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where the columns in W®(¢) are those in W(z), except for the kth which is
replaced by its derivative. Then if ®(f) = (X1 Xy - - - Xy - - - Xo)
WH@E) = | XXy -+ X -+ X,
on (O = | XXy XL o X,

= IX1X2'°’AXk“’XnI-

From (19) we observe that the columns X(¢) are unit vectors such that
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X(r) = | - where §;; =0, 7]
. =1, 4=7.
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Then (21) and (22) combined show that W®(r) =a;,(r). The latter coupled
with (20) and (18) shows that

V;((:)) = g a(r) = tr A(7).

f(r) =

Since 7 is an arbitrary point W’(f) =f() W(t) = tr A (§) W(¢) which leads us back
to (5).
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A SIMPLE IRRATIONALITY PROOF FOR QUADRATIC SURDS

M. V. SuBBARAO, University of Missouri

Let N be a positive integer which is not a square of another integer. If +/N
is rational, we will obtain contradictions in three ways, thus providing three
different proofs for the irrationality of 4/N.

Write v/N =a/b, where the fraction on the right is chosen so that:

1. The numerator @ is the smallest possible positive integer (for the first
proof);
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2. The denominator b is the smallest possible positive integer (for the second
proof);

3. The sum of the numerator and denominator is the smallest possible (for
the third proof).

Since a?= Nb? we have a2— Adab= Nb?— Aab, where A is the unique positive
integer given by 4 <+/N<A-+1. Hence, a(a—A4b) =b(Nb—Aa) giving v/N
=a/b=(Nb—Aa)/(a— Ab). But, in this new expression for v/N, the numerator
Nb—Aa is less than a, the denominator a —A4b is less than b, and the sum of
the numerator and denominator is less than ¢ -b—three contradictions to com-
plete the three proofs!

Whether this kind of reasoning can be extended to establish the irrationality
of the kth root of a non-kth power integer for £>2 is an open question; the
writer’s attempts in this direction ran into difficulties.

LEAST SQUARES LINE BY GRAPHICAL METHOD

J. B. WiLsoN, North Carolina State University

1. Introduction. To find the best fitting line y=ax+b for a set of points
(%, v1) of equal weight, k=0, 1, - - -, 5, according to the theory of least squares,
one determines the coefhcients ¢ and b from the normal equations

Zyk=a§:xk+(n+1)b

k=0 k=0

Zxkyk asz—Fbek.

k=0 k=0 k=0

1

The graphical procedure discussed below for determining this line has been in
use for some time, but apparently is not widely known. The procedure and its
justification are felt to be of classroom interest.

2. Procedure. For convenience, the abscissa x¢ is taken to be zero, there
being no loss of generality. The difference x;—xx_1, assumed to be constant,
is denoted by %, and the given points (x, ¥:) are denoted by P;.

Let P/ denote the point on the segment P,P; with abscissa 24/3, P¢ the
point on P{ P, with abscissa 4%/3, and, in general, P/ the point on P/_P;
with abscissa 2kk/3. The final such point is the point 4 (or P,/) on P, 1P,
with abscissa 2#k/3. A point B is located by a similar “two-thirds” procedure,
but beginning at P,, instead of P,, and proceeding to the left.

The line drawn on points 4 and B is the required least squares line. The
adjoining figure illustrates the procedure for finding point 4 in the case of five
points. For this case we would have

A8h/3, (yo + 291 + 3y2 + 4ys + Sy4)/15)
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