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A SIMPLE PROOF OF THE QUINTUPLE 
PRODUCT IDENTITY 

L. CARLITZ AND M. V. SUBBARAO 

ABSTRACT. We show here that the important Watson-Gordon 
five product combinatorial identity can, in fact, be deduced as a very 
simple and natural corollary to the classical Jacobi triple product 
identity. 

1. Introduction. The following fundamental identity is of great im- 
portance in combinatorial analysis: 

c0 

JJ (1 _ S)(_ snt)(1 - sn-It-1)(1 - S2n lt2)(1 - s t2) 
(1.1) n=1 

= +ns + (t3 - t-3n-1), s| < 1, t s 0. 

This identity, whose origin may be traced to an elliptic sigma formula 
of Weierstrass, has a very interesting history which we shall give in the last 
section. 

In this paper, we shall derive this identity as a simple and natural corol- 
lary of Jacobi's triple product identity: 

00 0f 2 

(1.2) || (1 _ 
X2n)(j - aX2n-1)(1 - a -1X2n-1) =E(1)na nxn 

n=l n==-oo 

where jxj<1 and a#O. For the simplest and most elementary proof of 
(1.2), we refer to George Andrews [1]. 

Throughout this note, En denotes summation from n -oo to n= oo, 
while HT denotes product from n= 1 to n= oo. 

2. Proof of (1.1). The identity (1.1) may be written in the form 

IT (1 - S2n)(1 - S2nt)(1 - S2n-2t-1)(1 - S4n-2t2)(1 - SU-2t-2) 

(2.1) = E S(3n+l)(t3n _ t-3n-1 

n 

Let A(s, t) denote IT (1-S4n) times the left number of (2.1). Applying 
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(1.2) twice, we see that 

A(s, t) = 1)jS+jtj (-1)ks2k t2k 
i k 

= 2 (-l1)j+kS ji+2k + jt j+2k 

i,k 
Writingj+2k=n, we get 

A(s, t) =t (-) (-l)kS(n-2k)+2k+n-2k 
n k 

2 2 (2.2) 
1 

-)ntn 
1 

_)kSn +6k-_4nk+n-2k 
n kc 

(1)ntnSn +n 
1 

(-1)kS6k2-4nk-2k n k 

Now, for all integers p, 
2 (-1)kS6k +6k(2_p1l) = 0. 
k 

This follows on replacing k by -k-2p- 1. Hence the inner sum in (2.2) 
vanishes unless -4n-2#0 (mod 6), that is, 2n+1#0 (mod 3); so that 
we can assume in (2.2) that n _O or -1 (mod 3). 

Let A1(s, t) and A2(s, t) denote respectively the parts of A(s, t) corre- 
sponding to n _O (mod 3) and n- -1 (mod 3). Then 

A1(s, t) = 2 (_1)nt3ns9n +3n 2 (-1)kS6k -12nk-2k 
n k 

Write m=k-n in the inner series. We get, after a routine simplification, 

(2.3) Al(s, t) = E t3nS3n2+n 2 (_ l)mS6m2rf = Q > t + 
n n n 

where Q = Hm (1 - s4m) = m (- )ms6m_2m. Similarly, we get 
2 

A2(s, t) =Q :2 (_j)n-1t3n-1S3n 
_n 

(2.4) n 2 

- Q 2 (_ )n-1t-3n-1S3n +n 

n 

Combining (2.3) and (2.4) we obtain (2.1), and hence (1.1). 

3. A historical note. In 1929, G. N. Watson [11] derived the identity 
(1.1) in the course of proving some of Ramanujan's theorems on continued 
fractions. In 1938, Watson [12] proved the following identity: 

I (1 - X)2n(1 - a2X2n-2)(1 - a-2X2n) 

n (1 + aX2n-1)(1 + a-1X2n-1) 

(3.1) - 
2 (a-3n - 

a3n+2)xn(3n+2) lxi < 1, a 
$ 

0. 
n 

As was pointed out in [10], a simple transformation shows that (1.1) 
and (3.1) are equivalent. Another proof of (3.1), using function-theoretic 
methods, was given in 1954 by A. 0. L. Atkin and P. Swinnerton-Dyer 
[2, Lemma 5]. In 1951, W. N. Bailey [3] obtained a proof of (1.1), but 
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acknowledged the priority of Watson. In 1952, D. B. Sears [8] deduced the 
identity (1.1) from a result of his that is essentially the 3-term sigma 
function relation due to Weierstrass. L. J. Slater [9, pp. 204-205, especially 
(7.4.7)] gives the details of the deduction from the sigma function relation. 

In 1961, Basil Gordon [6] independently discovered (1.1) and gave 
several important applications of the same. L. J. Mordell [7] presumed that 
Basil Gordon is the original discoverer of (1.1) and supplied a new proof 
of this identity. Finally, Carlitz [4] gave a proof of (1.2) based on entirely 
different ideas. 

In view of the above history of the identity (1.1), we agree with the 
referee that it is best to refer to the identity (1.1) simply as the quintuple 
product identity, or, if we wish to use proper names, as the Weierstrass- 
Watson identity. 

The authors thank the referee for supplying some of the above historical 
information. 

Finally, we wish to remark that the method used here to prove (1.1) is 
applicable for some other identities also, as shown in [5]. 
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