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1970] RESEARCH PROBLEMS 389

Our next conjecture is

2. Q(x) converges to y2(x) for all x>1.

It is easy to prove by induction that if for any ¥ <0, R(x)—sz, then Q(x)—%,
the complex conjugate of z. Thus if conjecture 1 is correct, then we know that
the values of Q(x) for —% <x <0 are given not by ¥, but, surprisingly, by y1. In
the range 0<x<1, the partial radicals associated with Q are complex for all
n =2, whereas the corresponding f.(x) are real, and the induction proof cannot
be carried over. Nevertheless, it would still appear that

3. For all 0<x<1, Q(x)—y1(x). One may also ask:

4. What iterated radical, if any, converges to ys(x) for —1<x<0and 0<x<1?
Finally, a broader objective would be:

5. Develop procedures by which to investigate the convergence of more general
iterated radicals, such as

Var+ Vot Vet

where the a; are negative or complex. Herschfeld [1] remarks only that “Con-
vergence questions appear to become very difficult in such cases.”
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ARE THERE AN INFINITY OF UNITARY PERFECT NUMBERS?
M. V. SusBARAO, University of Alberta

A divisor d of # is said to be unitary if d and #/d are relatively prime. We
shall denote the sum of the unitary divisors of # by ¢*(n). Let # be called a
unitary perfect number provided o *(%) = 2.

The inevitable question arises: are there an infinity of unitary perfect num-
bers? P. Erdés to whom the writer mentioned this problem in 1965, expressed
the opinion that it might be a very difficult one, comparable to the problem of
odd perfect numbers and he readily offered a prize of $10 for the first complete
solution, to which the writer offers a supplemental prize of an equal amount.

It is trivial to show that there are no odd unitary perfect numbers. Suppose
n is an even unitary perfect number and is of the form # = 2em, where m is odd
and has r distinct prime divisors. In a paper in 1965, L. J. Warren and the
writer showed, by elementary methods, the following theorem:

THEOREM A.

() If r=1, then n=260. (v) a cannot be 3, 4, 5 or 7.
(ii) If a=1, then n=26 or 90. (vi) r cannot be 3 or 5.
(iii) If e =2, then n=260. (vii) If a=6, then n=287,360.

(iv) If r=2, then n=260 or 90. (viii) If r=4, then n=287,360.
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A year ago, the writer together with three undergraduate students, T. J.
Cook, R. S. Newberry and J. M. Weber, (participants in the Undergraduate
Research Participation Program under National Science Foundation Grant No.
GY 4599 to the University of Missouri) obtained further results in this direction
including the following:

TaEOREM B. Let n=2%m be unitary perfect. With the same notation as in
Theorem A, (1) it is not possible for a =8, 9, 10; (ii) it s not possible for r =6.

The proof involves extensive and exhausting calculations using a desk calcu-
lator. The details are too long to be shown here.

These theorems can be used to show, for example, that after 87,360, there
can be no unitary perfect number with less than 20 digits. The writer was re-
cently informed, however, that a graduate student at the University of Tennes-
see, Mr. Charles R. Wall, found by accident another unitary perfect number,
namely

218.3.54.7-11-13-19-37-79-109-157-313,

a number with 24 digits!

Therefore it seems rather unsafe to make the conjecture that there are only a
finite number of unitary perfect numbers, but the writer is still inclined to make
it!

Some other results involving these numbers will be given elsewhere.
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ISOLATION OF ZEROS IN THE SECOND ORDER LINEAR
DIFFERENTIAL EQUATION

M. R. CuLLEN, Louisiana State University
Let ¢(x) be a solution (¥£0) to the second order linear differential equation
¥ + ar(@)y’ + as(x)y = B(x),

where ai(x), az(x), and B(x) are continuous on (e, b). When 8(x) =0, it is well
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