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THE IDENTICAL EQUATION IN +P-PRODUCTS 

V. SITARAMAIAH AND M. V. SUBBARAO 

(Communicated by William W. Adams) 

ABSTRACT. In Bull. Amer. Math. Soc. 36 (1930), 762-772, R. Vaidyanatha- 
swamy established a remarkable identity valid for any multiplicative arithmetic 
function and involving Dirichlet convolution. D. H. Lehmer (Trans. Amer. 
Math. Soc. 33 (1931), 945-952) introduced a very general class of arithmeti- 
cal convolutions, called b-products, which include the well-known Dirichlet 
products, Eckford Cohen's unitary convolutions, and in fact Narkiewicz's so- 
called regular A-convolutions. In this paper, we establish an identical equa- 
tion valid for multiplicative arithmetic functions and Lehmer's i-convolutions 
which yields, as special cases, all known identical equations valid for the Dirich- 
let and unitary convolutions, besides establishing identical equations for several 
new convolutions. 

1. INTRODUCTION 

An arithmetic function is a complex-valued function whose domain is the set 
of positive integers Z+. The set of all arithmetic functions will be denoted by F. 
If f E F, then as usual, f is said to be multiplicative if f(1) = 1 and f(mn) = 
f (m)fr(n), for all positive integers m and n with (m, n) = 1; here the symbol (a, b) 
stands for the greatest common divisor of a and b. 

In 1930, R. Vaidyanathaswamy (see [11] and [12, Section VI]) established the 
following remarkable identity valid for any multiplicative function and known as the 
identical equation for multiplicative functions: If f is any multiplicative function, 
then for any positive integers m and n, we have 

(1.1) f (mn) = E f (m/a)f (n/b)f -1(ab)G(a, b), 
aim 
bin 

where f 1 is the inverse of f with respect to the familiar Dirichlet convolution i.e., 

Ef(d)f (m/d) = e(m), 
dim 
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for all positive integers m, where 

(1.2) (f) 1, if m= 1, 

and 

(1.3) G(ab) {((1)w(a)) 
if -y(a) =-y(b), 

(a otherwise; 

w(a) being the number of distinct prime factors of a, -y(a) the product of distinct 
prime factors of a with w(1) = 0 and -y(l) = 1. 

The identical equation (1.1) attracted the attention of many mathematicians. 
A. A. Gioia [2] and M. Sugunamma (cf. [10, page 30]) offered different proofs of 
(1.1) while M. V. Subbarao and A. A. Gioia [9] and P. J. McCarthy [6] generalized 
(1.1), in different directions (see also K. Krishna [4]). 

A divisor d of m is said to be a unitary divisor [1] if (d, m/d) = 1 and in such a 
case we write djIm. 

It has been observed by M. V. Subbarao and A. A. Gioia [9] that the unitary 
analogue of (1.1) is true i.e., whenever m and n are relatively prime and f is 
multiplicative we have 

(1.4) f(mn) = E f(m/a)fr(n/b)(f *)-l(ab)G(a, b), 
aim 

bjlm 

where (f is the inverse of f with respect to the unitary convolution [1]; that 
is, 

Zf(d)(f7*)-(m/d) = e(m). 
dllm 

In fact, M. V. Subbarao and A. A. Gioia noted that (cf. [9, p. 70]) the identity 
in (1.4) reduces to a triviality in the sense that the right-hand side of (1.4) can 
be evaluated without much difficulty since (f *)-1(m) = (-1)w(m)f(m). They also 
established a non-trivial identity (cf. [9, Theorem 2]) in the case of unitary products. 

As a generalization of the Dirichlet and unitary convolutions, W. Narkiewicz [7] 
introduced the concept of a regular A-convolution. It is interesting to note that the 
A-analogue of (1.1) is also true which has in fact been established by P. Haukkanen 
(cf. [3, Theorem 1.4.8], G = 2+) in a slightly more general setting. However, we 
mention here only the A-analogue of (1.1): If f is a multiplicative function, then 
we have for m E A(mn), 

(1.4') f(mn) = E f(m/a)f(n/b)fX 1(ab)G(a, b), 
aEA(m) 
bEA(n) 

where f.-' is the inverse of f with respect to the regular A-convolution, so that 

Z f (d)fX1'(m/d) = e(m). 
dEA(m) 

Let T be a non-empty subset of 2+ x 2+ and let 4: T -+ 2+ be a mapping 
satisfying the following conditions: 

(1.5) For each n E 2+, 4(x, y) = n has a finite number of solutions. 
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(1.6) If (x, y) E T, then (y, x) E T and we have ['(x, y) = (y, x). 
(1.7) The statement "(x, y) E T, (O(x, y), z) E T" and "(y, z) E T, (x, 4(y, z)) E T" 

are equivalent; if one of these conditions holds, we have 

0/(Ox, y), z) = 0/(x, 'Wy, z)). 

(1.8) For each k E 2+, (1, k) E T and 0(1, k) = k. 

If If, g E F, then the p-product of f and g denoted by f Og is defined by 

(1.9) (f g)(n) = E f (x)g(y), 
V)(x,y)=n 

for each n E 2+. 
The binary operation / in (1.9) is due to D. H. Lehmer [5]. It is not difficult to 

show that (see [5]) the triple (F, +, 4) is a commutative ring with unity e where e 
is as given in (1.2) and '+' denotes the usual pointwise addition. 

Let 4'(x, y) = xy for all (XI y) E T. If T = E+ x 2+, then from (1.9) it is clear 
that 4 reduces to the Dirichlet convolution. If T = {(a, b) E 2+ x 2+: a and b are 
relatively prime}, then 4 reduces to the unitary convolution [1]. More generally, 
if A is Narkiewicz's regular convolution [7] and T = U =1{(x, n/x): x E A(n) 
then 4 reduces to the A-convolution. Examples show that the binary operation 4 
of D. H. Lehmer [5] is more general than that of Narkiewicz's A-convolution. 

The object of the present paper is to obtain a '4-analogue' of the identical 
equation (1.1). 

When T = 2+ x 2+ and 4'(xy) = xy on T, the result in (1.1) can be restated 
as follows: If f is multiplicative, then for any pair (m, n) E T, we have 

(1.10) f (+(m, n)) = E f(x) f (y) f -(4(a, b))G(a, b). 
V)(air)=m 
fb(b,y)=n 

It is clear that we obtain the results in (1.4) and (1.4'), by taking T = {(a, b) E 
Z+ x 2+: a and b are relatively prime}, T = U`=I{(xI n/x): x E A(n)}, where A 
is a Narkiewicz convolution and 0 (x, y) = Xy on T in (1.10) successively. 

In the case of Dirichlet, unitary or more generally that of a regular convolution, 
whenever f is multiplicative, f` exists and is also multiplicative (cf. [7]). When 
we are aiming at (1.10), of course, we need a 9-function in which such a property 
is there. Moreover, the Dirichlet or unitary or in general a regular convolution is 
multiplicativity preserving in the sense that whenever f and g are multiplicative, 
then the corresponding product in each of these convolutions is also multiplicative. 
For an efficient evaluation of the right-hand side of (1.10), we are forced to consider 
the binary operation 4' which is multiplicativity preserving, that is, we need a ' in 
which f4'g is multiplicative whenever f and g are so. With an additional restriction 
on 4 (apart from the conditions (1.5)-(1.8)), namely, 4'(x, y) ? max{x, y}, for all 
(XI y) E T, in [8], we observed that (see ?2, Lemmas 2.1 and 2.2) the characterization 
of multiplicativity-preserving 4-functions is possible. Unfortunately, even when 4' 
is multiplicativity preserving and in which f1` is multiplicative whenever f is so, 
the identity in (1.10) may not hold (see Remark 3.3). This leads us to impose 
further restrictions on 4' (see section 3). However, even with these restrictions, 
we can obtain examples of 4-functions other than the familiar 4'(x, y) = xy (see 
Remark 3.2) for which an identical equation holds. 
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Section 2 deals with the preliminaries. Section 3 is devoted to the main result 
of this paper. 

2. PRELIMINARIES 

First we have 

Lemma 2.1 (cf. [8], Theorem 3.1). Let A: T -+ Z+ be a mapping satisfying (1.5)- 
(1.8). Also, let 4'(x, y) > max{x, y} for all (x, y) E T. Suppose that the binary op- 
eration b in (1.9) preserves multiplicativity, that is, whenever f, g E F and are mul- 
tiplicative then so is f g. If X = fHr>I p" and y = Hr> pi, where PI, P2, . . Pr 
are distinct primes, and ai and /3i are non-negative integers, we have 

(a) (x,y)ETif and only if (p",pOi)eTfori=1,2,...,r. 
(b) For each prime p and non-negative integers a, / such that (pa, pt) E T, there 

is a unique non-negative integer Op(a, /) > max{oa, /3} such that V (pa,pa) - 

op 01 (a) 

(c) If (x, y) E T, then 

r 

(2.1) +(,a)=Ip0i (Cei'00. 
i=1 

Lemma 2.2 (cf. [8], Theorem 3.2). Let T C Z+ x Z+ be such that 

(a) (1, x) E T for every x E Z 
(b) (x, y) E T if and only if (y, x) E T. 
(c) If x and y are as given in Lemma 2.1, then (x, y) E T if and only if (p, i, ph) E 

T, for i = 1,2, ... ,r. 

Further, for each prime p and non-negative integers a, / such that (pa, p'P) E T, let 
Op (a, /) be a non-negative integer satisfying 

(d) Op(ce, /) > max{a, /}. 
(e) Op (a, /) = O if and only if a = 3 = O. 

(f) Op(O, a) = 0, for every a > 0. 
(g) Op(a, $) = op (/, o). 
(h) For non-negative integers a, 13, My and for any prime p, the statements " '(p3, p) 

E T,(p Cp0P(I'-)) E T" and "(pa,p/) E T and (poP(acI3),p7) E T" are 
equivalent; when one of these conditions holds, we have Op(a, Op(/,-y)) = 

OP (OP (aX A ), aY) 

If for (x, y) E T, /(x, y) is defined by (2.1), then (F, + ) is a commutative ring 
with unity e and f Og is multiplicative whenever f and g are so. 

Lemma 2.3 (cf. [8], Theorem 3.3). Let T and 4 be as in Lemma 2.2. If f is mul- 
tiplicative and Sf (k) $ 0 for all k E 2+, where Sf (k) = 

ZV5(x k)=k f (x) then fl 
is also multiplicative. 

Remark 2.1. If 4 satisfies the hypothesis of Lemma 2.2 and for each k E E+, 4 (x, k) 
= k if and only if x = 1, then Lemma 2.3 shows that f -1 is multiplicative whenever 
f is so. We note that the condition "4'(x, k) = k if and only if x = 1" is equivalent 
to saying that for each prime p, "Op (a, /) = a if and only if /3 = 0". 
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3. THE p-ANALOGUE OF THE IDENTICAL EQUATION 

We prove the following: 

Theorem. Let T, $ and Op be as in Lemma 2.2. Further we assume that for each 
prime p, we have 

(3.1) (a) Op (a, A) = Op (a, y) implies that: = ty. 

(3.2) (b) Op(a, b) = Op(x, y) implies that x = Op(a, c) 

for some c > 0 or y = Op(b, d) for some d > 0. 

If f is multiplicative, then for any positive integers m and n such that (m, n) E T, 
we have 

(3.3) f( (m, n)) = E f(x)f(y)f 1(4(a, b))G(a, b), 
qP(a,x)=m 
V)(b,y)=n 

where G(a, b) is as given in (1.3). 

Proof. Since Op (a, 0) = a for each prime p and a > 0, the condition (3.1) implies 
that for each prime p, Op(a, 3) = a if and only if / = 0. Therefore Remark 2.1 
shows that f 1 exists and is multiplicative, since f is so. 

Let m = Hi P" and n = Hr> pi where P1 , P2, . .., Pr are distinct primes and 
ai, i 2,C , ar, if l, 02,... O, Or are non-negative integers. We have by (2.1), 

r r 

(3.4) f(f(m, n)) = f =f(pPt(ia) 

i=l i=l 
where we have used the fact that f is multiplicative. Let H(m, n) denote the 
right-hand side of (3.3). We have 

H(m, n) = E ( ) ( ) 

OPi (ab ,yx)=ozj 
OPi (bj ,yj)=/h 

1<i<r 

r 

(.) S f(Pii)f(pYi)f4 (ap b ))G(pai pbi) 

r 

= H E f (Pi ) f (Pi ) f Op (Pib) )G (Pai , Pi ) 
ilOpi (aj,xj)=cj 

Opi (bjvyj)=0j 

r 

= lH(jgiafp i). 
i= 1 

In view of (3.4) and (3.5), it is enough to prove (3.3) when m = pa and n =pa 

where p is a prime and a and / are non-negative integers such that (pa, pO) E T. 
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If m = 1 or n = 1, (3.3) follows trivially. Hence we may assume that ae and 13 are 
positive integers. Since p is fixed, we write 0 for Op. From (3.3) and (1.3), we have 

H(p a, p13) = 3 f (p12 )f (p,32)f -1 (po(a1131))G(pa1,p131) 

O(a1 ,a2)=a 

(3.6) O(131,132)=0 
(3-6) 

~ 0~()() _ f(p12) f(p02)f-1(pO(a1,01)) 

6(a1,a2)=a 06(31,02)=0 
al >>O 1 >0 

Let ai > 0 be such that 0(al,ca2) = a for some a2. We have 

(3.7) 0 = e(p0(al13)) S f-l(pX)f(p). 
O(x,y)=O(a,,3) 

Let 

(3.8) S = {(x, y): 0(x, y) = 0(cei13)}, 

(3.9) Li = {(0(ce1, 11), 132): 0(011, 2) = }, 

and 

(3.10) L2= {(b, 0(a, 3)): 0(a, b) = a,}. 

Using the assumptions (3.1) and (3.2), it is not difficult to show that 

(3.11) S=L1UL2, L1 nL2 = {(a ,13)} 

and 

(3.12) Li - {(ai, i)} = {(0(a1, 31), 12): 9(011, 32) = 13,d1 > 0}. 

From (3.8)-(3.12) and (3.7) it follows that 

0= 5 fl(pV)f(PY) 
O($09)=O(Q1 ,0) 

- E f-1f(pO(Q1,13))f(pO2) + 5 f-l(pb)f(pO(a, 0)) 
O(01,02)=0 O(,b)= 

01 >0 

so that 

(3.13) 5 
f(pO2)f-4(pO(Qt1,01)) 

- - 5 f- l(Pb )f(P (a, )) 
O13i,>2)=O (ab)=l 

1, >0 
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From (3.13)-, we have 

E f(p02) > f(p/32)f-l(pO(a 1/31)) 

9(C91,ca2)=ca O(031,f2)=3 
?01 >0 31 >0 

= - >3 f(pQa2) > f-l(pb)f(pG(a),3)) 

O(al1,a2)=a O(a,b)=aj 
(x 1>O 

= >3 E 
Ef(pC12) 

> - 1l(pb) f (pO(a,/)) + d 
(p)f(P) 

(3-14) 
O~~~(a1 ,a2)=a O(a,b)=le 

(3.1>3 E f(pa2)f-l(pb)f (pO(a?,/3)) + f(pa)f(p ) 

O(a,0(b,a2))=a 

= >3E f (pO(a,3)) > E-l(pb)f (pa2) + f(p)f(p/) 

O(a,r)=ca O(b,cZ2)=r 

>3E f(pO(a, /)e(Pr) + f (p)f (p) 
0(a,r)=cx 

-f(P O(Q')) + f(P)f(PO). 

Putting (3.14) into (3.6) we obtain that 

H(p', p 3) = f (p- '))7 

which proves the theorem. 

Remark 3.1. Let A be a regular convolution [7], and T = U'=I{(x, n/x): x E 
A(n)}. Let f: T -+ Z+ be defined by '(x, y) = xy so that for each prime p and 
non-negative integers ae and / such that (pa, p/) E T, O(p(ao, ) = a + /3. It is not 
difficult to show that the assumptions (2.1) and (3.2) are satisfied. In this case, the 
identity in (3.3) reduces to (1.4') which is due to P. Haukkanen (cf. [3, Theorem 
1.4.8], G = Z+) as already mentioned in the introduction. Taking A(m) = the set 
of all divisors of m for each m in (1.4'), we obtain (1.1), and if A(m) = the set of 
all unitary divisors of m for each m, in (1.4'), we obtain (1.4). 

Remark 3.2. We fix a prime p. We define Op(0, 0) = 0. If n is a positive integer 
+ 3, we define Op(x, y) = n if and only if (x, y) E {(0, n), (7n, 0)}. If n = 3, we define 
Op(x, y) = 3, if and only if (x, y) E {(0, 3), (3, 0), (1, 1)}. For a prime q + p, Oq(a, /) 
is defined in such a way that Oq satisfies the conditions (d)-(h) of Lemma 2.2 and 
the conditions (2.1) and (3.2). The set T and the corresponding function 4' can be 
defined with the aid of Lemma 2.2. It is not difficult to show that Op satisfies the 
conditions (d)-(g) of Lemma 2.2, (2.1) and (3.2). The function 4' so constructed is 
clearly different from the function 4'(x, y) = xy and yet satisfies the hypothesis of 
the theorem. 

Remark 3.3. Let T = Z+ x 2+. For each prime p, let Op((a,) = e + / + ac/ 
for non-negative integers oa and /3. It is not difficult to show that Op satisfies 
the conditions (d)-(h) of Lemma 2.2 and the condition (2.1). Also Op does not 
satisfy the condition (3.2). Let 4 be defined by (2.1). Lemma 2.2 shows that 
4 is multiplicativity preserving and Lemma 2.3 shows that f1- is multiplicative 
whenever f is so. Let f(x) = x for all x E Z+. Taking a = 1 and /3 = 2 in (3.6), 
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we obtain 

H(p, p2)=p3- S pa2 5 p 2f-1(p'1+I31+C1i31) 

Op(cla,ca2)=1 op(131,132)=2 

a, >? 1 >0 

(3.15) = p3 5 E p a2 p2f-1 (pC+/31+01C10) 

(Cll+1)(012+1)=2 (01+1)(02+1)=3 
Ca >O 1 >0 

= p3 _ f-1(p5) 

We have 

O e(p5)= 5 (X)f 1()= 5 paf-1 (pb) 
qP(xy)=p5 OP(a,b)=5 

- 5 paf l (pb) =f -1(p5) +pf-1(p2) +p2f-1(p) + p5. 

(a+l)(b+l)=6 

Applying a similar procedure, we can prove that 

f-1(p) = -p and f_1(p2) = p2 

so that 

f1-(p5) = p5 - 2p3; 

substituting this into (3.15), we obtain 

H(p,p2) = p5 + 2p3, 

while 

f (pOp(1 ,2)) = pOp(1,2) = p5. 

It follows that the identity (3.3) does not hold when m = p and n - p2. The 
function $ in this example is originally due to D. H. Lehmer [5]. 
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