(${ }^{1}$

On Certain Weighted Partitions and Finite Semisimple Rings
Author(s): L. B. Richmond and M. V. Subbarao
Source: Proceedings of the American Mathematical Society, Vol. 64, No. 1, (May, 1977), pp. 1319

Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2040971
Accessed: 21/04/2008 16:43

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

ON CERTAIN WEIGHTED PARTITIONS AND FINITE SEMISIMPLE RINGS

L. B. RICHMOND AND M. V. SUBBARAO

Abstract. Let k be a fixed integer $\geqslant 1$ and define $\tau_{k}(n)=\Sigma_{d^{k} / n} 1$. Thus $\tau_{1}(n)$ is the ordinary divisor function and $\tau_{k}(n)$ is the number of k th powers dividing n. We derive the asymptotic behaviour as $n \rightarrow \infty$ of $P_{k}(n)$ defined by

$$
\sum_{n=0}^{\infty} P_{k}(n) x^{n}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-\tau_{k}(n)}
$$

Thus $P_{k}(n)$ is the number of partitions of n where we recognize $\tau_{k}(m)$ different colours of the integer m when it occurs as a summand in a partition. The case $k=2$ is of special interest since the number $f(n)$ of semisimple rings with n elements when $n=q_{1}^{l_{1} q_{2}^{l_{2}} \ldots \text { is given by } f(n)=}$ $P_{2}\left(l_{1}\right) P_{2}\left(l_{2}\right) \ldots$

1. Let k be a fixed integer $\geqslant 1$ and define

$$
\tau_{k}(n)=\sum_{d^{k} / n} 1
$$

Thus $\tau_{1}(n)$ is the ordinary divisor function and $\tau_{k}(n)$ is the number of k th powers dividing n. We shall derive the asymptotic behaviour of $p_{k}(n)$ defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{k}(n) x^{\dot{n}}=\prod_{n=1}^{\infty}\left(1-x^{n}\right)^{-\tau_{k}(n)} \tag{1.0}
\end{equation*}
$$

Thus $p_{k}(n)$ is the number of partitions of n where we recognize $\tau_{k}(m)$ different colours of the integer m when it occurs as a summand in a partition. The case $k=2$ is of special interest since the number of semisimple rings with n elements $f_{2}(n)$, when

$$
\begin{equation*}
n=p_{\mathrm{I}}^{\rho_{1}} p_{2}^{\rho_{2}} \ldots \tag{1.1}
\end{equation*}
$$

is given by $f_{2}(n)=p_{2}\left(\rho_{1}\right) p_{2}\left(\rho_{2}\right) \ldots$ [1]. Also, when k is large, we expect $p_{k}(n)$ to approach $p(n)$, the number of ordinary partitions.

A generating function for $\tau_{k}(n)$ is given by

$$
\begin{equation*}
\sum_{n=1}^{\infty} \tau_{k}(n) n^{-s}=\zeta(s) \zeta(k s) \tag{1.2}
\end{equation*}
$$

Lemma 1. If $k>1$,

$$
\sum_{n=1}^{N} \tau_{k}(n)=\zeta(k) N+O\left\{N^{1 / k}\right\}
$$

[^0]AMS (MOS) subject classifications (1970). Primary 10J20; Secondary 15A17, 10A45.
© American Mathematical Society 1977
and

$$
\sum_{n=1}^{N} \tau_{1}(n)=N \log N+(2 \gamma-1) N+O\left\{N^{1 / 2}\right\}
$$

where γ is Euler's constant.
Proof. The case $k=1$ is classical; see, for example, Theorem 320 in [2, p. 264]. The other cases are similar:

$$
\left.\sum_{n<x} \tau_{k}(n)=\sum_{d^{k}<x}\left[x / d^{k}\right]=x \sum_{d^{k}<x} \frac{1}{d^{k}}+O\left\{x^{1 / k}\right\}=x\right\}(k)+O\left\{x^{1 / k}\right\}
$$

Lemma 1 shows that if we let $F_{\tau}(x)=\Sigma_{n \leqslant x} \tau_{k}(n)$, then $F_{\tau}(2 x)=O\left\{F_{\tau}(x)\right\}$ as $x \rightarrow \infty$.

Let us define the function f_{τ} for real $x>0$ by

$$
f_{\tau}(x)=\sum_{n=1}^{\infty} \tau_{k}(n) e^{-x n}
$$

We define α throughout this paper to be the unique solution of

$$
\begin{equation*}
n=\sum_{m=1}^{\infty} \tau_{k}(m) m\left(e^{\alpha m}-1\right)^{-1} \tag{1.3}
\end{equation*}
$$

Theorem 1. Let m be any fixed integer $\geqslant 3$. Let $k \geqslant 1$ be a fixed integer. Then

$$
\begin{aligned}
p_{k}(n)= & \left(2 \pi B_{2}\right)^{-1 / 2} \exp \left\{\alpha n-\sum_{n=1}^{\infty} \tau_{k}(n) \log \left(1-e^{-\alpha n}\right)\right\} \\
& \times\left[1+\sum_{\rho=1}^{m-2} D_{\rho}+O\left\{f_{\tau}^{1-2 m / 3}(\alpha)\right\}\right]
\end{aligned}
$$

Here we define $B_{\mu}=B_{\mu}(n)(\mu=2,3, \ldots)$ by

$$
\begin{equation*}
B_{\mu}=\sum_{m=1}^{\infty} \tau_{k}(m) m^{\mu} g_{\mu}\left(e^{\alpha m}\right)\left(e^{\alpha m}-1\right)^{-\mu} \tag{1.4}
\end{equation*}
$$

where $g_{\mu}(x)$ is a certain polynomial (the same as in [3] or the g_{μ}^{*} of Roth and Szekeres [4]) of degree $\mu-1$ and, in particular, $g_{1}(x)=1$ and $g_{2}(x)=x$ so that

$$
B_{2}=\sum_{m=1}^{\infty} \tau_{k}(m) m^{2} e^{d m}\left(e^{d m}-1\right)^{-2}
$$

Finally $D_{\rho}(\rho=1,2, \ldots)$ is defined by

$$
D_{\rho}=B_{2}^{-6 \rho} \sum_{\mu_{1}=2}^{\infty} \cdots \sum_{\mu_{5_{\rho}}=2}^{\infty} d_{\mu_{1}} \cdots \mu_{\mu_{\rho}} B_{\mu_{1}} B_{\mu_{2}} \cdots B_{\mu_{S_{p}}}
$$

the summation being subject to $\mu_{1}+\mu_{2}+\cdots+\mu_{5 \rho}=12 \rho$, and where the d 's are certain numerical constants.

Proof. It is only necessary to note that the conditions of Theorem 1.1 of [3] hold. For convenience we restate the theorem here in terms of the notation of
the present paper. We say that τ_{k} is a P-function if the integers l such that $\tau_{k}(l) \neq 0$ do not have a common factor >1 for all sufficiently large l. Then Theorem 1.1 of [3] says:

Let $\tau_{k}(n)$ have properties (I) and (II). Suppose that $\tau_{k}(n)$ is a P-function and that $\min _{\tau_{k}(l) \neq 0} \tau_{k}(l)>0$. Suppose furthermore that

$$
\lim _{x \rightarrow \infty} \frac{\log F_{\tau}(x)}{\log \log x}>0
$$

Let m be any fixed integer $\geqslant 2$. Then

$$
\begin{aligned}
P_{k}(n)= & \left(2 \pi B_{2}\right)^{1 / 2} \exp \left\{\alpha n-\sum_{l=1}^{\infty} \tau_{k}(l) \log \left(1-e^{\alpha l}\right)\right\} \\
& \times\left[1+\sum_{l=1}^{m-2} D_{e}+O\left\{f_{\tau}^{1-2 m / 3}(\alpha)\right\}\right]
\end{aligned}
$$

It is not necessary to define conditions (I) and (II) since it is shown in [3] that they hold when $F_{\tau}(2 x)=O\left\{F_{\tau}(x)\right\}$ holds, which we have seen does hold. It is clear that τ_{k} is a P-function and, furthermore, $\tau_{k}(l) \geqslant 1$. Also the last condition of Theorem 1.1 holds by Lemma 1. Theorem 1 now follows immediately.
2. In this section we determine the asymptotic behaviour of $p_{k}(n)$ in terms of elementary functions. First of all, from the Mellin inversion formula,

$$
\begin{aligned}
n & =\sum_{m=1}^{\infty} \tau_{k}(m) m\left(e^{\alpha m}-1\right)^{-1}=\sum_{m=1}^{\infty} \sum_{l=1}^{\infty} \tau_{k}(m) m e^{-\alpha m l} \\
& =\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \alpha^{-t} \Gamma(t) \zeta(t) \sum_{m=1}^{\infty} \tau_{k}(m) m^{1-t} d t
\end{aligned}
$$

for $\sigma>2,|\arg \alpha|<\pi / 2$.
It is well known that (equation (1.2))

$$
\sum_{m=1}^{\infty} \tau_{k}(m) m^{-t}=\zeta(t) \zeta(t k)
$$

hence,

$$
\begin{equation*}
n=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \alpha^{-t} \Gamma(t) \zeta(t) \zeta(t-1) \zeta((t-1) k) d t . \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let α be defined by equation (1.3) with $k=1$. Then

$$
\alpha=\frac{\pi}{\sqrt{12}} n^{-1 / 2} \log ^{1 / 2} n\left[1+O\left(\frac{\log \log n}{\log n}\right)\right]
$$

Let $k \geqslant 2$. Then with

$$
b_{k}=\frac{\Gamma(1+1 / k) \zeta(1+1 / k) \zeta(1 / k)}{(\zeta(2) \zeta(k))^{1 / 2+1 / 2 k} 2 k},
$$

$$
\alpha=n^{-1 / 2}(\zeta(2) \zeta(k))^{1 / 2}+n^{1 / 2 k-1} \sqrt{\zeta(2) \zeta(k)} b_{k}+n^{-1} / 8+O\left\{n^{-1 / 2 k-1}\right\}
$$

Proof. The singularities of $\alpha^{-t} \Gamma(t) \zeta(t) \zeta(t-1) \zeta((t-1) k)$ for $k=$ $1,2, \ldots$ with real part of $t \geqslant 0$ are at $t=0,1,2$ and $1+1 / k$. For $k=1$ there is a double pole, hence the residue at 2 must be evaluated as

$$
\begin{equation*}
\left[(d / d t)\left\{\alpha^{-t} \Gamma(t) \zeta(t)\right\}+2 \alpha^{-t} \zeta(t) \Gamma(t)(\zeta(t-1)-1 /(t-2))\right]_{t=2} \tag{2.2}
\end{equation*}
$$

Let us consider the case $k=1$ first. From equation (2.1) and equation (2.2) and the relations

$$
\Gamma^{\prime}(1)=-\gamma, \quad[\zeta(s)-1 /(s-1)]_{s=1}=\gamma, \quad \zeta(\dot{2})=\pi^{2} / 6
$$

we obtain that

$$
n=\frac{\pi^{2}}{6} \frac{\log (1 / \alpha)}{\alpha^{2}}+O\left\{\alpha^{-2}\right\}
$$

The first part of the lemma follows from this.
For $k=2,3, \ldots$ we obtain from equation (2.1) that

$$
\begin{aligned}
n= & \alpha^{-2 \zeta}(2) \zeta(k)+\alpha^{-1-1 / k} \Gamma\left(1+\frac{1}{k}\right) \zeta\left(1+\frac{1}{k}\right) \zeta\left(\frac{1}{k}\right) / k \\
& +\alpha^{-1} \zeta^{2}(0)+O\{1\}
\end{aligned}
$$

and the second part of the lemma follows routinely from this using the fact that $\zeta(0)=-1 / 2$.

Lemma 2.2. Let $k=1$. Then

$$
\sum_{m=1}^{\infty} \tau_{k}(m) \log \left(1-e^{-\alpha m}\right)=\frac{\pi^{2}}{6 \alpha} \log \frac{1}{\alpha}+O\left\{\alpha^{-1}\right\}
$$

Let $k=2, \ldots$; then

$$
\begin{aligned}
&-\sum_{m=1}^{\infty} \tau_{k}(m) \log \left(1-e^{-\alpha m}\right) \\
&= \alpha^{-1} \zeta(k) \zeta(2)+\frac{\zeta(1 / k)}{k} \zeta\left(1+\frac{1}{k}\right) \Gamma\left(\frac{1}{k}\right) \alpha^{-1 / k} \\
&+\frac{1}{4} \log \frac{1}{\alpha}-\frac{(1+k)}{2} \zeta^{\prime}(0)+O\{\alpha\}
\end{aligned}
$$

Proof. We derive as above that

$$
-\sum_{m=1}^{\infty} \tau_{k}(m) \log \left(1-e^{-\alpha m}\right)=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \alpha^{-t} \Gamma(t) \zeta(1+t) \zeta(t) \zeta(t k) d t,
$$

and then proceed as in the proof of Lemma 2.1. (Note $\zeta^{\prime}(0)=-\frac{1}{2} \log 2 \pi$ and $\Gamma(t)=1 / t-\gamma+\ldots$.

Lemma 2.3. Let $k=1$. Then

$$
B_{2}=2 \zeta(2) \alpha^{-3} \log (1 / \alpha)+O\left\{\alpha^{-3}\right\}
$$

Let $k=2,3, \ldots$ Then

$$
B_{2}=2 \alpha^{-3 \zeta}(2) \zeta(k)+O\left\{\alpha^{-2-1 / k}\right\}
$$

Proof. Note that

$$
\begin{array}{r}
\sum_{m=1}^{\infty} \tau_{k}(m) m^{2} e^{\alpha m}\left(e^{\alpha m}-1\right)^{-2}=-\frac{d}{d \alpha} \sum_{m=1}^{\infty} \tau_{k}(m)\left(e^{\alpha m}-1\right)^{-1} \\
=\frac{1}{2 \pi i} \int_{\sigma-i \infty}^{\sigma+i \infty} \alpha^{-t-1} \Gamma(t) \zeta(t) t \zeta(t-1) \zeta((t-1) k) d t
\end{array}
$$

and the proof proceeds as in Lemmas 2.1 and 2.2.
From Lemmas 2.1, 2.2, 2.3 and Theorem 1, we now obtain, using the facts that $\zeta^{\prime}(0)=-\frac{1}{2} \log 2 \pi$ and $\zeta(2)=\pi^{2} / 6$,

Theorem 2.1. As $n \rightarrow \infty$,

$$
\log p_{1}(n)=\frac{\pi}{\sqrt{3}} n^{1 / 2} \log ^{1 / 2} n\left[1+O\left\{\frac{(\log \log n)^{2}}{\log n}\right\}\right]
$$

Let $k=2,3, \ldots$ Then as $n \rightarrow \infty$,

$$
\begin{aligned}
& p_{k}(m)= \exp \left\{2 \pi n^{1 / 2}\left(\frac{\zeta(k)}{6}\right)^{1 / 2}+\frac{\Gamma(1+1 / k) \zeta(1+1 / k) \zeta(1 / k)}{(\zeta(2) \zeta(k))^{1 / 2 k}} n^{1 / 2 k}\right. \\
&-\frac{n^{1 / k-1 / 2}}{4 k^{2}} \frac{\Gamma^{2}(1+1 / k) \zeta^{2}(1+1 / k) \zeta^{2}(1 / k)}{(\zeta(k) \zeta(2))^{1 / 2+1 / k}} \\
&\left.+\left(\frac{1+k}{4}\right) \log 2 \pi\right\} \\
& \times \frac{n^{-5 / 8}}{2 \pi^{1 / 4}}\left(\frac{\zeta(k)}{6}\right)^{1 / 8}\left[1+O\left\{n^{-1 / 2 k}\right\}\right]
\end{aligned}
$$

Note one could obtain as many terms in the asymptotic expansion as required. However, we have not discovered a general formula.

Corollary Let $f_{2}(n)$ denote the number of semisimple rings with $n=p^{m}$ elements. Then with

$$
\begin{aligned}
& A=\exp \left(-\frac{9}{4 \pi^{4}} \Gamma^{2}(1.5) \zeta^{2}(1.5) \zeta^{2}(.5)\right) \pi^{3 / 5} 12^{-1 / 4} \log ^{5 / 8} p \\
& f_{2}(n) \sim A \log ^{-5 / 8} n \exp \left(\frac{\pi^{2}}{3}\left(\frac{\log n}{\log p}\right)^{1 / 2}\right. \\
&\left.\quad+\frac{6^{1 / 2}}{\pi} \Gamma(1.5) \zeta(1.5) \zeta(.5)\left(\frac{\log n}{\log p}\right)^{1 / 4}\right)
\end{aligned}
$$

Proof. It is only necessary to note that if $n=p^{m}$ then $f_{2}(n)=p_{2}(m)$ (see e.g. (1.1)).

This corollary provides the asymptotic formula suggested by Knopfmacher on p. 23 of [5]. In [5] it is also shown that $p_{2}(n)$ is the number of nonisomorphic semisimple n-dimensional algebras over the Galois field $\operatorname{GF}\left(p^{r}\right), p$ a prime.

This corollary shows that the behaviour of $f_{2}(n)$ is very irregular, since if $n=p$, a prime, then $f_{2}(n)=1$. The average behaviour of $f_{2}(n)$ was originally discussed by Connell [1]. Recently Knopfmacher [5] showed that

$$
\sum_{n<x} f_{2}(n)=\alpha_{1} x+\alpha_{2} x^{1 / 2}+O\left(x^{1 / 3} \log ^{2} x\right)
$$

where

$$
\alpha_{1}=\prod_{r m^{2}>1} \zeta\left(r m^{2}\right)=2.498 \ldots, \quad \alpha_{2}=\zeta\left(\frac{1}{2}\right) \prod_{r m^{2}>1} \zeta\left(\frac{1}{2} r m^{2}\right) .
$$

However, Knopfmacher [6, Theorem E] has shown that for any $\varepsilon>0$ there is an integer $n_{0}(\varepsilon)$ such that

$$
f_{2}(n)<6^{\frac{1}{4}(1+\varepsilon)(\log n) /(\log \log n)} \text { for all } n \geqslant n_{0}(\varepsilon)
$$

while

$$
f_{2}(n)>6^{\frac{1}{4}(1-\varepsilon)(\log n) /(\log \log n)} \quad \text { for infinitely many } n
$$

Moreover,

$$
f_{2}(n)<6^{\frac{1}{4}(1+\varepsilon) \log \log n} \text { for "almost all" } n,
$$

i.e. for all n outside same set of asymptotic denisty zero.

Since any partition of n when a one is added to it gives a partition of $n+1$, it is clear that $p_{k}(n)$ is monotonic increasing. Furthermore, one may derive from Theorem 1, in a manner similar to that of Roth and Szekeres [4], that if $p_{k}^{(l)}(n)$ denotes the l th difference of $p_{k}(n)$ that $p_{k}^{(l)}(n) \sim \alpha^{l} p_{k}(n)$; hence all the differences of $p_{k}(n)$ are positive for n sufficiently large. Below we give a short table of values of $p_{2}(n)$ which are useful for computing $f_{2}(n)$ and the comparison between the asymptotic and true value for certain values of n.

n	$p_{2}(n)$	n	$p_{2}(n)$	n	$p_{2}(n)$
1	1	11	79	21	1549
2	2	12	115	22	2025
3	3	13	154	23	2600
4	6	14	213	24	3377
5	8	15	284	25	4306
6	13	16	391	26	5523
7	18	17	514	27	7000
8	29	18	690	28	8922
9	40	19	900	29	11235
10	58	20	1197	30	14196

n
100
200
300
400 500

True Value of $p_{2}(n)$	Asymptotic Value of $p_{2}(n)$
2314127129	2.55495×10^{9}
261229585686401	2.83594×10^{14}
2469108057914492823	2.65888×10^{18}
6164394130880718942607	6.60456×10^{21}
6458643862712466779883980	6.89497×10^{24}

We set $\zeta\left(\frac{1}{2}\right)=-1.460, \zeta(1.5)=2.612$ and $\Gamma(1.5)=.8862$ in the asymptotic expression. Since the relative error is $O\left\{n^{1 / 4}\right\}$ we cannot expect a rapid decrease in the relative error. The exact values were computed using the recurrence

$$
n p_{2}(n)=\sum_{k=1}^{n} a(k) p_{2}(n-k) \quad \text { where } a(k)=\sum_{d / k} d \tau_{k}(d)
$$

This recurrence is obtained by taking the logarithmic derivative of equation (1.0) and comparing coefficients.

References

1. I. G. Connell, A number theory problem concerning finite groups and rings, Canad. Math. Bull. 7 (1964), 23-34. MR 28 \#2149.
2. G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, 4th ed., Oxford Univ. Press, London, 1960. (3rd ed., 1954; MR 16, 673.)
3. L. B. Richmond, A general asymptotic result for partitions, Canad. J. Math. 27 (1975), 1083-1091.
4. K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partutions, Quart. J. Math. Oxford Ser. (2) 5 (1954), 244-259. MR 16, 797.
5. J. Knopfmacher, Arithmetical properties of finite rings and algebras, and analytic number theory, J. Reine Angew. Math. 252 (1972), 16-43. MR 47 \# 1769.
6. \qquad , Arithmetical properties of finite rings and algebras, and analytic number theory. IV, J. Reine Angew. Math. 270 (1974), 97-114. MR 51 \# 389.

Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada

[^0]: Received by the editors October 24, 1974.

