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PROCEEDINGS OF THE 

AMERICAN MATHEMATICAL SOCIETY 
Volume 64, Number 1, May 1977 

ON CERTAIN WEIGHTED PARTITIONS AND FINITE 
SEMISIMPLE RINGS 

L. B. RICHMOND AND M. V. SUBBARAO 

ABSTRACT. Let k be a fixed integer > 1 and define Tk(n)= =Edk/nl. Thus 
TI(n) is the ordinary divisor function and Tk(n) is the number of kth powers 
dividing n. We derive the asymptotic behaviour as n do of Pk(n) defined 
by 

00 00 

Pk(n)Xn = II (1 - Xn) 
n-O n-I 

Thus Pk(n) is the number of partitions of n where we recognize Tk(m) 
different colours of the integer m when it occurs as a summand in a 
partition. The case k = 2 is of special interest since the number f(n) of 
semisimple rings with n elements when n = q|lq22 ... is given by f(n) = 

P2(11)P2(12) .... 

1. Let k be a fixed integer > 1 and define 

Tk(n) = E 1. 
dk/n 

Thus Tl(n) is the ordinary divisor function and Tk(n) is the number of kth 
powers dividing n. We shall derive the asymptotic behaviour of Pk(n) defined 
by 

00 00 

(1.0) E Pk (n)x = II (1 - xn)-Tk(n) 
n=O nn= 1 

Thus pk(n) is the number of partitions of n where we recognize Tk(m) 

different colours of the integer m when it occurs as a summand in a partition. 
The case k = 2 is of special interest since the number of semisimple rings with n 

elements f2(n), when 

(1.1) n = pyPP2... 

is given byf2(n) = P2(PI)P2(P2) . . . [1]. Also, when k is large, we expectpk(n) 
to approach.p(n), the number of ordinary partitions. 

A generating function for Tk(n) is given by 
00 

(1.2) k(n)n (s) (ks). 
n= 1 

LEMMA 1. If k > 1, 
N 

E Tk(n) =(k)N + O{Nl/k} 
n= 
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14 L. B. RICHMOND AND M. V. SUBBARAO 

and 
N 

E TI(n) = Nlog N + (2y - l)N + O {N1/2) 
n= 1 

where -y is Euler's constant. 

PROOF. The case k = 1 is classical; see, for example, Theorem 320 in [2, p. 
264]. The other cases are similar: 

ETfk(n) = [x/dk] = X Ik + 0 {X I/k) = x(k) + 0 {x I/k}. 
nflx dk<x dk <x d 

Lemma 1 shows that if we let F,(x) = < XTk(n), then F,(2x) = 0 {F,(x)) 
as x -> oo. 

Let us define the function f, for real x > 0 by 
00 

f (x) = T 1k(n)e 
n= 1 

We define a throughout this paper to be the unique solution of 
00 

(1.3) n= Tkk(m)m(e - 

m=1 

THEOREM 1. Let m be any fixed integer > 3. Let k > 1 be a fixed integer. 
Then 

pk(n) = (27TB2 ) Y1/2exp an - ETk(n)log(l - e-n")} 

X L + Dp + O{ff 2m/3 ()}]. 
p= 

Here we define B,, B,, (n) ( , = 2, 3, . . . ) by 
00 

(1.4) B, = E Tk(m)m1g,,(eam)(e-m 
m=1 

where g,,(x) is a certain polynomial (the same as in [3] or the g* of Roth and 
Szekeres [4]) of degree u - 1 and, in particular, gl(x) = 1 and g2(x) = x so 
that 

00 -2 

B2= E Tk(m)m2e(e - 1)- 
m=1 

Finally Dp (p = 1, 2, . .. ) is defined by 
00 00 

D= B- 6p -'*. . * d, ...5B,,B* *.Bus 
tL1 = 2 A5=5p 2 

the summation being subject to i,l + ,u2 + + ,U5p = 12p, and where the 
d's are certain numerical constants. 

PROOF. It is only necessary to note that the conditions of Theorem 1.1 of [3] 
hold. For convenience we restate the theorem here in terms of the notation of 
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the present paper. We say that Tk is a P-function if the integers I such that 
Tk(1) # 0 do not have a common factor > 1 for all sufficiently large 1. Then 
Theorem 1.1 of [3] says: 

Let Tk(n) have properties (I) and (II). Suppose that Tk(n) is a P-function 
and that min,(l),Ork(l) > 0. Suppose furthermore that 

li log FT(x) > O 
xTF 

log log x 

Let m be any fixed integer > 2. Then 

Pk(n) = (2B2 )1/2 exp{an -z Tk(l)log(l -ea)) 

m-2 
x 1 + De + O {fl-2m/3 (a)}] 

It is not necessary to define conditions (I) and (II) since it is shown in [3] that 
they hold when F,(2x) = O{F,(x)} holds, which we have seen does hold. It is 
clear that Tk is a P-function and, furthermore, Tk(l) > 1. Also the last 
condition of Theorem 1.1 holds by Lemma 1. Theorem 1 now follows 
immediately. 

2. In this section we determine the asymptotic behaviour of Pk(n) in terms 
of elementary functions. First of all, from the Mellin inversion formula, 

00 00 00 

n = , Tk (m)m(e - 1)1 l Tk (m)me-m' 
m=1 m=l 1=1 

I +100 m0 
=27Ti _Jai 

a 
() (t 

Tk k(M)M dt 

fora >2, larg al < g2. 
It is well known that (equation (1.2)) 

00 

T '(m)m =(t) (tk); 
m=1 

hence, 

(2.1)~ ~ ~~a 
io 

= 1iA o-rttt(tt l)((t- l)k) dt. 

LEMMA 2.1. Let a be defined by equation (1.3) with k = 1. Then 

(X= 77 n-1/21?gl/n I + ?( log n 
2lOI/1[-2 klogn J 

Let k > 2. Then with 

b (1 + l/k); (l + l/k)t (l/k) 
b ~ =- ,, ,_ 

(k, 
, 1 \I/2 +1 /2k . 

k 
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a = n-- 1/2(D (2) '(k))'/ + n1/2k-1 (2) (k) bk + n'/8 + O{ n 1/2k 1 }. 

PROOF. The singularities of a-t(t)D(t)D(t - l)g((t - l)k) for k= 
1,2,... with real part oft >0 are at t =0,1,2 and 1 + 1/k. Fork = 1 
there is a double pole, hence the residue at 2 must be evaluated as 

(2.2) [(d/dt) { a F'(t)t (t)} + 2a -'t (t)F(t)(t (t- 1) - 1/ (t -2)) ]. 

Let us consider the case k = 1 first. From equation (2.1) and equation (2.2) 
and the relations 

F'(1) = -y, ['(s) - l/(s - 1) y, (2) = 2/6, 

we obtain that 

~2 log(l/a) 
n 6 s2 +?a -2?l 

6 a2 

The first part of the lemma follows from this. 
For k = 2, 3,... we obtain from equation (2.1) that 

( ) ()( k ) k ) k )k 

+a-1D2(0) + 0t1} 

and the second part of the lemma follows routinely from this using the fact 
that , (0) = - 1/2. 

LEMMA 2.2. Let k = 1. Then 
00 

a .2 1 

Tk t(M)log(l e-) 6 log - + 0 aE 
m 

- 

1 ~)= 
lg 

m=1 6a a+Oa } 
Let k = 2,... ; then 

00 

- E Tk(m)log(- em) 
m=1 

-al(k)t(2 + k I( + 
I 

I,t a 

+ 1 log 
I 

- k) ('(O) + ? (a) 

PROOF. We derive as above that 
00 1 

m 
a c+ 

ioo-t +(0(k t - E Tk(m)log(l - eam) = 2 J a F(t)D(1 + t)g(t)t(tk) dt, 
m=1 2771 

i 
i0 

and then proceed as in the proof of Lemma 2.1. (Note ''(0) = - ' log 2,g and 
F(t)= /t -y+.*.) 

LEMMA 2.3. Let k = 1. Then 

B2 = 2; (2)a - 3log( 1/a) + O {a -3}. 

Letk=2,3....Then 
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B2 = 2a- 3N(2) (k) + o fa-2-1/k}. 

PROOF. Note that 
00 j)2 d 00 

4 Tk(m)m2e'm(em - = iTk(m)(e 
m=1 da a+i 

1(+100 

I 2 i al-t-lrtD() I-)t(-)k) dt 

and the proof proceeds as in Lemmas 2.1 and 2.2. 
From Lemmas 2.1, 2.2, 2.3 and Theorem 1, we now obtain, using the facts 

that "'(O) = - -log 2S7 and '(2) = 772/6, 

THEOREM 2.1. As n -,> , 

logpl(n) - Aty 1/210gl/2n[I + O (log log n)2 ] 
3- 

, On1+ log n J 

Let k =2, 3..... Then as n xc, 

p()= exp 2s ( (k) ) + F(1 + 1/k) (1 + 1/k) '(1/k) 

Pk (M) exp{2'7Tn'2 61/2 + (()(k) knl1/2k 

nl/k-l/2 1-2(1 + 1/k)t2(1 + l/k)t2(1/k) 

4k2 (k) (2)) /2/ 

+ ( k)log 24g 

-5/8~~ ~ ~ ,k ) 
8 

X /8 ( 6 )) [ + O {n-12k}] 

Note one could obtain as many terms in the asymptotic expansion as 

required. However, we have not discovered a general formula. 

COROLLARY Let f2(n) denote the number of semisimple rings with n = pm 
elements. Then with 

A = exp(- 94 F2(1.5) 2 (1.5) t 2 (.5) )73/5 12- 1/41og5/8p, 

ex( 2 log n )1/2 f2(n) -A log 5/8n exp ogp 

+61/2 175 1 (log n 1/4 
+ 7T F(1.5)t (1.5); (.5)( p)) 77 ~~~logp J J 

PROOF. It is only necessary to note that if n = ptm then f2(n) = p2(m) (see 

e.g. (1.1)). 
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This corollary provides the asymptotic formula suggested by Knopfmacher 
on p. 23 of [5]. In [5] it is also shown that p2(n) is the number of nonisomor- 
phic semisimple n-dimensional algebras over the Galois field GF(p'), p a 
prime. 

This corollary shows that the behaviour of f2(n) is very irregular, since if 
n = p, a prime, then f2(n) = 1. The average behaviour of f2(n) was originally 
discussed by Connell [1]. Recently Knopfmacher [5] showed that 

1 f2 (n) = Olx + a2X 112 + O (X 1131og2x) 
n < x 

where 

a = II t(rm2) =2.498 .., a2= (2) II t(2rm2). 
rm2> 1 rm2> 1 

However, Knopfmacher [6, Theorem E] has shown that for any e > 0 there is 
an integer no(e) such that 

f2 (n) K 6 4I(1 + e)(log n)/(1og log n) for all n > n0(e) 

while 

f2 (n) > 6 (Ie)(1ogn)/(1oglogn) for infinitely many n. 

Moreover, 

f2 (n) < 6 (I+e)1oglogn for "almost all" n, 

i.e. for all n outside same set of asymptotic denisty zero. 
Since any partition of n when a one is added to it gives a partition of n + 1, 

it is clear that Pk(n) is monotonic increasing. Furthermore, one may derive 
from Theorem 1, in a manner similar to that of Roth and Szekeres [4], that if 
p(l)(n) denotes the lth difference of Pk (n) that p (1)(n) - a pkk(n); hence all the 
differences of pk (n) are positive for n sufficiently large. Below we give a short 
table of values of p2(n) which are useful for computing f2(n) and the 
comparison between the asymptotic and true value for certain values of n. 

n p2(n) n p2(n) n p2(n) 

1 1 11 79 21 1549 
2 2 12 115 22 2025 
3 3 13 154 23 2600 
4 6 14 213 24 3377 
5 8 15 284 25 4306 
6 13 16 391 26 5523 
7 18 17 514 27 7000 
8 29 18 690 28 8922 
9 40 19 900 29 11235 

10 58 20 1197 30 14196 
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n True Value of p2(n) Asymptotic Value of p2(n) 

100 231 412 7129 2.55495 x 109 

200 261 229 585 686401 2.83594 x 1014 

300 246 910 805 791 4492823 2.65888 x 1018 

400 616 439 413 088 071 894 2607 6.60456 x 1021 

500 645 864 386 271 246 677 988 3980 6.89497 x 1024 

We set (2) = - 1.460, D (1.5) = 2.612 and F(1.5) =.8862 in the asymp- 
totic expression. Since the relative error is 0 { n 1/4} we cannot expect a rapid 

decrease in the relative error. The exact values were computed using the 
recurrence 

n 

np2 (n) = E a (k) p2 (n - k) where a (k) = i dTk (d). 
k=1 d/k 

This recurrence is obtained by taking the logarithmic derivative of equation 
(1.0) and comparing coefficients. 
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