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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 27, Number 3, March 1971 

ON A PARTITION THEOREM OF MAcMAHON-ANDREWS 

M. V. SUBBARAO 

ABSTRACT. Two theorems are given about partitions in which 
the multiplicity of the parts satisfies certain conditions. One of these 
theorems generalizes a recent result of Andrews concerning parti- 
tions in which a part with an odd multiplicity occurs at least 2r+1 
times. 

Recently, George Andrews [1] proved the following partition 
theorem, generalizing an earlier result of MacMahon [2, p. 54] 
(which deals with the case r = 1): 

The number of partitions of n, in which a part occurring an odd 
number of times occurs at least (2r+1) times, equals the number of 
partitions of n into parts which are either even or else = 2r+1 
(mod 4r+2). 

We wish to remark that Andrews' theorem is itself a special case 
of the following result. 

THEOREM (A). Let k be any integer > 1 and I any positive integer 
40 (mod k). Let Ak, (n) be the number partitions of n in which the 

multiplicity of each part is either 0 (mod k) or else >I and I (mod 
k). Let Bk,l(n) denote the number of partitions of n in which the parts 
are either 3 O (mod k) or else -- (mod 21). Then Ak,z(n) =Bk,z(n). 

Andrews' result corresponds to the choice k=2, 1=2r+1. The 
proof of this is analogous to that of Andrews' and is therefore 
omitted. 

It is possible to obtain several results of this kind. As a sample, we 
give the following: 

THEOREM B. Let m > 1, r > 0 be integers, and let Cm,r(n) be the num- 
ber of partitions of n such that all even multiplicities of the parts are 
less than 2m, and all odd multiplicities are at least 2r+1 and at most 
2(m+r) -1. Let Dm,r(n) be the number of partitions of n into parts 
which are either odd and =_ 2r + 1 (mod 4r + 2), or even and 0 0 
(mod 2m). Then Cm,r(n) =Dm,(n). 
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PROOF. 

00 00 

1 + E. C0,,(n)Xn = 1 { 1 + X2I + X4n + + X(2m-2)n + x(2r+l)n 

n=1 n-1 

+ X(2r+3)n + + x(2m+2r-1)nJ 

(1) = Jj (1 - X2mn)(1 - X2n)-1(1 + X(2r+l)n) 

n=1 

00 00 

(2) = II (1 - X2kn)-1 11 (1- X(2n-1) (2r+1))-1 
n=1;k;O (mod m) n=1 

oo 

= 1+ , Dm,r(n)Xn, 
n=-1 

where we used a well-known Euler identity [2, pp. 10-111, to trans- 
form the last product in (1) into the last product in (2). This com- 
pletes the proof. 

The above two theorems can of course be restated using, for the 
definitions of Ak,l(n), Bk,z(n), Cm,r(n) and Dm,r(n), the conjugates of 
the concerned partitions. 

As a particularly interesting special case of the last theorem, we 
obtain, on taking m = 2, r =1, the following: 

COROLLARY. The number of partitions of n, in which each part occurs 
two, three or five times, equals the number of partitions of n into parts 
which are of the forms 2 (mod 4) or 3 (mod 6). 
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