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ON A PARTITION THEOREM OF MacMAHON-ANDREWS
M. V. SUBBARAO

ABsTRACT. Two theorems are given about partitions in which
the multiplicity of the parts satisfies certain conditions. One of these
theorems generalizes a recent result of Andrews concerning parti-
tions in which a part with an odd multiplicity occurs at least 2741
times.

Recently, George Andrews [1] proved the following partition
theorem, generalizing an earlier result of MacMahon [2, p. 54]
(which deals with the case r=1):

The number of partitions of #, in which a part occurring an odd
number of times occurs at least (2r--1) times, equals the number of
partitions of »# into parts which are either even or else =2r--1
(mod 4r-2).

We wish to remark that Andrews’ theorem is itself a special case
of the following result.

THEOREM (A). Let k be any integer >1 and I any positive integer
#£0 (mod k). Let Ay,i(n) be the number partitions of n in which the
multiplicity of each part is either =0 (mod k) or else =1 and =] (mod
k). Let By, (n) denote the number of partitions of n in which the parts
are either =0 (mod k) or else =l (mod 2I). Then Ax,i(n) =B, i(n).

Andrews’ result corresponds to the choice k=2, I=2r41. The
proof of this is analogous to that of Andrews’ and is therefore
omitted.

It is possible to obtain several results of this kind. As a sample, we
give the following:

TuEOREM B. Let m>1, r =0 be integers, and let Cm,»(n) be the num-
ber of partitions of n such that all even multiplicities of the parts are
less than 2m, and all odd multiplicities are at least 2r+1 and at most
2(m—+r)—1. Let Dm(n) be the number of partitions of n into parts
which are either odd and =2r+1 (mod 4r+2), or even and #O0
(mod 2m). Then Cup,r(n) =Dy ().
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where we used a well-known Euler identity [2, pp. 10-11], to trans-
form the last product in (1) into the last product in (2). This com-
pletes the proof.

The above two theorems can of course be restated using, for the
definitions of A,i(n), Bi,i(#), Cn,-(n) and D, (n), the conjugates of
the concerned partitions.

As a particularly interesting special case of the last theorem, we
obtain, on taking m =2, r =1, the following:

CoROLLARY. The number of partitions of n, in which each part occurs
two, three or five times, equals the number of partitions of n into parts
which are of the forms 2 (mod 4) or 3 (mod 6).
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