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A GENERATING FUNCTION FOR A CLASS
OF ARITHMETIC FUNCTIONS

M. V. SUBBARAO, University of Missouri

We propose to generalize here the results given by V. C. Harris and
L. T. Warren [1] concerning the function (%) which stands for the sum of the
kth powers of the divisors of #.

Let g(n) be any multiplicative function of #, so that we have g(mn)
=g(m)g(n) whenever m and # are mutually prime. Let k() = Y g(d), summed
over the divisors of #, so that &(x) is also a multiplicative function of #. Let
a be any positive integer and r the largest divisor of @ which is prime to #. Let
a=rs. Then, as a generalization of Theorem 1 of [1], we have

THEOREM 1. Let f(a, n) be the arithmetic function defined by the relation
2 flo,m)ar 2

> = Y h(an)an,

w1 1 — x» n=1

Then f(a, n) =h(r)g(sn).
Proof. We have h(an) = D4 f(a, d), so that
(1.1) S, m) = 32 Wan/d)u(d) = 32 hlan/d)u(d) = k()2 h(sn/d)u(d),

din dlns d|ns

u(n) being the Mobius function. Also k(n) = D4, g(d), so that by the M&bius
Inversion formula,

g(ns) = | h(sn/d)u(d).

dlns
The theorem now follows on combining this result with (1.1).

THEOREM 2. Let g(n) be a positive valued and unconditionally multiplicative
Sfunction of m, so that g(mn) =g(m)g(n) for all positive integers m and n. Then the
function k(a, n) given by k(a, n) =f(a, n)/g(n) is periodic in n with least period P,
where P is the product of the distinct prime factors of a.

Proof. If b is any factor of @ such that (b, n)=1, then (b, +P)=1 and
conversely. Hence 7 and s are unaltered by replacing # by #+P. Now

f(a,n)/g(n) = h(r)g(sn)/g(n)
= h(r)g(s)g(n)/g(n) = h(r)g(s).
Hence k(a, ) has period P in n.
We can easily show that P is the least period. For if R is the least period
we have k(a, n)=k(a, n+R) for all n. Taking n=a we get h(1)g(a) =k()g(x)

where ¢ is the largest factor of a such that (¢, a4+R) =1 and a=tu. Since g(n) is
positive and unconditionally multiplicative it follows that %(#) is positive and
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multiplicative in #, and in particular £(1) =1, since g(1) =1. Thus &(t)g(x) =g(a)
= g(ut) = g(u)g(t), giving h(t) =g(t). Since k() = D_a1: g(d) it follows that t=1.
This shows that every prime factor of ¢ is a prime factor of R, proving that P
is the least period of k(a, 7).

Remarks. A large number of arithmetic functions are of the form %(z). Thus
taking g(n) =1, k(n) becomes 7(n), the number of divisors of #n. If g(n) =n" we
get k(n) =0.(n), and thus obtain the results of [1].
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ON SIMULTANEOUS HERMITIAN CONGRUENCE
TRANSFORMATIONS OF MATRICES

KuLENDRA N. MAJINDAR, Loyola College, Montreal

We shall establish here a few results regarding simultaneous transformation
of two matrices. The transpose and conjugate transpose of a square matrix P
will be denoted respectively by P’ and P*; similarly for a vector; and IPI will
denote the determinant of P. We shall use the notation

[ o
Q
to denote the direct sum of two square matrices P and Q. A triangular matrix

is one in which the elements below the main diagonal are 0.
Our first result is given in the following theorem.

THEOREM 1. If A and B are square matrices of the same size and are such that
for mo column vector £ with complex elements E¥*AE=E*BE=0, then there exists a
nonsingular matrix C such that C*AC and C*BC are both triangular matrices.

Proof. Let A and B be n X n matrices. Let N be a root of the equation
| A —\B| =0. Take a nonnull vector £ written as a column vector, such that
A& =NB&. Choose a set of linearly independent column vectors &, &, « « +, &,
satisfying £¥A& =0 or £¥BE=0,1=2, 3, - + -, n according as A0 or A=0.
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