

A Generating Function for a Class of Arithmetic Functions

Author(s): M. V. Subbarao

Source: The American Mathematical Monthly, Vol. 70, No. 8, (Oct., 1963), pp. 841-842

Published by: Mathematical Association of America

Stable URL: http://www.jstor.org/stable/2312665

Accessed: 15/04/2008 20:00

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

A GENERATING FUNCTION FOR A CLASS OF ARITHMETIC FUNCTIONS

M. V. SUBBARAO, University of Missouri

We propose to generalize here the results given by V. C. Harris and L. T. Warren [1] concerning the function $\sigma_k(n)$ which stands for the sum of the kth powers of the divisors of n.

Let g(n) be any multiplicative function of n, so that we have g(mn) = g(m)g(n) whenever m and n are mutually prime. Let $h(n) = \sum g(d)$, summed over the divisors of n, so that h(n) is also a multiplicative function of n. Let a be any positive integer and r the largest divisor of a which is prime to n. Let a = rs. Then, as a generalization of Theorem 1 of [1], we have

THEOREM 1. Let f(a, n) be the arithmetic function defined by the relation

$$\sum_{n=1}^{\infty} \frac{f(a,n)x^n}{1-x^n} = \sum_{n=1}^{\infty} h(an)x^n.$$

Then f(a, n) = h(r)g(sn).

Proof. We have $h(an) = \sum_{d|n} f(a, d)$, so that

(1.1)
$$f(a, n) = \sum_{d|n} h(an/d)\mu(d) = \sum_{d|ns} h(an/d)\mu(d) = h(r) \sum_{d|ns} h(sn/d)\mu(d),$$

 $\mu(n)$ being the Möbius function. Also $h(n) = \sum_{d|n} g(d)$, so that by the Möbius Inversion formula,

$$g(ns) = \sum_{d \mid n} h(sn/d)\mu(d).$$

The theorem now follows on combining this result with (1.1).

THEOREM 2. Let g(n) be a positive valued and unconditionally multiplicative function of n, so that g(mn) = g(m)g(n) for all positive integers m and n. Then the function k(a, n) given by k(a, n) = f(a, n)/g(n) is periodic in n with least period P, where P is the product of the distinct prime factors of a.

Proof. If b is any factor of a such that (b, n) = 1, then (b, n+P) = 1 and conversely. Hence r and s are unaltered by replacing n by n+P. Now

$$f(a, n)/g(n) = h(r)g(sn)/g(n)$$

= $h(r)g(s)g(n)/g(n) = h(r)g(s)$.

Hence k(a, n) has period P in n.

We can easily show that P is the least period. For if R is the least period we have k(a, n) = k(a, n+R) for all n. Taking n = a we get h(1)g(a) = h(t)g(u) where t is the largest factor of a such that (t, a+R) = 1 and a = tu. Since g(n) is positive and unconditionally multiplicative it follows that h(n) is positive and

multiplicative in n, and in particular h(1) = 1, since g(1) = 1. Thus h(t)g(u) = g(a) = g(ut) = g(u)g(t), giving h(t) = g(t). Since $h(t) = \sum_{d \mid t} g(d)$ it follows that t = 1. This shows that every prime factor of a is a prime factor of a, proving that a is the least period of a.

Remarks. A large number of arithmetic functions are of the form h(n). Thus taking g(n) = 1, h(n) becomes $\tau(n)$, the number of divisors of n. If $g(n) = n^r$ we get $h(n) = \sigma_r(n)$, and thus obtain the results of [1].

Reference

1. V. C. Harris and L. J. Warren, A generating function for $\sigma_r(n)$, this Monthly, 66 (1959) 467-472.

MATHEMATICAL NOTES

EDITED BY J. H. CURTISS, University of Miami

Material for this department should be sent to J. H. Curtiss, University of Miami, Coral Gables 46, Florida

ON SIMULTANEOUS HERMITIAN CONGRUENCE TRANSFORMATIONS OF MATRICES

KULENDRA N. MAJINDAR, Loyola College, Montreal

We shall establish here a few results regarding simultaneous transformation of two matrices. The transpose and conjugate transpose of a square matrix P will be denoted respectively by P' and P^* ; similarly for a vector; and |P| will denote the determinant of P. We shall use the notation

$$\begin{bmatrix} P & \\ & Q \end{bmatrix}$$

to denote the direct sum of two square matrices P and Q. A triangular matrix is one in which the elements below the main diagonal are 0.

Our first result is given in the following theorem.

THEOREM 1. If A and B are square matrices of the same size and are such that for no column vector ξ with complex elements $\xi^*A\xi = \xi^*B\xi = 0$, then there exists a nonsingular matrix C such that C^*AC and C^*BC are both triangular matrices.

Proof. Let A and B be $n \times n$ matrices. Let λ be a root of the equation $|A-\lambda B|=0$. Take a nonnull vector ξ_1 written as a column vector, such that $A\xi_1=\lambda B\xi_1$. Choose a set of linearly independent column vectors $\xi_2, \xi_3, \dots, \xi_n$ satisfying $\xi_i^*A\xi_1=0$ or $\xi_i^*B\xi_1=0$, $i=2, 3, \dots, n$ according as $\lambda\neq 0$ or $\lambda=0$.