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AMERICAN MATHEMATICAL SOCIETY 
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ON THE SCHNIRELMANN DENSITY OF THE 
k-FREE INTEGERS 

P. H. DIANANDA AND M. V. SUBBARAO 

ABSTRACT. Let Qk(n) be the number of k-free integers < n and d(Qk) the 
Schnirelmann density of the k-free integers. If k > 5, it is shown that 

Qk(n)/n = d(Qk) for some n satisfying 6k/2 < n < 6k and certain other 
properties, and that 

d(Qk) > I - 2-k - 3 k - 5-k + 3-k + 2 - 5-k)(6k- 3k + I)-' 

d(Qk) and the n for which Qk(n)/n = d(Qk) are found for 7 < k < 12. 

1. Introduction. We denote the set of positive k-free integers by Qk and the 
number of integers < x and Qk by Qk (x). The Schnirelmann density of Qk is 

d(Qk) = inf Qk(n)/n. 

Here, and throughout this note, n denotes a positive integer. 
K. Rogers [3] proved that 

(1) d(Q2) = 8 and Q2(n) d(Q2) iff n = 176, 
88 n 

and R. L. Duncan [1] that 

(2) d(Qk) > 1- Z k 
prime p>O P 

More recently, R. C. Orr [2] proved that 

157 Q3 (n) 
(3) d(Q3) 189 and = d(Q3) iffn = 378, 

(4) d(Q4) =15 and 94(n) = d(Q4) iffn = 2512, 157 n 

__ 3055 ____n_ 

(5) d(Q5) - 3168 and Q5(n) = d(Q5) iffn = 3168 or 6336, 

(6) d(Q6) = 6165 and Q6(n) = d(Q6) iffn = 31360, 6272 n 

Received by the editors November 5, 1974. 
AMS (MOS) subject classifications (1970). Primary lOL10. 
Key words and phrases. Schnirelmann density, k-free integers. 

? Americani ioth ematical Society 1977 

7 



8 P. H. DIANANDA AND M. V. SUBBARAO 

and 

if k > 5, Qk (n)/n = d(Qk) for some n satisfying 

5k < n < 6k, but for no n < 5or > 

In this note we use Orr's and Rogers's results to improve Duncan's 
inequality to 

(8) d(Qk) > 1 2 - k 3 - k 5-k 

and to show that 

if k > 5, Qk (n) /n = d(Qk) for some n satisfying 

6k/2 < n < 6 

We next use (9) to prove 

THEOREM 1. If k > 5 then Qk(n)/n = d(Qk) for some n which is such that 

6 /2 < n < 6k and either (i) n is a multiple of 3k or 5k,or (ii) n is a multiple of 

2k and there is a multiple of 3k or 5k between n - 2k and n. 

We then use this theorem to obtain, for k > 5, the refinement 

(10) d(Qk) > 1 -k - _ -k + (3-k + 2 . 5 k)(6k - 3 + 1)1 

of the inequality (8), and also to find, for 7 < k < 12, d(Qk) and the n for 
which Qk(n)/n = d(Qk). 

2. Proof of (8). For k > 5, we use Orr's result (7). For any n < 6k 

Q~~ ~~~ kn-- n -3 k -5k] 2k 3k 5k' 

since no n < 6k is divisible by more than one of 2k 3k and 5k. Thus, using (7), 
we have (8) for k > 5. 

To complete the proof we have merely to check (8) for k < 4, using 
Rogers's and Orr's results (1), (3) and (4). 

3. Proof of (9). By Orr's result (7), if k > 5, d(Qk) = Qk(n)/n for some 
n < 6k. If this n > 6k/2 then (9) is proved. If not, let m = [(6k- 1)/n]. Then 
m> 1 and 

Qk(mn) = mn - [mn/2k] - [mn/3k] - [mn/5ki 

< mn - m[n/2k] - m[n/3k] - m[n/5k - mQk (n), 

and so Qk(mn)/mn < Qk(n)/n. Thus (9) is proved, since mn > 6k/2, clearly. 
REMARK. A similar proof shows that, if k, n and m are as above, then 

Qk(rn)/rn = d(Qk) for 1 < r < m. It is easy to see that 

mn > m(6k - l)/(m + 1). 
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Thus, if Qk(n)/n = d(Qk) for some n < 6k/2 then Qk(n)/n = d(Qk) for 
some n > (2/3)6 

We note that, for any k > 5, if the n, for which 6k/2 < n < 6k and 
Qk(n)/n = d(Qk), are known, then it is possible to find the n' for which 
5k < n' < 6k/2 and Qk(n')/n' = d(Qk), since, for some such n, n' must be a 
multiple of n/(n, Qk(n)) and n of n', and since Qk(n)/n = Qk(n')/n' implies 
that [n/ak ] = (n/n') [niak ] for a = 2, 3 and 5. 

4. Proof of Theorem 1. Let k > 5, and no, n, be such that no m (no < m 
< n1 < 6') is a multiple of 2k or 3k or 5k. Then it is easy to see that 
Qk(m) m > Qk(no)/no. It is also easy to see that if no, n1 are multiples of 2k 

such that no m (6k/2 < nO < m < n, < 6k) is a multiple of 3k or 5k, then 
Qk (n1 ) /n, > QC (no)/no. Hence we have Theorem 1. 

5. A refinement of (8). We use Theorem 1. If (i) is satisfied and 3k In, then 

Qk(n)n-l n-l{n - [n 2-k] - [n 3-k] - [n 5-k]) 

= I - 2-k-3-k-k+(a2-k + / * 5-k)n-1 

where a, /B are the remainders when n is divided by 2k, 5k, respectively. Since 
n < 6k and no n < 6k is divisible by more than one of 2k, 3k and 5k, it follows 
that 

Qk(n)n'- > I - 2-k - 3-k - 5-k + n-1 min{2 k + 2 5-k, 2 . 2-k + 5-k 

> I - 2-k - 3-k - 5-k + (2-k + 2 * 5-k)(6k - 1)-i. 

Similarly, if (i) is satisfied and 5k ln, then 

Qk(n)n-1 > I - 2-k - 3-k - 5-k + (2-k + 2 3-k)(6k - 1) 

If (ii) is satisfied, then, similarly, 

Qk(n)n-1 > 1 - 2-k - 3-k 
- 

5-k 

+ min{(3-k + 2 - 5-k)(6k - 3k + I)-I 

(2 3-k + 5-k)(6k - 

since 6k - 3k + 1 is the largest n < 6k and- I (mod 3k). 
The inequality (10) now follows since it can be shown that 

(3-k + 2 5-k)(6k - 3k + 1)-' < (2 - 3-k + 5 k)(6k _ -) 

and 

2 * 3-k + 5-k < 2-k + 2 * 5k < 2-k + 2 * 3 

We have proved the refinement (10) of (8) for k > 5. It is true for k 3 
also, but not for k = 2 or 4. We thus have 

THEOREM 2. The inequality (10) holds for k = 3 and k > 5, but not for 
k = 2 or 4. 
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6. Computation of d(Qk) for k > 7. We can compute these, using Theorem 
1; the number of computations of Qk(n)/n needed to compute d(Qk) iS, 

approximately, 2k + (6/5)k 
For 7 < k < 12, the values of d(Qk) are as follows: 

234331 1169758 
d(Q7) 236288' d(Q8) 1174528' 

7798488 48785015 
d(Q9) 7 5 , 

d(Q11) 48833536' 

292856489 1709225206 
d(Q11) = 293001216' 1709645824 

For each of these k, there is only one n such that Qk(n)/n = d(Qk), and this 
n is given as the denominator in the value of d(Qk). 

The following table gives, for 2 < k < 12, the values, correct to ten 
decimal places, of the Schnirelmann density d(Qk) and the asymptotic density 
6(Qk) )-limn, Qk (n)/n - 1/ (k) of Qk- 

k d(Qk) 6(Qk) 

2 .6022727273 .6079271019 
3 .8306878307 .8319073726 
4 .9235668790 .9239384029 
5 .9643308081 .9643873404 
6 .9829400510 .9829525923 
7 .9917177343 .9917198558 
8 .9959387941 .9959392011 
9 .9979955596 .9979956327 

10 .9990064000 .9990064131 
11 .9995060532 .9995060555 
12 .9997539736 .9997539740 

We are indebted to Mr. G. E. Hardy of the University of Alberta for some 
of the numerical results and to the referee for his helpful comments. 
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