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for1=r=k—1.
Thus, (6) is true for t=m-1 if it is true for {=m and the result follows by
mathematical induction.
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SOME REMARKS ON THE PARTITION FUNCTION

M. V. SuBBARAO, University of Alberta, Edmonton

1. Preliminaries. Kolberg [2] was probably the first to prove that the parti-
tion function p(n) (which denotes the number of unrestricted partitions of the
positive integer #) takes both odd and even values, each of them infinitely often.
This result is also contained in the Advanced problem No. 4944 (1961, 76) pro-
posed by M. Newman and solved by J. H. van Lint and the proposer (1962, 69,
p. 175) in this MONTHLY. As a wide generalization of this result M. Newman [3]
conjectured that for all integers m =2 each of the congruences

p(n) = r (mod m), 0Zr=m-—1,

his infinitely many solutions in positive integers n. He proved this conjecture
for m=2, 5, 13, 65 ([3], [4]).
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In this note we prove that p(2n-+1) takes even and odd values, each of them
infinitely often. It should be noted that our result implies Kolberg’s result and
yet is not covered by Newman’s conjecture. We also prove some other congru-
ences and end up with some conjectures.

2. A recurrence formula with a congruence. In the sequel we write

0

@) =1 —-a, |«| <1;

n=1

o(n) and ¢(n) for the sum and number of divisors of % respectively, and define
a(0)=0; t(0) =p(0)=1, p(n)=0 for n<0. Also we write § for the operator
xd/dx and recall that

(2.1) 1/¢(x) = 25 p(n)ar,
(2.2) 0 log(1/(x)) = 2 o(m)an,

where, unless otherwise specified, all summations are from =0 to n= o,
In addition to the classical result due to Euler on the power series expansion
for ¢(x) we use the following well-known and easily proved result:

LEMMA 1. For all positive integers m and all divisors d> 2 of 24,
(2.3) o(dm — 1) = 0 (mod d).

This holds for d=2 if and only if dm—1 is not a square integer. (Of course
(2.3) holds trivially for d=1.) A simple proof of this result, given in [5], is
based on the fact that if d> 2, the integer N=dm —1 is nonsquare, and for any
t| N, t+(N/t) =0 (mod d). This leads to

LEMMA 2. Let d=2 be a divisor of 24. For all nonsquare N for which
(2.9 N = —1 (modd)
we have

kQGBE — 1
pWN) = 22 (=1 {(1 + LE—)> p(N — k(Bk — 1)/2)

k>0

EGE + 1)

+ (1 += ) (N — k(3E + 1)/2)} (mod d).

REMARRK. If d>2, any N satisfying (2.4) is a nonsquare integer.

Proof. From (2.1) and (2.2) we have
$(@) 22 np(m)am = 2 o(n)ar

Equating the coefficients of x¥ on both sides and using Lemma 1 we have the
required result.
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COROLLARY. For N, d as given above,
(2.5) p(N—1) +2p(N —2) —5p(N —5) — Tp(N — 7) + - - - = 0 (mod d),
the general term on the left being (—1)*'k(3k+1)/2 p(N—E(3k+1)/2).

This follows on combining the result of Lemma 2 with Euler’s power series
expansion for ¢(x). In particular, setting d=3 and observing that k(3k—1)/2
=k (mod 3) and k(3k+1)/2=—k (mod 3) we have for all N=2 (mod 3),

2 (=1 p(N — B3k — 1)/2) — p(N — k(3k +1)/2)} =0 (mod 3).
k=1,3/k
3. Parity of p(2n+1).
THEOREM 1. The congruences p(2n+1)=0 (mod 2) and p(2n+1)=1 (mod 2)
have each an infinite number of solutions in n.

Proof. We apply an argument similar to Kolberg’s to the relation
B1) p(N) + p(N —2) + p(V — 12) + p(N — 22) + - - - = 0 (mod 2),

which is valid for any positive odd integer N which is not a perfect square,
where in the left member of (3.1) the general term is p(N—k(3k+1)/2) pro-
vided k(3k+1)/2 is even. This relation is a consequence of Lemma 2.

Assuming, then, that the theorem is false, let m be the largest odd integer for
which p(m) is even (odd). Setting r =32m+-8 and N=m-+r(3r —1)/2 it is easily
verified that N=2 (mod 3) and hence not a square integer. Further, since N is
odd, the congruence (3.1) applies and the last term in the left member of the
congruence is p(m). Setting ar=k(3k—1)/2, by=k(3k+1)/2, the terms of the
sequence ai, b1, @y, b, - - - taken modulo 2 recur, the recurrence cycle being
1,0,1,1,0,1,0, 0. Recalling the values of » and N in terms of m it is seen that
in the left member of (3.1) the number of terms is even, being 32m+8; of these
the only even (odd) term is p(m). Hence for this choice of N the congruence
(3.1) cannot hold, thus proving the theorem.

4. The function s.(n). Let a1, @z, - * +, ap@) denote the number of parts
(summands) in the p(n) partitions of # arranged in some order. We define
se(n)=ai+ - - - +apm so that s,(n) =p(n). We shall write s(n) for si(n). Let

o(x, ) = (1 — dx)(1 — ba?) - - -
so that 1/¢(x, b) =1+4Bwx+Bx?+ - - -, where B,=bu+ - .. fpmw, It is

easily seen, using differentiation with respect to b a couple of times and setting
b=1 (and defining s,(n) =0 for # <0) that

$(®) 2 s(m)am = 20 i(n)a,
$(#) 22 sa(mam = (22 1m)am)? + 22 a(m)an.

Using the Euler expansion for ¢(x), the congruence properties for ¢(z) in Lemma

(.1)
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1 and the fact that ¢#(#) =0 (mod 2) unless # is a square we can prove not only
recurrence relations for s(z) and si(n) as in Lemma 2, but also:

THEOREM 2. The functions s(n) and si(n) take infinitely often even as well as
0dd values.

The proof of this is analogous to that of Theorem 1. The function s(#) occurs
in a recent paper of Fine [1], where (4.1) is obtained by a different method. A
generating series for s,(n) for general values of 7 seems to be fairly complicated.

5. Concluding remarks. The author has been unable to prove the analogue
of Theorem 1 for p(2n)—namely that, for infinitely many %, p(2n) is odd (even),
but believes it to be true. It might be conjectured that s.(#) takes both even and
odd values, each infinitely often, for all integers =0, and probably more, that
for all integers =1 and all a, 0=<a<Fk, each of the congruences s, (nk-+a)
=0 (mod k), s,(nk+1)=1 (mod k) hold for an infinite number of integers =
and all integers r =0.

In a recent private communication to the author, Professor O. Kolberg
proved that p(27n) takes even as well as odd values infinitely often. Following
Kolberg’s method, the author has now proved similar results concerning
p(dn+r) (r=0,1, 2, 3). These, as well as further extensions, will appear elsewhere.
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SOME THEOREMS ON EXPANSIVE HOMEOMORPHISMS
RicHARD WILLIAMS, Southern Methodist University

In this note, a new theorem concerning expansive homeomorphisms will be
proved, and an elementary proof of a known theorem appears as a corollary to
the new theorem mentioned above.

The following theorem was first proved by Jakobsen and Utz in [4]. We
now give a new proof.

THEOREM 1. If D is the closed unit disk, then there does not exist an expansive
homeomorphism on D.

Proof. Let f be an expansive homeomorphism on D with expansive constant
8. Let C be the boundary of D. Since f maps C onto itself, f is expansive on C.
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