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and the proof is complete.
I wish to thank Professor U. N. Singh for his help in the preparation of this note.
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ON RELATIVELY PRIME SEQUENCES
M. V. SuBBARAO, University of Alberta, Edmonton

1. A sequence of integers {a.} (n=1) will be called relatively prime if
a,7#0 except for at most one value of # and (en, a,) =1 for all m and » with
m##“n. We recall that, if ¢ is a nonzero integer, we define (g, 0) = [a]. In this
note we consider the following question: Suppose that ¢(x) is a polynomial in %
with integral coefficients and ¢o(x) =%, ¢r11(x) =¢(¢pr(x)) (£=0). Suppose also
that for all integers x and all 220 for which ¢x(x) %0 we have ¢k(x)l¢k+1(x).
We note that this holds if and only if ¢(0) =0, which is therefore assumed
throughout. Under what conditions on ¢(x) and for what integral values
of x is the sequence of integers {f.(x)} (#>0) relatively prime, where f.(x)
=@n (%) /Pna(x) (n=1,2, - - - )? (For the case ¢,_1(x) =0, see below.) This ques-
tion arises naturally in view of the known result that the sequence
{(a*"— 1)/ — 1)} (n=1, p prime, (¢ —1, p) =1) is relatively prime, and we
can write a?" —1=¢,(a—1) with ¢(x)=(x+1)?—1.

A similar problem for the sequence {¢.(x)} of iterations of ¢(x) was consid-
ered by R. Bellman [1] in trying to generalize the well-known result that the
sequence of Fermat numbers { F,} = {22"—|—1 } is relatively prime and observing
the fact that F, can be written as F,=¢,(3), where ¢(x) =(x—1)2+41. In the
sequel {¢a(x)} and {fa(x)} are sequences as already defined and we write f(x)
for fi(x).

If, for some 7= 0, ¢n(x) =0, then ¢n(x) =0 for all m =n. In this case we define
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Sapr(x) as limy . (Prt1(y) /@a(9)), which =¢'(0). We also have fn41(x) =¢'(0) for
all mzn.

THEOREM 1. If, for a given integer x, {¢n(x) } has a vanishing term, the sequence
{fa(x) } is relatively prime if and only if ¢'(0) = +1.

Proof. Let n=r2=0 be the smallest integer for which ¢,(x) =0, so that f.(x)
=¢'(0) for all n>r. The necessity of the requirement ¢’(0) = + 1 for the sequence
{fa(x)} to berelatively prime is evident, as also its sufficiency if  =0. To show its
sufficiency if #>0, we observe that f,(x) =0 and f.(x) %0 (n=1,2, - - -, r—1).
Since ¢(¢,—1(x)) =¢,(x) =0 it follows that ¢,_1(x) is a nonzero integral root of the
polynomial equation ¢(y)/y=0 and hence is a divisor of ¢'(0) (which by the
sufficiency assumption is 1), remembering that ¢’(0) is the constant term of
the polynomial ¢(y)/y. Also since ¢ia(x)|pi(x) (i=1, 2, - - -, r—1) it follows
that if ¢’(0) = £+ 1 then ¢i(x) = +1 for 0=<7=r—1, thus completing the proof.

REMARE. It follows from the above proof that if ¢’(0) 0, the only possible
nonzero integers x for which ¢,(x) =0 for some # are the positive and negative
divisors of ¢'(0).

As a very simple illustration, setting ¢(x) =x(1 —x)2? we have ¢’(0) =1 and
fn(0) } = {1, 1, ... } and {f,.(l)} = {0, 1, 1, .- } are the only cases of
fa(x) § for which the corresponding {d),.(x)} has a vanishing term; of course, in
both cases {f.(x)} is relatively prime.

On the other hand, for ¢(x) =x(4—x) we have ¢(4) =¢2(2) =0, and cor-
respondingly, {f.(4)}=1{0, 4, 4,---}, {f(2}=1{2, 0, 4, 4, .-} are not
relatively prime. Theorem 1 is inapplicable here since ¢'(0) = +1.

THEOREM 2. Let ¢(x) satisfy
1) ¢'(0) = 0,
) for any x #£ 0, (x, ¢'(0)) = 1 implies (¢(x)/x, ¢'(0)) = 1.

Then for any x for which (x, ¢'(0)) =1 the sequence {fa(x)} (n=1, 2, --) is
relatively prime.

Proof. Assume first that ¢,(x) #0 for »=0, 1, 2, - - - . We use an obvious
variation of Bellman’s argument in [1]. For any #>m =1 we have

fa (%) = Sn-m(@m())/bn-m-1($n(%)) = fom(Pm(x))
= fa-m(0) (mod ¢n(x)) = fom(0) (mod fu(%)) = ¢'(0) (mod fu(x)),
since ¢(0) =0 and so f(0) =¢'(0) for all £>0. Thus for all u>m=1
) (fn(@), fa(2)) = (fu(x), ¢'(0)),

which =1 if (x, '(0)) =1, on using (2). The theorem now follows in this case.
We now consider the case in which {qb,,(x)} has at least one zero term for
n=0.
The case ¢o(x) =x=0 offers no difficulty, for then f,(0) =¢'(0) for all z=1.
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Also x =0 satisfies (x, ¢’(0)) =1 only if ¢'(0) = +1, and the truth of the theorem
is obvious. Next, let #=7>0 be the smallest value of # for which ¢,(x) =0, so
that x70. Since ¢'(0) %0 by (1), the only vanishing term of { f,.(x)} is f.(x).
To prove the theorem in this case we have only to show, in view of Theorem 1,
that if (x, ¢(0))=1 then condition (2) implies that ¢’(0)=+1. Assume
(x,¢'(0)) =1. Using (2) we then have (¢(x), ¢'(0)) =1 and a repeated application
of the same yields (¢.(x), ¢'(0)) =1, that is, (0, ¢’(0)) =1 giving ¢’(0) = +1 and
completing the proof of the theorem.

REMARK. This theorem cannot be deduced from Bellman’s Theorem 2 of [1]
since our fn(x) is not the mth iterate of f(x) except, as can easily be shown, in
the case when ¢(x) =ax, a 0.

It can be checked that the conditions of the theorem are satisfied for the
following cases:

(A) o(x) = (x 4 2)* — 16, x odd.
(B) ¢o(x) = (x £ 1)» F 1, p odd prime, (x, p) = 1.
© ¢(x) = x(ax* + ¢7)9, ¢ prime, (e, ¢) = 1, (%, ¢) = 1, k and 7 integers >0.
The last two are in fact included in the case
(D) o) =ax+ a4+ - -+t B> 1,0,%0,a,%0, (a1, &) = 1,
a;=0(moda) ¢6=1,2,---,k—1), (%, a) = 1.

THEOREM 3. The sequence {f.(x)} is relatively prime for all integral x if and
only if ¢'(0)=+1.

The “if” part is a consequence of Theorem 2 and the “only if” part follows
either from Theorem 1 or by considering the sequence

{20} = {¢'(0), ¢'(0), - - - }.

The corresponding result for the sequence of iterations of a polynomial was
obtained in [2].

2. Suppose that {f.(x)} is relatively prime for x=x, and that an infinite
number of terms of the sequence 5 1 1. Then of course the sequence contains an
infinite number of prime divisors. This happens, for example, if ¢(x) satisfies
the conditions of Theorem 1 and, in addition, if |¢(+ 1)| >1, or if ¢(x) >« for
% =%, or if ¢(x0) >x0>1, or if ¢(xe) >x0 and ¢(£ 1) 5 1. The inevitable ques-
tion arises: Does there exist a ¢(x) and an x, such that either all or an infinite
number of the numbers fu(xo) (=1, 2, - - - ) are primes, or at least have a
bounded number of prime divisors? A similar question arises with regard to the
iterations of a polynomial ¢(x) as Bellman remarks in [1]. Even in the special
case of Fermat numbers, while work on their primality, mostly computational,
is in progress, almost nothing seems to be known so far regarding the bounded-
ness or otherwise of the number of their prime divisors.
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The author is thankful to the referee especially for calling attention to the case in which
¢n(x) vanishes for some #.
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THE MASSERA—SCHAFFER EQUALITY
L. M. KeLLy, Michigan State University and Cambridge University

J. L. Massera and J. J. Schaffer [Annals of Math., 67 (1958) p. 538] have
shown that for any two vectors x and y of a normed linear space

M 191l = lllloll maxdlal, 151l = 2ll]-{Isl]-ll= — 5l-

Kirk and Smiley [this MonTHLY, 71 (1964) p. 891] have expressed interest
in the conditions under which equality holds.

TaEOREM. Two distinct nonzero vectors x and y of a complex normed linear space
satisfy the equality in (1) iff x and vy span an I in the underlying real vector space
with

—x %
-_I:y—-—* and i—(or + —2,-—>
lly = 4l [ [Ell

as the vertices of the unit parallelogram.
The proof is an immediate consequence of the following lemma.

LEMMA. If ABC is an isosceles triangle in a two dimensional real normed linear
space with ||AB|| =||AC|| and X any point on side AC, then | Bx|| z%||BC|| with
equality holding iff || AX|| =3||BC|| and the unit circle is a parallelogram.

Proof. Consider points D and E on sides 4C and BC respectively such thnt
|cD|| =%||BC]| and the line DE is parallel to line AB. | DE|| =||DC|| =4[/ BC]|.
If X is on the closed segment DC, the inequality follows from the triangle in-
equality with equality possible only if X =D. If X is on the closed segment AD,
consider the point Y on the segment BE such that the line BX is parallel to the
line DY. | BX| 2||DY]|| || DE| =%||DC||, the middle inequality following from
the convexity of spheres. Here again equality holds iff X=D.

1f || BD|| =|| DC|| =%|| BC|| then B and C together with the reflections of these
points in D form the vertices of a parallelogram all of whose boundary points
are equidistant from D.

Proof of the theorem. The sufficiency is clear. Suppose then that ||| Z||x|| >0
and the vectors are linearly independent. The case of linear dependence leads
easily to the condition x =y. Application of the lemma to the triangle defined by
the null vector and the vectors y and ||y||x/||x|| implies that
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