(®)

On the Schnirelmann Density of the $\$ k \$$-Free Integers
Author(s): P. H. Diananda and M. V. Subbarao
Source: Proceedings of the American Mathematical Society, Vol. 62, No. 1, (Jan., 1977), pp. 710
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2041933
Accessed: 21/04/2008 16:42

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

ON THE SCHNIRELMANN DENSITY OF THE k-FREE INTEGERS

P. H. DIANANDA AND M. V. SUBBARAO

AbStract. Let $Q_{k}(n)$ be the number of k-free integers $\leqslant n$ and $d\left(Q_{k}\right)$ the Schnirelmann density of the k-free integers. If $k \geqslant 5$, it is shown that $Q_{k}(n) / n=d\left(Q_{k}\right)$ for some n satisfying $6^{k} / 2 \leqslant n<6^{k}$ and certain other properties, and that

$$
d\left(Q_{k}\right) \geqslant 1-2^{-k}-3^{-k}-5^{-k}+\left(3^{-k}+2 \cdot 5^{-k}\right)\left(6^{k}-3^{k}+1\right)^{-1}
$$

$d\left(Q_{k}\right)$ and the n for which $Q_{k}(n) / n=d\left(Q_{k}\right)$ are found for $7 \leqslant k \leqslant 12$.

1. Introduction. We denote the set of positive k-free integers by Q_{k} and the number of integers $\leqslant x$ and Q_{k} by $Q_{k}(x)$. The Schnirelmann density of Q_{k} is

$$
d\left(Q_{k}\right)=\inf _{n \geqslant 1} Q_{k}(n) / n .
$$

Here, and throughout this note, n denotes a positive integer.
K. Rogers [3] proved that

$$
\begin{equation*}
d\left(Q_{2}\right)=\frac{53}{88} \quad \text { and } \quad \frac{Q_{2}(n)}{n}=d\left(Q_{2}\right) \quad \text { iff } n=176 \tag{1}
\end{equation*}
$$

and R. L. Duncan [1] that

$$
\begin{equation*}
d\left(Q_{k}\right)>1-\sum_{\text {prime } p>0} \frac{1}{p^{k}} . \tag{2}
\end{equation*}
$$

More recently, R. C. Orr [2] proved that

$$
\begin{equation*}
d\left(Q_{3}\right)=\frac{157}{189} \quad \text { and } \quad \frac{Q_{3}(n)}{n}=d\left(Q_{3}\right) \quad \text { iff } n=378 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
d\left(Q_{4}\right)=\frac{145}{157} \quad \text { and } \quad \frac{Q_{4}(n)}{n}=d\left(Q_{4}\right) \quad \text { iff } n=2512 \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
d\left(Q_{5}\right)=\frac{3055}{3168} \quad \text { and } \quad \frac{Q_{5}(n)}{n}=d\left(Q_{5}\right) \quad \text { iff } n=3168 \text { or } 6336 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
d\left(Q_{6}\right)=\frac{6165}{6272} \quad \text { and } \quad \frac{Q_{6}(n)}{n}=d\left(Q_{6}\right) \quad \text { iff } n=31360 \tag{6}
\end{equation*}
$$

[^0]and
\[

$$
\begin{align*}
& \text { if } k \geqslant 5, Q_{k}(n) / n=d\left(Q_{k}\right) \text { for some } n \text { satisfying } \\
& 5^{k} \leqslant n<6^{k}, \text { but for no } n<5^{k} \text { or } \geqslant 6^{k} . \tag{7}
\end{align*}
$$
\]

In this note we use Orr's and Rogers's results to improve Duncan's inequality to

$$
\begin{equation*}
d\left(Q_{k}\right)>1-2^{-k}-3^{-k}-5^{-k} \tag{8}
\end{equation*}
$$

and to show that

$$
\begin{align*}
& \text { if } k \geqslant 5, Q_{k}(n) / n=d\left(Q_{k}\right) \text { for some } n \text { satisfying } \\
& 6^{k} / 2 \leqslant n<6^{k} . \tag{9}
\end{align*}
$$

We next use (9) to prove
Theorem 1. If $k \geqslant 5$ then $Q_{k}(n) / n=d\left(Q_{k}\right)$ for some n which is such that $6^{k} / 2 \leqslant n<6^{k}$ and either (i) n is a multiple of 3^{k} or 5^{k}, or (ii) n is a multiple of 2^{k} and there is a multiple of 3^{k} or 5^{k} between $n-2^{k}$ and n.

We then use this theorem to obtain, for $k \geqslant 5$, the refinement

$$
\begin{equation*}
d\left(Q_{k}\right) \geqslant 1-2^{-k}-3^{-k}-5^{-k}+\left(3^{-k}+2 \cdot 5^{-k}\right)\left(6^{k}-3^{k}+1\right)^{-1} \tag{10}
\end{equation*}
$$

of the inequality (8), and also to find, for $7 \leqslant k \leqslant 12, d\left(Q_{k}\right)$ and the n for which $Q_{k}(n) / n=d\left(Q_{k}\right)$.
2. Proof of (8). For $k \geqslant 5$, we use Orr's result (7). For any $n<6^{k}$,

$$
Q_{k}(n)=n-\left[\frac{n}{2^{k}}\right]-\left[\frac{n}{3^{k}}\right]-\left[\frac{n}{5^{k}}\right]>n-\frac{n}{2^{k}}-\frac{n}{3^{k}}-\frac{n}{5^{k}},
$$

since no $n<6^{k}$ is divisible by more than one of $2^{k}, 3^{k}$ and 5^{k}. Thus, using (7), we have (8) for $k \geqslant 5$.

To complete the proof we have merely to check (8) for $k \leqslant 4$, using Rogers's and Orr's results (1), (3) and (4).
3. Proof of (9). By Orr's result (7), if $k \geqslant 5, d\left(Q_{k}\right)=Q_{k}(n) / n$ for some $n<6^{k}$. If this $n \geqslant 6^{k} / 2$ then (9) is proved. If not, let $m=\left[\left(6^{k}-1\right) / n\right]$. Then $m>1$ and

$$
\begin{aligned}
Q_{k}(m n) & =m n-\left[m n / 2^{k}\right]-\left[m n / 3^{k}\right]-\left[m n / 5^{k}\right] \\
& \leqslant m n-m\left[n / 2^{k}\right]-m\left[n / 3^{k}\right]-m\left[n / 5^{k}\right]=m Q_{k}(n),
\end{aligned}
$$

and so $Q_{k}(m n) / m n \leqslant Q_{k}(n) / n$. Thus (9) is proved, since $m n \geqslant 6^{k} / 2$, clearly.
Remark. A similar proof shows that, if k, n and m are as above, then $Q_{k}(r n) / r n=d\left(Q_{k}\right)$ for $1 \leqslant r \leqslant m$. It is easy to see that

$$
m n>m\left(6^{k}-1\right) /(m+1) .
$$

Thus, if $Q_{k}(n) / n=d\left(Q_{k}\right)$ for some $n<6^{k} / 2$, then $Q_{k}(n) / n=d\left(Q_{k}\right)$ for some $n \geqslant(2 / 3) 6^{k}$.

We note that, for any $k \geqslant 5$, if the n, for which $6^{k} / 2 \leqslant n<6^{k}$ and $Q_{k}(n) / n=d\left(Q_{k}\right)$, are known, then it is possible to find the n^{\prime} for which $5^{k} \leqslant n^{\prime}<6^{k} / 2$ and $Q_{k}\left(n^{\prime}\right) / n^{\prime}=d\left(Q_{k}\right)$, since, for some such n, n^{\prime} must be a multiple of $n /\left(n, Q_{k}(n)\right)$ and n of n^{\prime}, and since $Q_{k}(n) / n=Q_{k}\left(n^{\prime}\right) / n^{\prime}$ implies that $\left[n / a^{k}\right]=\left(n / n^{\prime}\right)\left[n^{\prime} / a^{k}\right]$ for $a=2,3$ and 5.
4. Proof of Theorem 1. Let $k \geqslant 5$, and n_{0}, n_{1} be such that no $m\left(n_{0}<m\right.$ $<n_{1}<6^{k}$) is a multiple of 2^{k} or 3^{k} or 5^{k}. Then it is easy to see that $Q_{k}(m) / m>Q_{k}\left(n_{0}\right) / n_{0}$. It is also easy to see that if n_{0}, n_{1} are multiples of 2^{k} such that no $m\left(6^{k} / 2 \leqslant n_{0}<m<n_{1}<6^{k}\right)$ is a multiple of 3^{k} or 5^{k}, then $Q_{k}\left(n_{1}\right) / n_{1}>Q_{k}\left(n_{0}\right) / n_{0}$. Hence we have Theorem 1.
5. A refinement of (8). We use Theorem 1. If (i) is satisfied and $3^{k} \mid n$, then

$$
\begin{aligned}
Q_{k}(n) n^{-1} & =n^{-1}\left\{n-\left[n \cdot 2^{-k}\right]-\left[n \cdot 3^{-k}\right]-\left[n \cdot 5^{-k}\right]\right\} \\
& =1-2^{-k}-3^{-k}-5^{-k}+\left(\alpha \cdot 2^{-k}+\beta \cdot 5^{-k}\right) n^{-1}
\end{aligned}
$$

where α, β are the remainders when n is divided by $2^{k}, 5^{k}$, respectively. Since $n<6^{k}$ and no $n<6^{k}$ is divisible by more than one of $2^{k}, 3^{k}$ and 5^{k}, it follows that

$$
\begin{aligned}
Q_{k}(n) n^{-1} & \geqslant 1-2^{-k}-3^{-k}-5^{-k}+n^{-1} \min \left\{2^{-k}+2 \cdot 5^{-k}, 2 \cdot 2^{-k}+5^{-k}\right\} \\
& \geqslant 1-2^{-k}-3^{-k}-5^{-k}+\left(2^{-k}+2 \cdot 5^{-k}\right)\left(6^{k}-1\right)^{-1}
\end{aligned}
$$

Similarly, if (i) is satisfied and $5^{k} \mid n$, then

$$
Q_{k}(n) n^{-1} \geqslant 1-2^{-k}-3^{-k}-5^{-k}+\left(2^{-k}+2 \cdot 3^{-k}\right)\left(6^{k}-1\right)^{-1}
$$

If (ii) is satisfied, then, similarly,

$$
\begin{aligned}
Q_{k}(n) n^{-1} \geqslant & 1-2^{-k}-3^{-k}-5^{-k} \\
+ & \min \left\{\left(3^{-k}+2 \cdot 5^{-k}\right)\left(6^{k}-3^{k}+1\right)^{-1}\right. \\
& \left.\left(2 \cdot 3^{-k}+5^{-k}\right)\left(6^{k}-1\right)^{-1}\right\}
\end{aligned}
$$

since $6^{k}-3^{k}+1$ is the largest $n<6^{k}$ and $\equiv 1\left(\bmod 3^{k}\right)$.
The inequality (10) now follows since it can be shown that

$$
\left(3^{-k}+2 \cdot 5^{-k}\right)\left(6^{k}-3^{k}+1\right)^{-1} \leqslant\left(2 \cdot 3^{-k}+5^{-k}\right)\left(6^{k}-1\right)^{-1}
$$

and

$$
2 \cdot 3^{-k}+5^{-k} \leqslant 2^{-k}+2 \cdot 5^{-k} \leqslant 2^{-k}+2 \cdot 3^{-k}
$$

We have proved the refinement (10) of (8) for $k \geqslant 5$. It is true for $k=3$ also, but not for $k=2$ or 4 . We thus have

Theorem 2. The inequality (10) holds for $k=3$ and $k \geqslant 5$, but not for $k=2$ or 4 .
6. Computation of $d\left(Q_{k}\right)$ for $k \geqslant 7$. We can compute these, using Theorem 1 ; the number of computations of $Q_{k}(n) / n$ needed to compute $d\left(Q_{k}\right)$ is, approximately, $2^{k}+(6 / 5)^{k}$.

For $7 \leqslant k \leqslant 12$, the values of $d\left(Q_{k}\right)$ are as follows:

$$
\begin{array}{ll}
d\left(Q_{7}\right)=\frac{234331}{236288}, & d\left(Q_{8}\right)=\frac{1169758}{1174528}, \\
d\left(Q_{9}\right)=\frac{7798488}{7814151}, & d\left(Q_{10}\right)=\frac{48785015}{48833536}, \\
d\left(Q_{11}\right)=\frac{292856489}{293001216}, & d\left(Q_{12}\right)=\frac{1709225206}{1709645824} .
\end{array}
$$

For each of these k, there is only one n such that $Q_{k}(n) / n=d\left(Q_{k}\right)$, and this n is given as the denominator in the value of $d\left(Q_{k}\right)$.

The following table gives, for $2 \leqslant k \leqslant 12$, the values, correct to ten decimal places, of the Schnirelmann density $d\left(Q_{k}\right)$ and the asymptotic density $\delta\left(Q_{k}\right)=\lim _{n \rightarrow \infty} Q_{k}(n) / n=1 / \zeta(k)$ of Q_{k}.

k	$d\left(Q_{k}\right)$	$\delta\left(Q_{k}\right)$
2	.6022727273	.6079271019
3	.8306878307	.8319073726
4	.9235668790	.9239384029
5	.9643308081	.9643873404
6	.9829400510	.9829525923
7	.9917177343	.9917198558
8	.9959387941	.9959392011
9	.9979955596	.9979956327
10	.9990064000	.9990064131
11	.9995060532	.9995060555
12	.9997539736	.9997539740

We are indebted to Mr. G. E. Hardy of the University of Alberta for some of the numerical results and to the referee for his helpful comments.

References

1. R. L. Duncan, The Schnirelmann density of the k-free integers, Proc. Amer. Math. Soc. 16 (1965), 1090-1091. MR 32 \#4110.
2. R. C. Orr, On the Schnirelmann density of the sequence of k-free integers, J. London Math. Soc. 44 (1969), 313-319. MR 38 \#2115.
3. K. Rogers, The Schnirelmann density of the square-free integers, Proc. Amer. Math. Soc. 15 (1964), 515-516. MR 29 \# 1192.

Department of Mathematics, University of Singapore, Singapore 10

Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada T6G 2G1

[^0]: Received by the editors November 5, 1974.
 AMS (MOS) subject classifications (1970). Primary 10L10.
 Key words and phrases. Schnirelmann density, k-free integers.

