ON CERTAIN WEIGHTED PARTITIONS AND FINITE SEMISIMPLE RINGS

L. B. RICHMOND AND M. V. SUBBARAO

ABSTRACT. Let k be a fixed integer ≥ 1 and define $\tau_k(n) = \sum d^k / n$. Thus $\tau_1(n)$ is the ordinary divisor function and $\tau_k(n)$ is the number of kth powers dividing n. We derive the asymptotic behaviour as $n \rightarrow \infty$ of $P_k(n)$ defined by

$$\sum_{n=0}^{\infty} P_k(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-\tau_k(n)}.$$

Thus $P_k(n)$ is the number of partitions of n where we recognize $\tau_k(m)$ different colours of the integer m when it occurs as a summand in a partition. The case $k = 2$ is of special interest since the number $f(n)$ of semisimple rings with n elements when $n = q_1q_2^2 \ldots$ is given by $f(n) = P_2(l_1)P_2(l_2) \ldots$.

1. Let k be a fixed integer ≥ 1 and define $\tau_k(n) = \sum d^k / n$.

Thus $\tau_1(n)$ is the ordinary divisor function and $\tau_k(n)$ is the number of kth powers dividing n. We shall derive the asymptotic behaviour of $p_k(n)$ defined by

$$(1.0) \quad \sum_{n=0}^{\infty} P_k(n)x^n = \prod_{n=1}^{\infty} (1 - x^n)^{-\tau_k(n)}.$$

Thus $p_k(n)$ is the number of partitions of n where we recognize $\tau_k(m)$ different colours of the integer m when it occurs as a summand in a partition. The case $k = 2$ is of special interest since the number of semisimple rings with n elements $f_2(n)$, when

$$(1.1) \quad n = p_1^2p_2^2 \ldots$$

is given by $f_2(n) = p_2(p_1)P_2(p_2) \ldots$ [1]. Also, when k is large, we expect $p_k(n)$ to approach $p(n)$, the number of ordinary partitions.

A generating function for $\tau_k(n)$ is given by

$$(1.2) \quad \sum_{n=1}^{\infty} \tau_k(n)n^{-s} = \zeta(s) \zeta(ks).$$

LEMMA 1. If $k > 1$,

$$\sum_{n=1}^{N} \tau_k(n) = \xi(k)N + O \{ N^{1/k} \}$$

Received by the editors October 24, 1974.

AMS (MOS) subject classifications (1970). Primary 10J20; Secondary 15A17, 10A45.
and
\[\sum_{n=1}^{N} \tau_1(n) = N \log N + (2\gamma - 1)N + O\left\{ N^{1/2} \right\} \]

where \(\gamma \) is Euler's constant.

Proof. The case \(k = 1 \) is classical; see, for example, Theorem 320 in [2, p. 264]. The other cases are similar:

\[\sum_{n < x} \tau_k(n) = \sum_{d^k < x} \left\lfloor \frac{x}{d^k} \right\rfloor = x \sum_{d^k < x} \frac{1}{d^k} + O\left\{ x^{1/k} \right\} = x\zeta(k) + O\left\{ x^{1/k} \right\}. \]

Lemma 1 shows that if we let \(F_\tau(x) = \sum_{n < x} \tau_k(n) \), then \(F_\tau(2x) = O\left\{ F_\tau(x) \right\} \) as \(x \to \infty \).

Let us define the function \(f_\tau \) for real \(x > 0 \) by

\[f_\tau(x) = \sum_{n=1}^{\infty} \tau_k(n)e^{-xn}. \]

We define \(\alpha \) throughout this paper to be the unique solution of

\[n = \sum_{m=1}^{\infty} \tau_k(m)m(e^{am} - 1)^{-1}. \]

Theorem 1. Let \(m \) be any fixed integer \(\geq 3 \). Let \(k \geq 1 \) be a fixed integer. Then

\[p_k(n) = (2\pi B_2)^{-1/2} \exp\left\{ \frac{an}{\sum_{n=1}^{\infty} \tau_k(n)\log(1 - e^{an})} \right\} \times \left[1 + \sum_{p=1}^{m-2} D_p + O\left\{ f_\tau^{1-2m/3}(\alpha) \right\} \right]. \]

Here we define \(B_\mu = B_\mu(n) \) (\(\mu = 2, 3, \ldots \)) by

\[B_\mu = \sum_{m=1}^{\infty} \tau_k(m)m^{\mu}g_\mu(e^{am})(e^{am} - 1)^{-\mu} \]

where \(g_\mu(x) \) is a certain polynomial (the same as in [3] or the \(g_* \)'s of Roth and Szekeres [4]) of degree \(\mu - 1 \) and, in particular, \(g_1(x) = 1 \) and \(g_2(x) = x \) so that

\[B_2 = \sum_{m=1}^{\infty} \tau_k(m)m^{2}e^{dm}(e^{dm} - 1)^{-2}. \]

Finally \(D_\rho \) (\(\rho = 1, 2, \ldots \)) is defined by

\[D_\rho = B_2^{-6\rho} \sum_{\mu_1=2}^{\infty} \cdots \sum_{\mu_5=2}^{\infty} d_{\mu_1} \cdots d_{\mu_5} B_{\mu_1} B_{\mu_2} \cdots B_{\mu_5}, \]

the summation being subject to \(\mu_1 + \mu_2 + \cdots + \mu_5 = 12\rho \), and where the \(d's \) are certain numerical constants.

Proof. It is only necessary to note that the conditions of Theorem 1.1 of [3] hold. For convenience we restate the theorem here in terms of the notation of
the present paper. We say that \(\tau_k \) is a \(P \)-function if the integers \(l \) such that \(\tau_k(l) \neq 0 \) do not have a common factor > 1 for all sufficiently large \(l \). Then Theorem 1.1 of [3] says:

Let \(\tau_k(n) \) have properties (I) and (II). Suppose that \(\tau_k(n) \) is a \(P \)-function and that \(\min_{l \neq 0} \tau_k(l) > 0 \). Suppose furthermore that

\[
\lim_{x \to \infty} \frac{\log F_\tau(x)}{\log \log x} > 0.
\]

Let \(m \) be any fixed integer \(> 2 \). Then

\[
P_k(n) = (2\pi B_2)^{1/2} \exp \left\{ an - \sum_{l=1}^\infty \tau_k(l) \log(1 - e^{al}) \right\} \times
\left[1 + \sum_{l=1}^{m-2} D_e + O \left(f_{\tau}^{1-2m/3} (\alpha) \right) \right].
\]

It is not necessary to define conditions (I) and (II) since it is shown in [3] that they hold when \(F_\tau(2x) = O \{ F_\tau(x) \} \) holds, which we have seen does hold. It is clear that \(\tau_k \) is a \(P \)-function and, furthermore, \(\tau_k(l) > 1 \). Also the last condition of Theorem 1.1 holds by Lemma 1. Theorem 1 now follows immediately.

2. In this section we determine the asymptotic behaviour of \(p_k(n) \) in terms of elementary functions. First of all, from the Mellin inversion formula,

\[
n = \sum_{m=1}^{\infty} \tau_k(m)m(e^{am} - 1)^{-1} = \sum_{m=1}^{\infty} \sum_{l=1}^{\infty} \tau_k(m)me^{-aml}
\]

\[
= \frac{1}{2\pi i} \int_{\sigma = -i \infty}^{\sigma = i \infty} \alpha^{-t} \Gamma(t) \xi(t) \sum_{m=1}^{\infty} \tau_k(m)m^{-t} \, dt
\]

for \(\sigma > 2, |\arg \alpha| < \pi/2 \).

It is well known that (equation (1.2))

\[
\sum_{m=1}^{\infty} \tau_k(m)m^{-t} = \xi(t)\xi(ik);
\]

hence,

\[
(2.1) \quad n = \frac{1}{2\pi i} \int_{\sigma = -i \infty}^{\sigma = i \infty} \alpha^{-t} \Gamma(t) \xi(t)\xi(t - 1)\xi((t - 1)k) \, dt.
\]

Lemma 2.1. Let \(\alpha \) be defined by equation (1.3) with \(k = 1 \). Then

\[
\alpha = \frac{\pi}{\sqrt{12}} \, n^{-1/2} \log^{1/2} n \left[1 + O \left(\frac{\log \log n}{\log n} \right) \right].
\]

Let \(k \geq 2 \). Then with

\[
b_k = \frac{\Gamma(1 + 1/k)\xi(1 + 1/k)\xi(1/k)}{(\xi(2)\xi(k))^{1/2 + 1/2k} 2k},
\]
\[\alpha = n^{-1/2} (\xi(2) \xi(k))^{1/2} + n^{1/2k-1} \sqrt{\xi(2) \xi(k)} \ b_k + n^{-1/8} + O \left(n^{-1/2k-1} \right). \]

PROOF. The singularities of \(\alpha^{-1} \Gamma(t) \xi(t) \xi(t-1) \xi((t-1)k) \) for \(k = 1, 2, \ldots \) with real part of \(t > 0 \) are at \(t = 0, 1 \) and \(1 + 1/k \). For \(k = 1 \) there is a double pole, hence the residue at 2 must be evaluated as

\[(d/dt) \left\{ \alpha^{-1} \Gamma(t) \xi(t) \right\} + 2 \alpha^{-1} \xi(t) \Gamma(t) (\xi(t-1) - 1/(t-2)) \bigg|_{t=2}. \]

Let us consider the case \(k = 1 \) first. From equation (2.1) and equation (2.2) and the relations

\[\Gamma'(1) = -\gamma, \quad [\xi(s) - 1/(s-1)]_{s=1} = \gamma, \quad \xi(2) = \pi^2/6, \]

we obtain that

\[n = \frac{\pi^2}{6} \frac{\log(1/\alpha)}{\alpha^2} + O \left\{ \alpha^{-2} \right\}. \]

The first part of the lemma follows from this.

For \(k = 2, 3, \ldots \) we obtain from equation (2.1) that

\[n = \alpha^{-1-k} \xi(2) \xi(k) + \alpha^{-1-k} \Gamma \left(1 + \frac{1}{k} \right) \xi \left(1 + \frac{1}{k} \right) \xi \left(\frac{1}{k} \right) / k \]

and the second part of the lemma follows routinely from this using the fact that \(\xi(0) = -1/2. \)

LEMMA 2.2. Let \(k = 1. \) Then

\[\sum_{m=1}^{\infty} \tau_k(m) \log(1 - e^{-am}) = \frac{\pi^2}{6 \alpha} \log \frac{1}{\alpha} + O \left\{ \alpha^{-1} \right\}. \]

Let \(k = 2, \ldots \); then

\[- \sum_{m=1}^{\infty} \tau_k(m) \log(1 - e^{-am}) \]

\[= \alpha^{-1-k} \xi(k) \xi(2) + \frac{\xi(1/k)}{k} \xi \left(1 + \frac{1}{k} \right) \Gamma \left(\frac{1}{k} \right) \alpha^{-1/k} \]

\[+ \frac{1}{4} \log \frac{1}{\alpha} - \frac{(1 + k)}{2} \xi'(0) + O \left\{ \alpha \right\}. \]

PROOF. We derive as above that

\[- \sum_{m=1}^{\infty} \tau_k(m) \log(1 - e^{-am}) = \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \alpha^{-1} \Gamma(t) \xi(1+t) \xi(t) \xi(tk) \ dt, \]

and then proceed as in the proof of Lemma 2.1. (Note \(\xi'(0) = -\frac{1}{2} \log 2\pi \) and \(\Gamma(t) = 1/t - \gamma + \ldots. \))

LEMMA 2.3. Let \(k = 1. \) Then

\[B_2 = 2 \xi(2) \alpha^{-3} \log(1/\alpha) + O \left\{ \alpha^{-3} \right\}. \]

Let \(k = 2, 3, \ldots. \) Then
\[B_2 = 2\alpha^{-3/2}(2)\zeta(k) + O(\alpha^{-2-1/k}) \].

Proof. Note that
\[
\sum_{m=1}^{\infty} \tau_k(m)m^2 e^{am}(e^{am} - 1)^{-2} = -\frac{d}{d\alpha} \sum_{m=1}^{\infty} \tau_k(m)(e^{am} - 1)^{-1}
= \frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} \alpha^{-t-1} \Gamma(t) \zeta(t) \zeta(t-1) \zeta((t-1)k) \, dt
\]
and the proof proceeds as in Lemmas 2.1 and 2.2.

From Lemmas 2.1, 2.2, 2.3 and Theorem 1, we now obtain, using the facts that \(\zeta'(0) = -\frac{1}{2} \log 2\pi \) and \(\zeta(2) = \pi^2/6 \),

Theorem 2.1. As \(n \to \infty \),
\[
\log p_1(n) = \frac{\pi}{\sqrt{3}} n^{1/2} \log^{1/2} n \left[1 + O \left(\frac{(\log \log n)^2}{\log n} \right) \right].
\]

Let \(k = 2, 3, \ldots \). Then as \(n \to \infty \),
\[
p_k(m) = \exp \left\{ 2\pi n^{1/2} \left(\frac{\zeta(k)}{6} \right)^{1/2} + \frac{\Gamma(1 + 1/k) \zeta(1 + 1/k) \zeta(1/k)}{(\zeta(2) \zeta(k))^{1/2k}} n^{1/2k} \right. \\
- \frac{n^{1/k-1/2}}{4k^2} \frac{\Gamma^2(1 + 1/k) \zeta^2(1 + 1/k) \zeta^2(1/k)}{(\zeta(k) \zeta(2))^{1/2 + 1/k}} \\
+ \left(\frac{1}{4} \right) \log 2\pi \left\} \\
\times \frac{n^{-5/8}}{2\pi^{1/4}} \left(\frac{\zeta(k)}{6} \right)^{1/8} \left[1 + O \left(n^{-1/2k} \right) \right].
\]

Note one could obtain as many terms in the asymptotic expansion as required. However, we have not discovered a general formula.

Corollary Let \(f_2(n) \) denote the number of semisimple rings with \(n = p^m \) elements. Then with
\[
A = \exp \left(-\frac{9}{4\pi^4} \Gamma^2(1.5) \zeta^2(1.5) \zeta^2(0.5) \right) \pi^{3/5} 12^{-1/4} \log^{5/8} p,
\]
\[
f_2(n) \sim A \log^{-5/8} n \exp \left(\frac{\pi^2}{3} \left(\frac{\log n}{\log p} \right)^{1/2} \\
+ \frac{6^{1/2}}{\pi} \Gamma(1.5) \zeta(1.5) \zeta(0.5) \left(\frac{\log n}{\log p} \right)^{1/4} \right).
\]

Proof. It is only necessary to note that if \(n = p^m \) then \(f_2(n) = p_2(m) \) (see e.g. (1.1)).
This corollary provides the asymptotic formula suggested by Knopfmacher on p. 23 of [5]. In [5] it is also shown that \(p_2(n) \) is the number of nonisomorphic semisimple \(n \)-dimensional algebras over the Galois field \(GF(p') \), \(p \) a prime.

This corollary shows that the behaviour of \(f_2(n) \) is very irregular, since if \(n = p \), a prime, then \(f_2(n) = 1 \). The average behaviour of \(f_2(n) \) was originally discussed by Connell [1]. Recently Knopfmacher [5] showed that

\[
\sum_{n < x} f_2(n) = \alpha_1 x + \alpha_2 x^{1/2} + O \left(x^{1/3} \log^2 x \right)
\]

where

\[
\alpha_1 = \prod_{r m^2 > 1} \zeta(r m^2) = 2.498 \ldots, \quad \alpha_2 = \zeta \left(\frac{1}{2} \right) \prod_{r m^2 > 1} \zeta \left(\frac{1}{2} r m^2 \right).
\]

However, Knopfmacher [6, Theorem E] has shown that for any \(\epsilon > 0 \) there is an integer \(n_0(\epsilon) \) such that

\[
f_2(n) < 6^{1/4 (1+\epsilon)(\log n)/(\log \log n)} \quad \text{for all } n > n_0(\epsilon),
\]

while

\[
f_2(n) > 6^{1/4 (1-\epsilon)(\log n)/(\log \log n)} \quad \text{for infinitely many } n.
\]

Moreover,

\[
f_2(n) < 6^{1/4 (1+\epsilon)\log \log n} \quad \text{for "almost all" } n,
\]

i.e. for all \(n \) outside same set of asymptotic density zero.

Since any partition of \(n \) when a one is added to it gives a partition of \(n + 1 \), it is clear that \(p_k(n) \) is monotonic increasing. Furthermore, one may derive from Theorem 1, in a manner similar to that of Roth and Szekeres [4], that if \(p_k^{(l)}(n) \) denotes the \(l \)th difference of \(p_k(n) \) that \(p_k^{(l)}(n) \sim a^l p_k(n) \); hence all the differences of \(p_k(n) \) are positive for \(n \) sufficiently large. Below we give a short table of values of \(p_2(n) \) which are useful for computing \(f_2(n) \) and the comparison between the asymptotic and true value for certain values of \(n \).
We set \(\xi(\frac{1}{2}) = -1.460 \), \(\xi(1.5) = 2.612 \) and \(\Gamma(1.5) = .8862 \) in the asymptotic expression. Since the relative error is \(O(n^{1/4}) \) we cannot expect a rapid decrease in the relative error. The exact values were computed using the recurrence

\[
n p_2(n) = \sum_{k=1}^{n} a(k) p_2(n - k) \quad \text{where} \quad a(k) = \sum_{d|k} d \tau_k(d).
\]

This recurrence is obtained by taking the logarithmic derivative of equation (1.0) and comparing coefficients.

References

