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084 MATHEMATICAL NOTES [November

(d) If ¢=0, then F(x) >0 for all x and so the curve 2= F(x) does not cut the
s-axis. That is, no solution is oscillatory.
We summarize these possibilities in the following theorem.

THEOREM 1. Let c =exp(—x) [x{ " —q2(x2+1)]. 4 solution of (1) with initial
conditions x =xo, 8’ =xd and valid for all large i is oscillatory if —q?<c<0 and
nonoscillatory if ¢=0.

The analysis of equation (2) is similar. The equation corresponding to (6) is
@) 1 =gz = ¢2(x? — 1) + ¢,

The curve v2= F(x) =0 for equation (7) may be described as follows. It is
similar to a parabola symmetric about the ¢ axis, opening downward with inter-
cepts at (+1, 0), and having (0, ¢%) as highest point.

For no value of ¢ (except the trivial case ¢ =¢?) is (7) a closed curve and so
we have the following theorem.

THEOREM 2. No solution of equation (2) is oscillatory.

A similar analysis of (3) and (4) reveals, as was shown by Utz, that all solu-
tions of (3), x50, valid for all large ¢ are oscillatory while all of the solutions of
(4) are nonoscillatory.

The author wishes to thank the referee for helpful suggestions.
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ARITHMETIC FUNCTIONS AND DISTRIBUTIVITY
M. V. SuBBARAO, University of Alberta

1. Introduction. In a recent paper Lambek [2, Theorem 2] proved the
equivalent of the following theorem:
Letf, g, h, k be completely multiplicative functions, then

(1.1) (fog)(hok) =fhofkoghogkow,
where w(n) =f(v/n) g(v/n) h(~/n) k(v/n) u(~/n) if n is a square and w(n) =0

otherwise and u(#) is the Moebius function. Here and throughout what follows
“ 0o ” denotes Dirichlet convolution. A function f is called multiplicative (com-
pletely multiplicative) provided f(1) =1 and f(mn)=f(m) f(n) for all coprime
integers m and # (for all positive integers 7 and #).

In this note, we give a very short proof of (1.1) different from Lambek’s and
then extend (1.1) to the case of triple product (fo g) (ko k) (u o v), where all the
functions f, - - -, v involved are completely multiplicative. As a corollary we
obtain the identity:
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(1.2) 2_ca(n)os(n)ay(n)/n?
= ()0 — @il = B — V(s — a = B)(s ~ B = 7)i(s — v —a)
(s — a— B — 7)),
where {(s) is the Riemann Zeta function, o.(n) represents the sum of the ath
powers of the divisors of #, and 6(s) = ZF(n)/n‘, F(n) being a multiplicative
function of # defined, for arbitrary prime p, by F(1) =1; F(p)=0for m=1or 5
orm>06;
F(p?) = pt#+rF (p?)
= — pa+ﬂ+7(15a+ﬂ+7({7a e Pﬂ - pY -+ 3) -+ pﬁ+7 -+ p'r+a -+ j)a+ﬁ)
and
() = pei+(pe + 1) + D7+ 1); F(pf) = — polersn),

On lettering y— — «, (1.2) reduces to a well-known result of Ramanujan [3].

Later in this note we consider the case of unitary convolution and show that
the distribution law analogous to (1.1) holds ‘exactly’ without an ‘error term’
like win (1.1). In fact, if f, g, k, k are arbitrary multiplicative functions, then

(1.3) (f-8)(h-k) = fh-fk-gh-gk,
where ‘-’ denotes the unitary convolution operation defined by

(f-9)(n) = (d)g(n/d).
(1.4) /g le”) fldg
(dn/d)=1
If S denotes the set of all multiplicative functions, and X denotes the natural
product of two such functions, the ring (S, -, X) has some interesting properties
which will be dealt with elsewhere.

2. Dirichlet convolution and distributivity. To prove (1.1) set f(p) = a,,
g(®) = by, B(Pp) = ¢p, k(p) = dp, p~° = x, where p is an arbitrary prime. Then
using formal Dirichlet series we have

(2.1) Z (fog(n)/n* = H (1 = apxp) ' (1 = bpp)™Y,

»

where throughout the paper, Z denotes summation over all positive integers
#n and Hp denotes product over all primes p. Thus,

by

a n+1_ nt+1 ¢ n+1__ nt1
(2.2) Y (fohok)(m)/n =] {1 + > ? J} {p J}x:

ap — by cp — dyp

(If b, =a,in the above, [a"*' —b2*']/[a,—b,] is to be taken as its limiting value
(n4-1)a* as b,~a,; and similarly for [3*—di™]/[c,~d,).) The result (1.1)
now follows immediately from the elementary identity
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an+l —_ bn+1 cn+1 —gntl 1— abcdxz
(2.3) 1+ gn=
a—b c—d (1—acx)(1—adx)(1—bex) (1 —bdx)

on noticing that y w(n)/n¢ =], (1 —abcdx?).

We shall next extend the result (1.1) to the triple product (f o g) (ko k) (1 0 v),
where all the functions f, g, - - -, v are completely multiplicative. Set, as above,
f(P) =apy © 0y k(?) =dp, M(P) =1y, V(P) =Jp 7" =%y, and use the identity

an+1 i bn-l—l\l C'rri-l — dn*l‘l' in+1 __jn+1
B e R B
220 Eray R i—j

B 1 —ra2+2abcdij(a+0) (c+d) (i 4-7) x® — abedijrat~ (abedig) xS
B (1—acix) (1 —acjx) (1 — adiz) (1 — adjx) (1 — beix) (1 —bejx) (1 — bdix) (1 — bdjx)

(2.4)

where
(2.5) r = (a® + b))edij + (¢ + d2)abij + (% + j2)abed + 3abodij.
We thus obtain the following

TurorReM 1. For arbitrary completely multiplicative functions f, g, h, k, #, v, we
have

(2.6) (fog)(hok)(uov)=fhuofhvofku o fkv o ghu o ghv o gku o gkv o t, where
t(n) 1s a muliiplicative function defined for arbitrary primes p as follows:

1 ifm=0;
0 ifm=1o0rSorm>0;
—r ifm =2

Hpm) = . o
2abedij(a + b)(c + )@ 4 7) if m = 3;

—abcdijr  if m = 4;
(abedif)® if m = 6,

where v 1s given by (2.5).

Setting f(n) =n*, h(n)=nf; j(n)=n7; g(n) =k(n)=1, we obtain the result
(1.2) stated earlier.

One can easily see that the general situation is as follows: If fu, fe(z=1,

-, 7) are all completely multiplicative, then the natural product of the 7
functions fi o fiz (=1, - - -, 7) equals the Dirichlet convolute of the 27 functions
fiifo; - - fri (=1, 2) and a certain multiplicative function ¢,(») which vanishes
whenever the canonical form of # has a prime occurring to an exponent <2 or
>2r—=2.

3. Unitary convolution and distributivity. We shall first note the

LemMA. The arithmelic function f satisfies f(g-h) =fg-fh for all arithmetic
functions g and hif and only if h is multiplicative.
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Here ¢’ denotes the unitary convolution defined in (1.4). The ‘if’ part of the

proof is quite trivial. For the *only if’ part, given any integer M, define
1 ifn=M,
0 otherwise.

Su(n) = {

Then, evaluating /(8- 0x) =fu-fv at n=MN, one obtains f(MN) =f(M) f(N) as
required.

THEOREM 2. For any multiplicative functions f, g, h and k, we have
(f-&)(h-k) = fhfk-gh- gk

Proof. Since f and g are multiplicative, so also is f-g. Application of the
lemma yields

(/-0 (-k) = [(7-9n]-[(7- 9.

Applying the lemma again, the right member in the above relation becomes
(fh-gh) - (fk-gk), thus proving the theorem.

4. Concluding remarks. It is well known (see, for example, [1]) that if @, and
b, are sequences, each of which satisfies a linear recurrence relation with constant
coefficients, the sequence a,b, satisfies a similar relation. Moreover, if a, is
generated by the function

%
A@) = D = P(x) )
(1 = )t - - - (1 — Bp)
where the 8; are distinct numbers and p(x) a polynomial in « of degree <ei+e:
4+ .+« 4e,=N and if b, is generated by B(x), then the sequence a.b, is gener-
ated by

k 1 aej—l

Clx) = 2 anbyam = >

in (e — DI asei?
{ sN1p (/) B(s) }
(s — B12)et -+ + + (5 — 0;12)%371(s — O312) 5% -+ - ) g
Using this method one easily obtains (2.3) and (2.4) and many others. It can be
used for example to obtain an identity for > oa(n)os(n)ay(n)os(n)/n® similar to
(1.2). The details are left to the interested reader. One can similarly obtain iden-

tities involving other arithmetic functions also which satisfy a linear recurrence
relation with constant coefficients. As simple illustrations we might mention:

@1  Somem)/n = =i =2 L0 =@+ Dpe+p757%); s> 25

and

(4.2) 3 on(m)os(n)/n* = (©)¢(s — Qs — B)E(s — « — B)F(s),
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where

F(s) = IT {1 4 (b= + 97 + p2et? + poot2f + 2poti)pe

b4

+ Pa—!—ﬁ(l + j)a)(l + pﬂ)p—as — 3p2a+2ﬁp—4s}'

Here ¢ () denotes the Euler totient; o(n) =0¢,(n); and

oa(n) = 2 d” = the sum of the ath powers of the unitary divisors of .
dln
@,n/d)=1
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THE ARITHMETIC FUNCTION 7., (n)

R. SIVARAMAKRISHNAN, Government Engineering College, Trichur, India

1. We define 74 ,(#) as the number of ways of expressing # as the product of
k factors each of which is an rth power including unity (»=1), regarding fac-
torizations as distinct, according to the order of the factors. The special case for
r=11is rx(n) (vide [1]).

From the definition it can be easily shown that

(1.1) m1.-(n) is multiplicative in »
Te(ntlr) if # is an 7th power
(1.2) rea(n) = { i), P
0, otherwise.

2. Using (1.1) and (1.2), we prove the following theorems:

(2.1) P e @b (ﬁ) =2 drz.-.r(—Z),

din d din

where ¢,(n) is the extension of Euler’s ¢-function due to V. L. Klee [2].
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