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AMERICAN MATHEMATICAL SOCIETY 
Volume 28, Number 2, May 1971 

PARTITION THEOREMS FOR EULER PAIRS 

M. V. SUBBARAO 

ABSTRACT. This paper generalizes and extends the recent results 
of George Andrews on Euler pairs. If Si and S2 are nonempty sets of 
natural numbers, we define (S1, S2) to be an Euler pair of order r 
whenever q7(Si; n) =p(S2; n) for all natural numbers n, where 
q7(Si; n) denotes the number of partitions of n into parts taken 
from S1, no part repeated more than r -1 times (r > 1), and p(S2; n) 
the number of partitions of n into parts taken from S2. Using a 
method different from Andrews', we characterize all such pairs, 
and consider various applications as well as an extension to vector 
partitions. 

1. Introduction. Throughout this note, N denotes the set of all 
:natural numbers, n an -arbitrary natural number, r an integer > 1; 
Si (i= 1, 2) nonempty subsets of N; p(Si; n) the number of partitions 
of n into parts taken from Si; and qr(Si; n) the number of partitions 
,of n into parts taken from Si, no part repeated more than (r -1) times 
-at most in any one partition. We write q2(Si; n) = q(Si; n). 

If q(SI; n) =p(S2; n), George Andrews [i] called (SI, S2) an Euler 
-pair, after Euler who gave the (probably first) pair (see, for example, 
[5, p. 277]): 
(1.1) S1= N; S2= IneNIn 3n 1 (mod2)J. 

Two other examples of such pairs: 

(1.2) Si= InAE jn I O (mod3)j; 
S2= {n E N I n 31 5 (mod 6)J 

,and 
(S1 = )n EzN|I n 2, 4, 5 (mod 6) ; 

S2= inEN n 2,5,11 (mod12)J 

-are due, respectively to I. J. Schur [6, p. 495]) and H. G6llnitz 
[4, p. 175]. Recently, George Andrews [i, Theorem I], characterized 

-all such pairs by proving the curious (though not unexpected) result: 

.(1 4) (S1, S2) is an Euler pair if and only if 

(1.4) 2S1 C S1 and S2= S1-2S1. 
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(As usual, for any kEN, we define kSi= {kn| nESi} and S1-S2 
= {neS41 n$S21}) 

As Andrews remarked, the uniqueness of the binary representation 
of natural numbers is equivalent to the statement that, with 

(1.5) Si = {1, 2n n E N}; S2 = S1-2S1={1} 

(S1, S2) is an Euler pair. 
This naturally leads us to consider what analogous interpretation 

could be given for the uniqueness of representation of natural numbers 
n to any integral base r > 1: 

m 

n= aiari, a E: N, 0.<ai <r (i =0, 1, *m), a > 0. 
i=O 

It is clear that this is equivalent to the property that 

(1.6) qr(Si; n) = p(S2; n) 

with 

(1.7) Si= {1, r n N}; S2=Si-rSi='1ll. 

This naturally suggests the following 
(1.8) DEFINITION. We say that (S1, S2) is an Euler pair of order r 

whenever (1.6) holds. 
The purpose of this note is to characterize all such pairs and pro- 

vide some examples. Towards the end, we briefly consider the ex- 
tension of the results to vector partitions. 

2. A characterization of Euler pairs. Define qr(Si, 0) =p(Si, 0) =1. 
Throughout what follows, it is assumed that x I < 1. We have 

q qr(Si; n)xn = II (1 + Xa + * * * + X(rl)a) 
n=O aES1 

(2.1) 
- II (1 - xra)(1 

- 

xa)-1; 
aES1 

(2.2) E p(S2; n)xn = II (1 - 
n=O bES2 

Since the series and products involved are absolutely convergent for 
xl < 1, all the processes in the sequel involving them are valid. 

We see at once that (S1, S2) is an Euler pair of order r if and only if 

(2.3) II (1 - xra)(1 - Xa)-1 = fI (1 - Xb)-1; 
aES1 bES2 
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or equivalently, 

(2.4) TJ(1-xra) = fJ(1-xa) XI ( 1 -xb>- 
aES, aEs1 bES2 

These relations are useful for obtaining new Euler pairs of various 
orders. Thus we have the following 

(2.5) EXAMPLE. Let 

Si={nnGNIn=1 (mod2)}; 
S2 = {nEN[n-?1 (mod6)}; 

then (S1, S2) is an Euler pair of order 3. 
While Andrews' main theorem [1, Theorem I] deals only with the 

ncase r = 2, by using arguments similar to his, we obtain the followiing 
generalization of his theorem. 

(2.6) THEOREM. (SI, S2) is an Euler pair of order r if and only if 
rS?CSi and S2-=S1-rrS. 

We shall however prove the theorem making use of the following 
approach which is not only interesting in itself, but also yields some 
other results as well. For this reason, we develop it a little beyond our 
present needs. 

Suppose f(x), g(x) and h(x) are (or can be expressed as) power 
^series which are absolutely convergent for |x| <1, and that f(O) 
=g(O) = h(O) =1, so that the same holds for their reciprocals. We 

write f(x)--g(x) to mean that the coefficients of like powers of x on 
-both the sides are equal. Clearly, 

;(2.7) f(x) _g(x) Xf(x)h(x) g(x)h(x). 

In particular, 

(2.8) f(x) g(x) X (f(x))-1 =(g(x))'l 

For later use, we note the following results. Suppose an, bn, cn 
(n= 1, 2, 3, * * *) are increasing sequences of natural numbers, and 
Sn, tn, Un (n =1, 2, *.. ) are any sequences of natural numbers. Then 

00 ~~~~~~~~00 
II (I - Xan)-8= - 1(l -xbn)-tn Xan = bn; Sn, =tn 
n=1 n=1 

(;(2.9) (n =1, 2, ...) 
00 00 

II (1 - xan)8n n (1 - 
Xbn) tn 

n=1 n=1 
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II (1 - Xan) 1II (1 - xbn)-l = .7 (1 
- 

Xen)-1 
n=l n=1 n=l 

(2.10) 

? II ( 1 - Xan)- =-- II ( 1 - xbn) HJ (1 - Sf)- 
n=l n=1 n=1 

PROOF. We shall prove the i implication" in the first part of 
(2.9), the reverse implication being trivial. Suppose that a,$bi. We 
shall then assume (as we may) that a, <bi. Using the relation 

00 00 
(2.11) II (1 - Xan)-8n = JI (1 - Xbn)-in 

n=l n=l 

and comparing coefficients of Xa4 on both sides, we obtain the absurd 
result that sial =0. Hence a, = bi. Again comparing the coefficients 
of Xai on both sides of (2.11) we get s,=ti. We shall now use (2.7) 
and remove the factor (1 -xa1)-81 from both sides of (2.11) and obtain 

00 00 

II (1 - Xa-)-an = II (1 - xbn)-tn. 
n==2 n=2 

Repeating the above argument, we get successively 

an = bn; Sn = tn (n = 2, 3, - - * ). 

Note that the second part of (2.9) follows from (2.7). As corollaries 
to (2.9) we get: 

(2.12) If p(S,;n)=p(S2;n) forallnEN, then S,=S2. 
PROOF. In the first part of (2.9), take sn=tn= 1, where Si 

= Ian EN}, Sa= {bnInzN}. (The result (2.10) is the lemma in 
Andrews [i, p. 499].) 

To state the next corollary, suppose E(Sj; n) denotes the excess of 
the number of partitions of n into an even number of distinct parts 
over those into an odd number of distinct parts, the parts being taken 
from the set Si. Then 

(2.13) If E(S,;n) =E(S2;n) forallnEN,thenS,=S2. 
This follows from the second part of (2.9) on taking sn=tn=l 

(n=1,2, * * . ). 
Actually, we can generalize (2.9) in many ways. For example, 

00 00 

7 (1 - Xunan)(1 - Xan)-8n - (1 - xunbn)(1 - Xbn)tn 

(2.14) n= n=l1 

an = bn Sn = tn 
(n = 1, 2*). 
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(As stated previously, (us) is any sequence of natural numbers.) The 
proof of this is similar to the one given before for the first part of 
(2.10). As a consequence of (2.14), we have, for example, the follow- 
ing result (whose limiting case as r- oo is (2.12)). 

(2.15) If qr(Si; n) = qr(S2; n) for all nEN, then S1= S2. 
This is obtained from (2.13) on setting sn=tn=l; un=r (n=1, 

2, ...) 
(2.16) PROOF OF THEOREM (2.6). The "if" part follows because 

11 (1 + Xn + X2n + + X(7l)n) = (I - Xrn)(1 - Xn)' 

nE=-Sj nESj 

= II (1 -Xn)- 

nESj-rS1 

= II (1 -Xn)- 
nEES2 

The above proof is analogous to that of Andrews [1] for the case 
r = 2. But our proof (to follow) for the "only if" part is different from 
his. 

We now assume that q,(Si; n) =p(S2; n) for all nECN. Suppose that 
rS1 - S1 is not empty. We then have 

I(1-xn)-l_II( + Xn + *..+ x(r-l1in) 

nES2 nESI 

= II (1 - Xn) (1 X) 
nEiS 

- II (1-_Sr) II (1 -Xn)-1. 

rnErS1-S2 nE,S-rSj 

Hence, recalling (2.10), 

II (1 - Xn)1 I (1 - Xrn)-1 I (1 Xn)-1 
nEES2 nE-rSj-Sj nE-Sj-rSj 

It follows from the first part of (2.9) that every member of rS1 - S1 is a 
member of Si -rS1; but this is absurd since these two sets are mu- 
tually exclusive. Hence rS1 - SI is empty, and Theorem (2.6) is 
proved. 

3. Applications. We shall give here some interesting Eulerian pairs 
as applications of Theorem (2.6). 

(3.1) The following pairs are Eulerian of order r: 
(3.1.1) SI= {neNfn-r, r2 (mod r(r+1))}; S2=Si-rSl. 
(3.1.2) Si = { nENI nI r, r2, r2+r-1 (mod r(r+1)) };S2= Si-rSx. 

For r=2, (3.1.2) gives the Gollintz pair described in (1.3). 
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(3.2) Let SI N be such that nG2SlvrnESi. Let S2 
= {nESil n 0 (mod r) }. Then (S1, S2) is an Euler pair of order r. 

The case r = 2 was previously given by Andrews [I]. In particular, 
(3.3) (N, { n EN| n # 0 (mod r) } ) is an Euler pair of order r. 
The pair given in (1.1), originally due to Euler, is a special case of 

this. 
(3.4) Let r + 1 be a prime. Define 

Si = {n ENj n n0 (modr+ 1)}, 

S2= {nEN|n0r,r+1 (modr2+r)}. 

Then (S1, S2) is an Euler pair of order r. This includes, in particular, 
Schur's pair given in (1.2). 

As a further application of (3.2) we have 

(3.5) THEOREM. Let p be a prime of which r is a quadratic residue. 
Then the number of partitions of n into quadratic residues (mod p), no 
residue occurring more than (r -1) times at the most in any partition, 
equals the number of partitions of n into parts which are quadratic 
residues of p and are not multiples of r. 

(3.6) EXAMPLE. The number of partitions of n into parts which are 
_1, 3, 4, 5, 9 (mod 11), each part repeated twice at most in any 
partition, equals the number of partitions of n into parts which are 

1, 4, 5, 14, 16, 20, 23, 25, 26, 31 (mod 33). 
Similar results can be obtained involving cubic and higher power 

residues. 
For example, since 1, 5, 8, 12 are cubic residues modulo 13 we have 

the following result. 
(3.7) ({nCNjn-1, 5, 8, 12 (mod 13)}, {nENIn=8, 12, 14, 18, 

27, 31, 34, 38 (mod 39) }) is an Euler pair of order 5. 
In the results to follow, x and y represent integers. 

(3.8) THEOREM. The number of partitions of n into parts which are 
expressible in the form x2+2y2 equals the number of partitions of n into 
odd parts which are expressible in theform x2+2y2. 

PROOF. This follows from Theorem (2.6) in view of the fact that n 
is expressible in the form x2+2y2 if and only if 2n is [3, p. 68, prob- 
lem 1 ]. 

(3.9) THEOREM. The number of partitions of n into parts which are 
expressible in the form x2 +xy +y2, each part repeated at most twice in 
any partition, equals the number of partitions of n into parts which are 
relatively prime to 3 and expressible in the form X2 +Xy +y2. 
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This follows because n and 3n have the same number of representa- 
tions in the form x2+xy+y2 [3, p. 68, problem 2]. 

4. Extension to vector partitions. The main Theorem (2.6) can be 
easily extended to vector partitions, that is, partitions of vectors into 
parts which are vectors. In fact, Euler's original result for the pair 
given in (1.1) has already been extended in this way by M. S. Cheema 
[2, Theorem II ] as follows: 

(4.1) The number of partitions of (nli, n2, , n8) into vectors 
with at least one component odd is equal to the number of partitions 
of (nl, n2, * * *, n.) into distinct parts. The result also holds if the 
parts are required to have nonzero components. 

Our extension of Theorem (2.6) to vectors can be stated thus: 
(4.2) The number of partitions of the vector (nl, - - * , n8) into 

parts in which all components belong to S,, no part (vector) repeating 
more than r -1 times, equals the number of partitions of the vector 
(n1, . .. , n8) into parts in which all components belong to S2 if and 
only if 

rS, C S, and S2 = S, -rS. 

We can further extend the result for the case when the ith com- 
ponent of each part (vector) is required to belong to a set Si which 
may be different for different values of i. 
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