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ON WATSON'S QUINTUPLE PRODUCT IDENTITY 

M. V. SUBBARAO1 AND M. VIDYASAGAR2 

ABSTRACT. In 1929, in the course of proving certain results 
stated by Ramanujan concerning his continued fraction, G. N. 
Watson proved an identity involving five infinite products and an 
infinite series. In 1938, Watson proved another identity which again 
involved five products. Finally in 1961, one more quintuple product 
identity was established, this time by Basil Gordon. We show here 
that all these identities are equivalent. Also, with the help of the 
quintuple product identity and Jacobi's triple product identity, we 
establish two new identities involving only series. 

1. The identities of Watson and Gordon. In 1961 Basil Gordon 
[2] proved the following identity: 

00 

11 (1 - Sn)(1 - sn) (1 - sn-lt1) (1 - s2n-112) (1 - S2n lt2) 
n=l1 

(1.1) 
_00 S--+)/(3 13-) 1stI < 1,1t 5 0. 

It does not seem to have been noticed that Gordon was anticipated 
by G. N. Watson [3, pp. 44-45] who proved the identity in 1929 in 
the following equivalent form using essentially the same argument as 
Gordon's (see line 12 on p. 45 of [3]): 

,: (1 1- qn) ( 1 + q 5n-lZ;-1) ( + q5n-4Z;) ( 1- qlnO7z-72) ( 1- Oln 32 ) 

n=1 

(1.2) 
00 00 

E E (-1)nqm(15m+1)/2Z3m + E (-1)mq(5n-2)(3n-1)/2z 1-3n. 

fn=-oo n--oo 

In 1938, Watson [4] gave also the following identity (we here 
change Watson's notation): 
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(1 - X2n) (1 - a2X2n-2) (1 - a-2x2n) 

H 
X2n(1 + ax2n')(1 + a-x2n-1) 

(1.3)n1 
a 

ax 

= (a-3n 
- 

a3n+2)xn(3n+2), x I < 1, a 5 0. 
n=-oo 

We wish to point out that this identity is equivalent to (1.1) and 
(1.2). The purpose of this paper is, first, to give a formal proof of this 
statement, and next, to prove, in ?3, the following two striking iden- 
tities involving only series, which are valid-like everything else that 
follows-for l x I < 1 and a 7 0: 

co 

E (-l)n-lan-lxn-1(1 + ax) (1 + ax3)(1 + ax5) . . . (1 + ax2n3) 

(1.4) 
00 

- 1 + E a3n-lx3 2(ax2n - ) 
n=1 

00~~~( 1)n-la2n- 2xn (n- 1) 

(1.5) n (1 + ax)(1 + ax3)(1 + ax5) . . . (1 + ax2n-1) 

- 1 + 2 a3n-lx3an(ax2n - ) 
n=1 

We shall derive these results with the help of identity (1.3)-which 
we shall henceforth designate as (Watson's) Quintuple Product 
Identity-and the well-known Triple Product Identity of Jacobi [1]: 

00 00 

(1.6) JI (1 - x28)(1 + aX2n-1)(1 + a-lX2n-1) = nX anx2. 
n=1 n=-oo 

Conversely, we shall show that identities (1.4) and (1.5) together 
with the Triple Product Identity would imply Watson's Quintuple 
Product Identity. 

2. The equivalence of Gordon's and Watson's identities. We shall 
prove the equivalence of (1.1) and (1.3). On using the obvious relation 

00 00 

1 (1 - a2X2n-2) = II(1 - a2x4n-2)(1 -a2X4n4) 
n=1 n=1 

goo 

- II (1 - aX2n')(1 + aX2-)(1 -a2x4n-4) 
n=1 

and a similar relation for fn=ly (1-a-2x2n), the identity (1.3) be- 
comes 
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oo 

11 (1 - X2n)(1 - ax28 )(1 - a-x22n-)(1 - a2X4n-4) (1- a-2x4 
(2. 1) 

'- ~- 
1000 = (a- 3n - a3n+2) xn (3n+2). 

n=-oo 

Substituting S =x2, t =ax-' in (2.1), we get 

00 

II (1 - Sn) (1 - tsn)(1 - t-1sn-1) (1 - t2s2n-1) (1 - t-2S2n-1 
n=1 

oo 

(2.2) = sn(3n+2)/2(t-3nS-3n/2 - t3n+2S3n/2+1) 

n=-oo 

00 00 

= E s3n2/2-nI2t-3n - E S3n2/2+5n/2+lt3n+2+ 

n=-oo n=-oo 

In the first summation, replace n by -m, while in the second, 
replace n by -rm-1. We get for the right side of (2.2): 

00 00 00 
2 

S /2+m/2t3m - E s3m2/2+m/2t-3m-1 = 
S 
s(3m2+m)l2(t3m - t-3m-). 

m=-00 m_oo m=-oo 

This shows that (1.3) is equivalent to (1.1). 

3. An identity between series. We shall now prove the 

THEOREM. 

? (-1)nan+lxn-l(l + ax)(1 + ax3) . . . (1 + ax2n-3) 
n=1 

oo 

(3.1) + E (_1) n-a2-2nxn(n-1)(1 + a-lx)-'(1 + a'1x3)-1 
n=1 

- * (1 ?+ a-1X2n-13? 

00 

(a- 3n - a.3n+2)x3n2+2n. 

n-co 

PROOF. In addition to Watson's Quintuple Product Identity (1.3) 
and Jacobi's Triple Product Identity (1.6), we require the well-known 
Euler identities [1]: 

(3.2)I (1- X n~) = 
00 (-1 ) na nxn (n+ 1 ) 12 

(3.2) 11 (1 - ax E (1 - x) (1 - x2) . . . (1 - xn) 
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(3.3) = ? 00 ~~~~~n=O (1-X) 
XI 
^) .. * 1-xn) 

II (1- aXn) 
n=1 

Let 

On(a, x) = (1-ax)(1 -ax2) . (1. - ax), n > 0, 

with ko(a, x) = 1 and cn(X) =cn(l, X). 

Applying (1.3), (1.6) and (3.3), we have 
00 00 

II (1 + a-1X2n-1) E (a-3n a3n+2)X3n2+2n 

(3.4) nln-o 
1 0 

o ]I(1 - X2n)(1 - a2X2n-2)(1 - 2x2n) 

11 (1 + ax2n-l) 
n-1 

(-lJ)m(aX-1)Mx2M / 0 
2 

(3.5) E 2) mxm E - 1)n(a2X-1)nxn2) 
m=O ckm(X n-oo 

Writing n-rm for n in the inner sum, we see that (3.5) is the same as 

00 00 

(3.6) Z (- 1)nxn2_n+m22mn+2ma2n-m/4nm(X2). 
mn=O n=-X 

Recalling the assumption made throughout that |x| <1 and a =0, 
the series (3.6) is absolutely convergent and rearrangement of its 
terms is permitted. Therefore, (3.6) can be written as 

0o xm2_2mn+2ma-m 

Z (_1)nxn2-na2n E 
n=-oo m=O 'km(X2) 

On using (3.2) for the inner sum, we get 

oo ?? X1-2n\ 

(3.7) i(( )nxn2-na2n 1 + ? )x2r. 
n=-oo r-=1 a 

On carrying out some routine manipulations, this can be written 
as V1(a, x) IlI' (1 +a-lx2r-1) where V1(a, x) is the left side in the rela- 
tion (3.1). This completes the proof of (3.1). 

(3.8) PROOF OF (1.4) AND (1.5). On equating those expressions on 
both sides of (3.1) which consist entirely of terms with positive powers 
of a, we obtain (1.4) after some simplification. Observe that for the 
left side of (3.1), this expression is exactly the first sum there. To 
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obtain (1.5), we proceed similarly taking only terms with negative 
powers of a and afterwards replace a by a-'. 

4. Remarks. The identities (1.4) and (1.5) arose in our attempt for 
a simple proof of Watson's Quintuple Product Identity (1.3) on the 
same lines as G. E. Andrews' proof [I] of Jacobi's Triple Product 
Identity. If the results (1.4) and (1.5) are already known (though we 
are unable to locate them in the literature), or if they can be proved 
easily otherwise, the proof of Theorem (3.1) provides a simple alter- 
nate proof of (1.3) different from Watson's or Gordon's. On the other 
hand, if the results (1.4) and (1.5) are new, it would be surprising how 
one missed such beautiful identities for so long! 
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