$ and \mathcal{E}_f is infinite, then $\mathcal{E}_f = \{ |z| |z| = 1 \}$.

REMARKS. 1. Conjecture 2 is not true for the whole set of the multiplicative functions f with |f(n)| = 1 $(n \in \mathbb{N})$. E.g. let f(n) = 1 for odd integers, and $f(2^k) = e^{2\pi i/k}$ (k = 1, 2, ...). 2. Conjecture 1 for $\mathcal{E}_f - \{1\}$ has been proposed by I. Kátai, and solved

- by E. Wirsing in 1984. His proof is published in [1].
- 3. Conjecture 1 contains as a special case the following assertion, which we formulate now as

Conjecture 3. Let $F \in \overline{\mathcal{M}}$, $F(\mathcal{N}) \subseteq S_k$. Assume that there is an n_0 for which $F(n_0)$ is a primitive k-th root of unity. Then $\{F(n+1)\overline{F}(n)\mid$ $n \in \mathbf{N} \} = S_k.$

THEOREM. Conjecture 1 is true for k = 1, 2, 3.

2. PROOF. Let $f \in \overline{\mathcal{M}}$ and $\mathcal{E}_f = \{\alpha_1, \dots, \alpha_k\}$ be a finite set, $\delta = \min_{i \neq j} \beta_i$ $|\alpha_i - \alpha_j|$. For every large n $(n > n_0, \text{ say})$, there is exactly one $\alpha \in \mathcal{E}_f$ for

0236-5294/98/\$ 5.00 © 1998 Akadémiai Kiadó, Budapest

^{*} This paper was written during the first author's stay in the University of Alberta in 1997 as a visiting Research Professor, fully funded by the second author's NSERC grant.

which $|f(n+1)f(n) - \alpha| < \delta$. Let $c(n) := \alpha$, i.e. c(n) is that element of \mathcal{E}_f which is closest to $f(n+1)\overline{f}(n)$. Since

$$\frac{f(n+1)}{f(n)} = \frac{f(d(n+1))}{f(dn)} - \prod_{i=0}^{d-1} \frac{f(dn+j+1)}{f(dn+j)},$$

therefore for each $n > n_1(d)$ we have

(2.1)
$$c(n) = \prod_{j=0}^{d-1} c(dn+j).$$

Furthermore $f(n^2-1)\overline{f}(n^2)=f(n+1)\overline{f}(n)f(n-1)\overline{f}(n)$, whence

(2.2)
$$c(n-1) = c(n)c(n^2 - 1)$$
 if $n > n_2$

follows, where n_2 is a suitable constant.

The case k = 1. Then $\mathcal{E}_f = \{\alpha_1\}$. From (2.2) we get that $\alpha_1^2 = \alpha_1$, i.e. $\alpha_1 = 1$, and we can refer to Wirsing's theorem.

The case k=2. Let $\mathcal{E}_f = \{\alpha_1, \alpha_2\}$. Since the sequence $\{c(n) \mid n=1,2,\ldots\}$ takes both of the values α_1, α_2 infinitely many times, therefore both of (α_1, α_2) , (α_2, α_1) occur in (c(n-1), c(n)) for infinitely many n. Consequently, from (2.2) we get that $\alpha_1\overline{\alpha}_2 \in \mathcal{E}_f$, $\alpha_2\overline{\alpha}_1 \in \mathcal{E}_f$.

Assume first that $\alpha_1\overline{\alpha}_2=\alpha_2\overline{\alpha}_1$, i.e. that $\alpha_1^2-\alpha_2^2$, whence $\alpha_2--\alpha_1$. Since $\mathcal{E}_{f^2}=\{\alpha_1^2,\alpha_2^2\}=\{\alpha_1^2\}$, from the already proved part of the theorem (case k=1) we get that $\alpha_1^2=1$, i.e. $\mathcal{E}_f=\{1,-1\}$. Since $f^2(n+1)\overline{f}^2(n)\to 1$, therefore, from Wirsing's theorem $f^2(n)=n^{ir}$, consequently $\left(f(n)n^{-ir/2}\right)^2-1$. Thus the theorem is true for $F(n)-f(n)n^{-ir/2}$.

Assume now that $\alpha_1 \overline{\alpha}_2 \neq \alpha_2 \overline{\alpha}_1$. Then either $\alpha_1 \overline{\alpha}_2 = \alpha_1$ and $\alpha_2 \overline{\alpha}_1 = \alpha_2$, or $\alpha_1 \overline{\alpha}_2 = \alpha_2$ and $\alpha_2 \overline{\alpha}_1 = \alpha_1$. In the first case $\overline{\alpha}_2 = \overline{\alpha}_1 = 1$, which is impossible. In the second case $\alpha_1 = \alpha_2^2$, $\alpha_2 = \alpha_1^2$, whence $\alpha_1 = \alpha_1^4$, $1 = \alpha_1^3$ follows. If $\alpha_1 = 1$, then $\alpha_2 = 1$, and this is impossible. So we may assume that $1 \notin \mathcal{E}_f$. But then c(n-1) = c(n) cannot hold for $n > n_2$ (see (2.2)). We have $\mathcal{E}_f = \{\omega, \overline{\omega}\}$, where ω is a primitive third root of unity. From (2.1) we obtain that

$$c(n) = c(2n)c(2n+1)$$
 if $n > n_1(2)$,

and this with $c(2m) \neq c(2n+1)$ implies that c(n) = 1. This is a contradiction.

We proved the theorem for k=2.

Acta Mathematica Hungarica 81, 1998

The case k=3. Let $\mathcal{E}_f=\{\alpha_1,\alpha_2,\alpha_3\}$. Let $G(\mathcal{E}_f)$ denote the directed graph with nodes $\alpha_1,\alpha_2,\alpha_3$ which is obtained by drawing arrows from α_i to α_j for all those α_i,α_j for which $c(n-1)=\alpha_i,\ c(n)=\alpha_j$ occurs for at least one $n>n_2$. From (2.2) we obtain that $\alpha_i\to\alpha_j$ implies that $\alpha_i\overline{\alpha}_j\in\mathcal{E}_f$. Moreover, if there is an integer $n>n_1(2)$ such that $c(2n)=\alpha_u,\ c(2n+1)=\alpha_v$, then $\alpha_u\alpha_v\in\mathcal{E}_f$ as well.

Case A. Assume that $1 \notin \mathcal{E}_f$. Then there is no loop in $\mathcal{G}(\mathcal{E}_f)$, since $\alpha_u \to \alpha_u$ would imply that $1 = \alpha_u \overline{\alpha}_u \in \mathcal{E}_f$.

Since c(n) = c(2n)c(2n+1), and $c(n) = \alpha_i$ holds for infinitely many n for every $\alpha_i \in \mathcal{E}_f$, there exists α_u and α_v , u = v is not excluded, such that $\alpha_i = \alpha_u \alpha_v$. Since $1 \notin \mathcal{E}_f$, therefore $\alpha_u \neq \alpha_i$, $\alpha_v \neq \alpha_i$. Since $c(n) \neq c(n+1)$ holds for $n > n_2$, therefore $\alpha_1 = \alpha_2 \alpha_3$, $\alpha_2 = \alpha_1 \alpha_3$, $\alpha_3 = \alpha_1 \alpha_2$. Multiplying these inequalities we deduce that $\alpha_1 \alpha_2 \alpha_3 = (\alpha_1 \alpha_2 \alpha_3)^2$, $\alpha_1 \alpha_2 \alpha_3 = 1$, whence $\alpha_i^2 = 1$ (j = 1, 2, 3) holds. This is impossible.

Case B. $\mathcal{E}_f = \{1, \alpha, \beta\}.$

Case B1. Let $\alpha = -1$. Then $\mathcal{E} = \{1, -1, \beta\}$, and there exist infinitely many n for which $c(n-1) \in \{1, -1\}$ and $c(n) = \beta$. Consequently $c(n-1)\overline{c}(n) = \pm \overline{\beta}$, i.e. either $-\overline{\beta} \in \mathcal{E}_f$, or $\overline{\beta} \in \mathcal{E}_f$. This is impossible, since $\overline{\beta} \neq \beta, 1, -1$.

Case B2. Let $-1 \notin \mathcal{E}_f$. Then $\beta = \overline{\alpha}$. Indeed, if n is such a large integer for which c(n-1) = 1, $c(n) \neq 1$, then by (2.2), $\overline{c(n)} \in \mathcal{E}_f$.

If $c(n-1) = \overline{c(n)} = \alpha$ or $\overline{\alpha}$ occurs for some $n > n_2$, then α^2 (or $\overline{\alpha}^2$) $\in \mathcal{E}_f$, and so $\alpha^2 = \overline{\alpha}$ (or $\overline{\alpha}^2 = \alpha$), whence $\mathcal{E}_f = \{1, \omega, \overline{\omega}\}$, ω is a primitive third root of unity. In this case $\mathcal{E}_{f^3} = \{1\}$, and by Wirsing's theorem $f^3(n) = n^{ir}$.

If there is such an $n > n_1(2)$ for which $c(2n) = c(2n+1) \neq 1$, then we are ready as well, since c(n) = c(2n)c(2n+1), which implies that α_2 (or $\overline{\alpha}^2$) belongs to \mathcal{E}_f , and as above, we conclude that $\mathcal{E}_f = \{1, \alpha, \overline{\alpha}\}$.

Hence we may assume that at least one of the elements c(2n), c(2n+1) is 1, if $n > n_1(2)$.

We can formulate now the following consequences:

- (1) Let $c(n) = \alpha$ (or $\overline{\alpha}$), $n > 2n_1(2)$, $n_1 = \left[\frac{n}{2}\right]$. Then $c(n_1) = c(2n_1)$ $c(2n_1 + 1)$, consequently $c(n_1) = \alpha$ (or $\overline{\alpha}$, respectively).
- (2) If $c(n) = \alpha$ (or $\overline{\alpha}$), $n > n_1(2)$, then exactly one of c(2n), c(2n+1) is α (resp. $\overline{\alpha}$), the other equals 1.
- (3) Let N be a large number for which $c(N) = \alpha$ (or $= \overline{\alpha}$). Let $N = \mathcal{E}_0 2^M + \mathcal{E}_1 2^{M-1} + \ldots + \mathcal{E}_M$ be the binary expansion of N, $N = \mathcal{E}_M + 2N_1$, $N_1 = \mathcal{E}_{M-1} + 2N_2, \ldots$. Then there is a constant $K = 2^T$ depending on f such that $c(N_j) = \alpha$ (resp. $\overline{\alpha}$) for all those f for which $N_j > K$. Observe that $N_j \geq \frac{1}{2}N_{j-1}$. Since $c(n) = \alpha$ occurs for infinitely many f, therefore for every large f the interval f contains an integer f such that f contains f contains an integer f such that f contains f contains an integer f such that f contains f

(4) Let $N^{(1)} < N^{(2)}, N^{(j)} \in [2^t, 2^{t+1}]$ be such integers for which $c(N^{(1)})$ $= c(N^{(2)}) = \alpha \text{ (or } \overline{\alpha}). \text{ Then } N^{(2)} - N^{(1)} > \frac{2^t}{2^T}.$

We consider only the case $c(N^{(1)}) = \alpha$. To prove this, define $N_l^{(j)} = \left[\frac{N_l^{(G)}}{2^l}\right] (l = 0, 1, 2, ...).$ We have $c(N_l^{(j)}) = \alpha$, while $N_l^{(j)} > K$. Let l be the smallest integer for which $N_l^{(1)} = N_l^{(2)}$. Then $N_{l-1}^{(2)} - N_{l-1}^{(1)} = 1$, $c(N_{l-1}^{(1)}) = c(N_{l-1}^{(1)} + 1) = \alpha$. From (3) we obtain that $N_{l-1}^{(1)} \leq K$. Since $N_{l-1}^{(1)}$ $\in \left[\frac{2^{t}}{2^{l-1}}, \frac{2^{t+1}}{2^{l-1}}\right], \text{ it follows that } N^{(2)} - N^{(1)} > 2^{l} \left(N^{(2)}_{l-1} - N^{(1)}_{l-1}\right) \ge 2^{l} \ge \frac{2^{t}}{2^{T}}.$ $(5) \text{ One can prove similarly, that, if } N^{(1)} < N^{(2)}, c(N^{(1)}) = \xi, c(N^{(2)})$

 $=\overline{\xi},\,\xi\in\{\alpha,\overline{\alpha}\},\,$ then

$$N^{(2)} - N^{(1)} > \frac{N^{(1)}}{2^T}.$$

- (6) From (4) and (5) we obtain immediately: for each fixed integer dthere is a constant m(d) such that for both values of $\xi = \alpha, \overline{\alpha}$,
 - if n > m(d) and $c(n) = \xi$, then $c\left(\left[\frac{n}{d}\right]\right) = \xi$,
 - if N > m(d) and $c(n) = \xi$ then one of c(dn+j) $(j=0,\ldots,d-1)$ is ξ .

To finish the proof we deduce that $c(2^u) = \alpha = \overline{\alpha}$ holds for every large u. This is impossible, since $\alpha \neq \pm 1$.

Let u be fixed, N be an integer such that $c(N) = \alpha$, and $N > \max_{2^u \le d < 2^{u+1}} n_1(d)$. Let N_s be defined by $N = N_s 2^s + l_s$ $(0 \le l_s < 2^s)$, where $2^u \leq \overline{N}_s < 2^{u+1}$. Then, by (2.1), and from (6) we obtain that $c\left(\left\lceil \frac{N}{N_s} \right\rceil\right)$ $=\alpha$. Since $\frac{N}{N_s}=2^s+\frac{l_s}{N_s}, \left[\frac{N}{N_s}\right]=2^s+f, 0 \leq f < 2^{s-u}$, therefore

$$\alpha = c \left(\left[\frac{1}{2^{s-u}} \left[\frac{N}{N_s} \right] \right] \right) = c(2^u).$$

Starting from such an N for which $c(N) = \overline{\alpha}$, we deduce that $\overline{\alpha} = c(2^u)$. The proof is complete.

Reference

[1] E. Wirsing, Tang Yuansheng and Shao Pintshung, On a conjecture of Kátai for additive functions, J. Number Theory, **56** (1996), 391–395.

(Received May 15, 1997)

DEPARTMENT OF COMPUTER ALGEBRA EÖTVÖS LORÁND UNIVERSITY MÚZEUM KRT. 6-8. H-1088 BUDAPEST HUNGARY

DEPARTMENT OF MATHEMATICAL SCIENCES UNIVERSITY OF ALBERTA EDMONTON, ALBERTA CANADA T6G 2G1