A Generating Function for a Class of Arithmetic Functions
Author(s): M. V. Subbarao
Source: The American Mathematical Monthly, Vol. 70, No. 8, (Oct., 1963), pp. 841-842
Published by: Mathematical Association of America
Stable URL: http://www.jstor.org/stable/2312665
Accessed: 15/04/2008 20:00

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=maa.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We enable the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact support@jstor.org.

A GENERATING FUNCTION FOR A CLASS OF ARITHMETIC FUNCTIONS

M. V. SUBBARAO, University of Missouri

We propose to generalize here the results given by V. C. Harris and L. T. Warren [1] concerning the function $\sigma_{k}(n)$ which stands for the sum of the k th powers of the divisors of n.

Let $g(n)$ be any multiplicative function of n, so that we have $g(m n)$ $=g(m) g(n)$ whenever m and n are mutually prime. Let $h(n)=\sum g(d)$, summed over the divisors of n, so that $h(n)$ is also a multiplicative function of n. Let a be any positive integer and r the largest divisor of a which is prime to n. Let $a=r s$. Then, as a generalization of Theorem 1 of [1], we have

Theorem 1. Let $f(a, n)$ be the arithmetic function defined by the relation

$$
\sum_{n=1}^{\infty} \frac{f(a, n) x^{n}}{1-x^{n}}=\sum_{n=1}^{\infty} h(a n) x^{n} .
$$

Then $f(a, n)=h(r) g(s n)$.
Proof. We have $h(a n)=\sum_{d \mid n} f(a, d)$, so that

$$
\begin{equation*}
f(a, n)=\sum_{d \mid n} h(a n / d) \mu(d)=\sum_{d \mid n s} h(a n / d) \mu(d)=h(r) \sum_{d \mid n s} h(s n / d) \mu(d), \tag{1.1}
\end{equation*}
$$

$\mu(n)$ being the Möbius function. Also $h(n)=\sum_{d \mid n} g(d)$, so that by the Möbius Inversion formula,

$$
g(n s)=\sum_{d \mid n s} h(s n / d) \mu(d) .
$$

The theorem now follows on combining this result with (1.1).
Theorem 2. Let $g(n)$ be a positive valued and unconditionally multiplicative function of n, so that $g(m n)=g(m) g(n)$ for all positive integers m and n. Then the function $k(a, n)$ given by $k(a, n)=f(a, n) / g(n)$ is periodic in n with least period P, where P is the product of the distinct prime factors of a.

Proof. If b is any factor of a such that $(b, n)=1$, then $(b, n+P)=1$ and conversely. Hence r and s are unaltered by replacing n by $n+P$. Now

$$
\begin{aligned}
f(a, n) / g(n) & =h(r) g(s n) / g(n) \\
& =h(r) g(s) g(n) / g(n)=h(r) g(s) .
\end{aligned}
$$

Hence $k(a, n)$ has period P in n.
We can easily show that P is the least period. For if R is the least period we have $k(a, n)=k(a, n+R)$ for all n. Taking $n=a$ we get $h(1) g(a)=h(t) g(u)$ where t is the largest factor of a such that $(t, a+R)=1$ and $a=t u$. Since $g(n)$ is positive and unconditionally multiplicative it follows that $h(n)$ is positive and
multiplicative in n, and in particular $h(1)=1$, since $g(1)=1$. Thus $h(t) g(u)=g(a)$ $=g(u t)=g(u) g(t)$, giving $h(t)=g(t)$. Since $h(t)=\sum_{d \mid t} g(d)$ it follows that $t=1$. This shows that every prime factor of a is a prime factor of R, proving that P is the least period of $k(a, n)$.

Remarks. A large number of arithmetic functions are of the form $h(n)$. Thus taking $g(n)=1, h(n)$ becomes $\tau(n)$, the number of divisors of n. If $g(n)=n^{r}$ we get $h(n)=\sigma_{r}(n)$, and thus obtain the results of [1].

Reference

1. V. C. Harris and L. J. Warren, A generating function for $\sigma_{r}(n)$, this Monthly, 66 (1959) 467-472.

MATHEMATICAL NOTES

Edited by J. H. Curtiss, University of Miami
Material for this department should be sent to J. H. Curtiss, University of Miami, Coral Gables 46, Florida
\section*{ON SIMULTANEOUS HERMITIAN CONGRUENCE TRANSFORMATIONS OF MATRICES}

Kulendra N. Majindar, Loyola College, Montreal

We shall establish here a few results regarding simultaneous transformation of two matrices. The transpose and conjugate transpose of a square matrix P will be denoted respectively by P^{\prime} and P^{*}; similarly for a vector; and $|P|$ will denote the determinant of P. We shall use the notation

$$
\left[\begin{array}{ll}
P & \\
& Q
\end{array}\right]
$$

to denote the direct sum of two square matrices P and Q. A triangular matrix is one in which the elements below the main diagonal are 0 .

Our first result is given in the following theorem.
Theorem 1. If A and B are square matrices of the same size and are such that for no column vector ξ with complex elements $\xi^{*} A \xi=\xi^{*} B \xi=0$, then there exists a nonsingular matrix C such that $C^{*} A C$ and $C^{*} B C$ are both triangular matrices.

Proof. Let A and B be $n \times n$ matrices. Let λ be a root of the equation $|A-\lambda B|=0$. Take a nonnull vector ξ_{1} written as a column vector, such that $A \xi_{1}=\lambda B \xi_{1}$. Choose a set of linearly independent column vectors $\xi_{2}, \xi_{3}, \cdots, \xi_{n}$ satisfying $\xi_{i}^{*} A \xi_{1}=0$ or $\xi_{i}^{*} B \xi_{1}=0, i=2,3, \cdots, n$ according as $\lambda \neq 0$ or $\lambda=0$.

