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A CLASS OF ADDITIVE FUNCTIONS
M. V. SUBBARAO, University of Alberta (Edmonton)

1. Introduction. Throughout this note, let # =21 - - - " be the representa-
tion of #>1 as a product of powers of distinct primes, and define Q;(n) =a?
4 o daf; wn) =Qo(n); Qn)=Ux). In a series of interesting papers ([1]-
[5]) R. L. Duncan considered these functions €4(n) and in particular obtained
identities ([4], Theorem 1) which generalize some results in Titchmarsh ([6]
Ch. 1, egs 1.6.2 and 1.6.3). In the paper [5] to appear, an advance copy of which
he kindly sent me, he considers an even more general class of additive functions,
given by

(1.1) a(n) = Glay) + - - - + G(ay) forn > 1; a(1) = 0.

Here G(n) is an arbitrary arithmetic function for which G(0)=0 and G(n)
=2 G(n—1) for n = 1. Duncan establishes the following result: if

(1.2) b(n) = 25 {G(d) — G(d — 1)} du(n/d),
da/n
then
= 2 b
(1.3) 2 a(mn= = £(s) ; ) 1og e,

where {(s) is the Riemann zeta function, if both series converge absolutely. He
then considers various estimates involving a(#). We attempt here to generalize
(1.3) and thus obtain a fairly general theorem applicable for a wide class of addi-
tive functions which include Duncan’s a(n).

2. The Theorem. We recall that an arithmetic function A(i.e. a complex-
valued function on the positive integers) is said to be additive, provided % (mn)

=h(m)+h(n) whenever (m, n)=1. For such a function, we have, obviously,
h(1)=0.

THEOREM. Let h be an additive arithmetic function. For m, n=1, r =0, let pn,
denote the m-th prime; set H(m, r) =h(p;,), and let E(m, n) denote the highest power
of pm dividing n.

If the double series

> > H(m, E(m, n))n—

n=1m=1
1s absolutely convergent for Re s sufficiently large, say for Re s>aq then the Dirich-
let series Y oy h(n)n=° comverges to an analytic function f(s) in the half-plane
Re s> 00, and we have the representation

0 0

f(s) = ¢(s) 2o 20 Glm, D pm

m=1 r=1
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where G(m, r)=H(m, r) — H(m, r—1), and {(s) is the Riemann geta-function.
If, in addition, H(m, r) is independent of m, so that we can write G(m, r) = g(7)
=h(27) —h(21), then in the half-plane Re s> we have

log ¢ (ns)

0 = 1) % 5 5 0 (2 s,

where u is the Mobius function.

Proof. By virtue of unique factorization of # into primes, we can write for all
n>1.

h(n) = Zk """y,

remembering that k(1) = E(m, 1) =0 for all m =1. We have also H(m, 0) =0 for
allm=1, and

h(n) = > H(m, E(m,n)), n= 1.
m=1
Hence for s> s, we have, formally:

W S by = 3 3 Him, E(m, )=

n=1 n=1m=1

‘We now assume in all that follows that Re s>o. Then the absolute conver-
gence of the double series on the right validates all our subsequent steps. We
pick up those terms for which m and E(m, n) =r are fixed. These are the terms
with

n = nl'P;s (11, ?m) =1

The contribution of these terms to the right-hand side of (1) is:

Him,») 3 g = Hm, D[e(s) — pme()lpn”

ni=1
= K'(S)H(m, f) [p;" _ p;;(f-l-l)a]‘
Hence we have
&) S hmyn = ¢(s) Z Z Hm, »)[p —<r+1>,].
n=1 =] r=1

Applying Abel partial summation to the right side of (2) we obtain

3 S ™ = 1) 33 Glm g,

n=1 m=1 r=1
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where G(m, r) =H(m, r) — H(m, r—1) = h(p]) —h(p.7"). This is as far as one can
go for arbitrary additive functions, and establishes the first part of the theorem.

We now assume that H is independent of its first place. Then so also is G, and
we can write G(m, ) =g(r). Hence we have

S~ = 1) 3 3 e pn

n=1 m=1 r=1

= ¢(s) Z g(r) Z b

=1

( )

= ¢(s) Z g() Z log ¢ (rms)

m=1

(see, for example, Titchmarsh [6] Chapter 1).
Write the above expression in the right side as a double series in the form

() Z Z log s‘(MM) g(r),

=1 m=1

and then set #7 =% and sum on # to obtain, finally:

1 s
@ thn—s e 3 et - dﬂ( d)gw).

n=1 n din
This completes the proof of the theorem.

3. Special cases. I. Setting %(n) =a(n) defined in (1.1), we obtain Duncan’s
formula (1.3). Duncan ([4], [5]) pointed out that some well-known results are
immediate consequences of (1.3). The following are two other noteworthy de-
ductions, which the author has not seen mentioned in the literature.

Let {(n) and t;(n) denote respectively the number of divisors and the number
of unitary divisors of #. Setting G(n) =log (1+#)(#=0) and G(n) =log 2(x>0),
G(0) =0 respectively, we obtain

(3.1) s logl) g s —100 t(ns) log F(n),
nt

where

rey =11 (1+ 2

dln
log t,(n)

1
(3.2) 2 = (log 2)¢(s) 2 — log (ns)u(n).

II. If G(n) is an arbitrary function and

V(n) = 22 d(G(d) — G(d — 1)¢(n/d),

din



260 VERY MAGIC SQUARES [March

) = 35 T @) - @ - 1),

=1 @=1 Diz

then Dy h(n)/n*={¢(s) D m i log ¢ (ns) V(n)/n. This is easily deduced from the
theorems. In particular, setting G(n) = (1) the number of primes not exceeding
n,and G(n) = Y,z p, p being a prime, we obtain respectively,

5:( }': w(l) + w2 + - - -+ w(a,—))/n‘

= 1(5) 3. log £(ns) ( > ¢(n/p>(n/p>);
and

2 i? (BQA) + B2 + - - - + Ba)) / n = ¢(s) '52 nlog ¢ (ns) D, ¢(n/p)(p*/n?),

n=1 i=1 n=1 Pln

where () is the sum of the distinct prime divisors of #.
The author greatly appreciates the referee’s helpful comments.
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VERY MAGIC SQUARES
D. E. KNUTH, California Institute of Technology

A square matrix 4 is “magic” in the weakest sense if it has a generalized
“doubly stochastic” property, namely when all of its row sums and column
sums have the same value s. The matrix is even more “magic” when the sums
of its elements along certain diagonals are also equal to s.

If 4 is an m Xm matrix whose elements are denoted by 4, for 1 <x, y<m,
let us say a generalized diagonal of 4 is the set of all 4,, such that ax-+by=¢
(modulo m), for some given integers a, b, ¢ with a and b relatively prime to each
other. For example, a 5X 5 matrix has 30 distinct generalized diagonals, namely
the sets of elements of the same value in the following squares:
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