(${ }^{1}$

On a Partition Theorem of MacMahon-Andrews
Author(s): M. V. Subbarao
Source: Proceedings of the American Mathematical Society, Vol. 27, No. 3, (Mar., 1971), pp. 449-450
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2036473
Accessed: 21/04/2008 16:11

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

ON A PARTITION THEOREM OF MAcMAHON-ANDREWS

M. V. SUBBARAO

Abstract

Two theorems are given about partitions in which the multiplicity of the parts satisfies certain conditions. One of these theorems generalizes a recent result of Andrews concerning partitions in which a part with an odd multiplicity occurs at least $2 r+1$ times.

Recently, George Andrews [1] proved the following partition theorem, generalizing an earlier result of MacMahon [2, p. 54] (which deals with the case $r=1$):
The number of partitions of n, in which a part occurring an odd number of times occurs at least $(2 r+1)$ times, equals the number of partitions of n into parts which are either even or else $\equiv 2 r+1$ $(\bmod 4 r+2)$.

We wish to remark that Andrews' theorem is itself a special case of the following result.

Theorem (A). Let k be any integer >1 and l any positive integer $\not \equiv 0(\bmod k)$. Let $A_{k, l}(n)$ be the number partitions of n in which the multiplicity of each part is either $\equiv 0(\bmod k)$ or else $\geqq l$ and $\equiv l(\bmod$ $k)$. Let $B_{k, l}(n)$ denote the number of partitions of n in which the parts are either $\equiv 0(\bmod k)$ or else $\equiv l(\bmod 2 l)$. Then $A_{k, l}(n)=B_{k, l}(n)$.

Andrews' result corresponds to the choice $k=2, l=2 r+1$. The proof of this is analogous to that of Andrews' and is therefore omitted.

It is possible to obtain several results of this kind. As a sample, we give the following:

Theorem B. Let $m>1, r \geqq 0$ be integers, and let $C_{m, r}(n)$ be the number of partitions of n such that all even multiplicities of the parts are less than $2 m$, and all odd multiplicities are at least $2 r+1$ and at most $2(m+r)-1$. Let $D_{m, r}(n)$ be the number of partitions of n into parts which are either odd and $\equiv 2 r+1(\bmod 4 r+2)$, or even and $\not \equiv 0$ $(\bmod 2 m)$. Then $C_{m, r}(n)=D_{m, r}(n)$.

Received by the editors May 25, 1970.
A MS 1969 subject classifications. Primary 1055.
Key words and phrases. Partitions, multiplicity of a part, a formula of Euler.

Proof.

$$
\left.+x^{(2 r+3) n}+\cdots+x^{(2 m+2 r-1) n}\right\}
$$

$$
\begin{align*}
& =\prod_{n=1}^{\infty}\left(1-x^{2 m n}\right)\left(1-x^{2 n}\right)^{-1}\left(1+x^{(2 r+1) n}\right) \tag{1}\\
& =\prod_{n=1 ; k \neq 0}^{\infty}\left(1-x^{2 k n}\right)^{-1} \prod_{n=1}^{\infty}\left(1-x^{(2 n-1)(2 r+1)}\right)^{-1} \\
& =1+\sum_{n=1}^{\infty} D_{m, r}(n) x^{n}
\end{align*}
$$

where we used a well-known Euler identity [2, pp. 10-11], to transform the last product in (1) into the last product in (2). This completes the proof.

The above two theorems can of course be restated using, for the definitions of $A_{k, l}(n), B_{k, l}(n), C_{m, r}(n)$ and $D_{m, r}(n)$, the conjugates of the concerned partitions.
As a particularly interesting special case of the last theorem, we obtain, on taking $m=2, r=1$, the following:

Corollary. The number of partitions of n, in which each part occurs two, three or five times, equals the number of partitions of n into parts which are of the forms $2(\bmod 4)$ or $3(\bmod 6)$.

References

1. George E. Andrews, A generalization of a partition theorem of MacMahon, J. Combinatorial Theory 3 (1967), 100-101. MR 35 \#2766.
2. P. A. MacMahon, Combinatory analysis, Vol. 2, Reprint Chelsea, New York, 1960. MR 25 \#5003.

University of Alberta, Edmonton, Alberta, Canada

