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Improved estimation of site occupancy using penalized likelihood
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Abstract. When detection or occupancy probability is small or when the number of sites
and number of visits per site is small, maximum likelihood estimators (MLE) of site
occupancy parameters have large biases, are numerically unstable, and the corresponding
confidence intervals have smaller than nominal coverage. We propose an alternative method
of estimation, based on penalized likelihood. This method is numerically stable, the estimators
have smaller mean square error than the MLE, and associated confidence intervals have close
to nominal coverage.
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INTRODUCTION

For decades, ecologists have measured the relative

abundance of wildlife species to address various applied

and theoretical ecological questions. However, the

conclusions drawn by past studies that have used

relative abundance measures are being increasingly

questioned. Recognition that animals may be present

at a sampling location but not detected has led to

concerns that changes in relative abundance demon-

strated in past studies may be due to changes in

detectability and not the actual changes in animal

abundance. The risk of such potential biases has led to

an explosion of methods to account for imperfect

detectability when estimating animal abundance or

occupancy. One of the most common methods being

used today by ecologists to account for imperfect

detection when estimating animal occupancy rates is

that of MacKenzie et al. (2002). The approach used by

Mackenzie et al. (2002) requires that observers visit the

same site multiple times. The rationale for this sampling

approach is that by visiting the same site multiple times

the factors influencing detection error can be separated

from ecological factors influencing occupancy rate. A

greater number of visits to a site will always improve the

ability of occupancy models to estimate detectability as

long as the surveys can be done over a relatively short

period of time. The requirement of a short period

between surveys is because occupancy models assume

sites are ‘‘closed populations,’’ meaning individuals are

not born, do not die, or move out of or into a sampling

area during the period of observation. In what

circumstances this assumption is met is not clear for

many species. This can create problems in designing

sampling programs and modeling of subsequent data.

This situation leads to an inherent trade-off for

ecologists, as they have to balance the number of sites

they visit with the number of revisits to the same sites

often with insufficient a priori information to decide the

appropriate balance. An additional problem in occu-

pancy modeling that many ecologists are not familiar

with is that the likelihood function used by MacKenzie

et al. (2002) is ill behaved in several practical circum-

stances. For example, when the detection or occupancy

probability is small, or when number of sites and

number of visits per site is small, the maximum

likelihood estimators (MLE) of site occupancy param-

eters tend to have large biases, are numerically unstable,

and the corresponding confidence intervals tend to have

smaller than nominal coverage. Thus, when ecologists

choose a sampling design that has insufficient revisits or

insufficient number of sites, they are left in a quandary

as to how to analyze their data because the likelihood

method gives very unstable and hence unusable results.

In such situations, most ecologists have either ignored

the problem and presented occupancy results as if they

are robust estimates, or ignored the detection error and

reverted to standard binary regression. We propose an

alternative method of estimation, based on the penalized

likelihood, that is numerically stable, leads to estimators

that have smaller mean squared error than the MLE,

and confidence intervals with coverage close to the

nominal coverage. Our approach is intended to improve

on that of Mackenzie et al. (2002) by allowing ecologists

to utilize methods that account for detection error but

that are more robust to issues caused by having limited

number of visits or samples.

LIKELIHOOD AND PENALIZED LIKELIHOOD FUNCTION

Let us assume that there are n study sites. The method

proposed by MacKenzie et al. (2002) assumes that each

site is visited k times. The number of visits need not be

the same for every site. The visits are assumed to be

independent of each other, and the sites are assumed to

be independent of each other. Furthermore, it is

assumed that a site that is occupied remains occupied
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throughout the study, and similarly the vacant sites

remain vacant throughout the study.

Let wi denote the probability of occupancy for the ith

site. Let pij denote the probability of detecting the target

species, given that it is present, for the ith site on the jth

visit. These may depend on habitat characteristics and

the conditions pertaining to the time of the visit. Let Yij

denote the observed status, observed to be occupied (1)

or observed to be unoccupied (0), of the ith site on the

jth visit. A typical observation corresponding to a site is

a sequence of 0’s and 1’s. The likelihood function in this

general case is

Lðwi; pij=yijÞ ¼
Yn

i¼1

wi

�Yk

j¼1

ðpijÞyij ð1� pijÞ1�yij

�"

þ ð1� wiÞIðyi� ¼ 0Þ� ð1Þ

where yi�¼Rk
j¼1 yij and I(�) is an indicator function that is

equal to one if yi� ¼ 0 and 0 otherwise. If the probability

of occupancy and probability of detection is constant,

that is wi ¼ w and pij ¼ p, then the likelihood function

reduces to

Lðw; p=yi�Þ ¼
Yn

i¼1

w
k
yi�

� �
pyi� ð1� pÞk�yi�

� ��

þ ð1� wÞIðyi� ¼ 0Þ�: ð2Þ

The results in Table 1 illustrate that the estimators based

on maximizing this likelihood function can be quite

unstable, with large biases, large standard errors, and

incorrect coverage for the confidence intervals for

common types of biological data.

On the other hand, suppose we ignore the detection

error and base our estimation of the occupancy

probability using Ỹi ¼ maxjfYijg. The likelihood func-

tion in this case is simply Pn
i¼1ðwiÞỸið1� wiÞ1�Ỹi . The

‘‘naı̈ve’’ estimator is obtained by maximizing this

likelihood function. It can be seen from Table 1 that

this estimator, for a small number of visits, can have

large negative bias, but is extremely stable with small

standard errors. If the number of visits to a site is large,

the naı̈ve estimator is a reasonable estimator assuming

the assumption of closure is met.

The penalized likelihood that we propose combines

the theoretical correctness of the MLE with the stability

of the naı̈ve estimator by considering

‘Pðw; pÞ ¼
Xn

i¼1

ln w
k
yi�

� �
p yi� ð1� pÞk�yi�

�"

þð1� wÞIðyi� ¼ 0ÞÞ�
� kðk; p0; nÞ f ðw� ŵnaı̈veÞ
h i

: ð3Þ

A complete explanation of how the penalty term was

derived is presented in Appendix A. Roughly speaking,

we shrink the MLE toward the naı̈ve estimator (ŵnaı̈ve).
The shrinkage factor, k(k, p0, n), is determined by the

number of visits, number of sites, and initial estimates of

the average detection and occupancy probabilities.

Consider the regression setting where the occupancy
probability for site i is related to the covariates x1, x2,

. . . , xg,using the logistic link as

wi ¼
expðb0 þ b1x1i þ � � � þ bgxgiÞ

1þ expðb0 þ b1x1i þ � � � þ bgxgiÞ
:

Similarly, the detection probability for the ith site in the

jth survey is related to the covariates z1, z2, . . . , zm using

the logistic link as

pij ¼
expðd0 þ d1z1ij þ � � � þ dmzmijÞ

1þ expðd0 þ d1z1ij þ � � � þ dmzmijÞ
:

In this case, the penalized likelihood estimator is

computed as follows.

Step 1: Obtain the MLE for the detection parameters,

d0, d1, . . . , dm, their variances var(d̂0), var(d̂1), . . . ,

var(d̂m), and the mean probability of detection, �̂p0,

where

�̂p0 ¼
1

n 3 k

Xn

i¼1

Xk

j¼1

p̂ij:

Step 2: Obtain the naı̈ve estimator of the occupancy

parameters b̃0, b̃1, . . . , b̃p and the mean estimated

occupancy
�̂wnaı̈ve ¼ 1/n Rn

i¼1 ŵi where

ŵi ¼
expð^̃b0 þ ^̃b1x1i þ � � � þ ^̃bgxgiÞ

1þ expð^̃b0 þ ^̃b1x1i þ � � � þ ^̃bgxgiÞ
:

Step 3: Maximize the penalized likelihood function

using the following:

‘P ¼ log
Yn

i¼1

wi

Yk

j¼1

ðpijÞyij ð1� pijÞ1�yij

 !"

þ ð1� wiÞIðyi� ¼ 0Þ�
� kðk; �̂p0; nÞ3

Xg

i¼0

jbi � b̃ij
 !2

4
3
5 ð4Þ

where

kðk; �̂p0; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm

i¼0

varðdiÞ
s

3
�

1� ð1� �̂p0Þk
�
ð1� �̂wnaı̈veÞ:

Notice that as the number of sites or number of visits

increases, the likelihood function is well behaved, and

hence the penalty function is forced to converge to zero.

If the detection probability is large, the naı̈ve estimator
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is a good estimator, and hence we can rely on it, and the

shrinkage factor can be large. On the other hand, if the

occupancy probability is large, the MLE usually is stable

and hence shrinkage factor is small. An R program to

obtain these estimators is available online.2

SIMULATION ANALYSIS

A simulation study was conducted to compare the

performance of the maximum likelihood estimator

(MLE) and maximum penalized likelihood (MPLE)

when the number of sites is small and the minimum

number of surveys is conducted (k ¼ 2 visits per

location). We considered two settings: first we assumed

that the probability of occupancy is the same for all

sites, and that the probability of detection is constant for

all sites and surveys, and, second, we assumed that the

probability of occupancy and detection depend on some

habitat and other exogenous covariates.

For the first case, we chose three different values for

the probability of occupancy (0.80, 0.50, 0.30) and two

different values for the probability of detection (0.30,

0.10). For the second case, the probabilities of occu-

pancy and detection were assumed to depend on the

covariates x1, x2, z1, and z2 according to the logistic link:

wi ¼
expðb0 þ b1x1i þ b2x2iÞ

1þ expðb0 þ b1x1i þ b2x2iÞ

and

pij ¼
expðd0 þ d1z1ij þ d2z2ijÞ

1þ expðd0 þ d1z1ij þ d2z2ijÞ
:

One of the covariates was chosen to be discrete (habitat

type ¼ 0,1) and one was continuous. The values of the

covariates were generated using x1i ; Normal(2,1), x2i
; Bernoulli(0.55), z1ij ; Normal(1,1.5) and z2ij ;

Bernoulli(0.65), and the values of the parameters b0, b1,
and b2 were selected such that the mean probability of

occupancy was 0.34 and the mean probability of

detection was 0.15. These cases cover a broad range of

possibilities for the site occupancy studies and allow us

to evaluate the performance of the penalized likelihood

method in situations where due to time, effort, and cost

limitations the number of surveys and visited sites are

small. For each combination of parameters, 100 data

sets were generated and the ML, naı̈ve, and MPL

estimates were obtained. Subsequently, 100 bootstrap

samples were obtained. The sites were sampled random-

ly with replacement to obtain bootstrap samples. The

observations within a site were not sampled. These

bootstrap samples were used to estimate the standard

error and a confidence interval for the parameters of

interest on each data set (see Appendix B for detailed

algorithm).

Table 1 presents the simulation results for the first

case. In general the MLE tends to overestimate the

probability of occupancy; in some cases mean estimated

values are more than twice the true occupancy.

However, when the probability of occupancy is large,

0.80, the mean of the MLE is close to the true value even

if the probability of detection is small. Additionally, if

the probability of detection is small (0.10), no matter

how large the probability of occupancy is, 50% of the

times the estimated occupancy probability obtained by

the MLE is 1. When the probability of occupancy and

detection is low, 45% of the times the Quasi-Newton

optimization method used in the package Presence

(available online),3 provides Fisher information matrices

that are singular. This means that standard errors and

confidence intervals based on the inverse of the Fisher

information matrix are inappropriate in most small-data

situations. We used a more stable method of optimiza-

tion, data cloning (Lele et al. 2007), combined with

bootstrap to obtain point estimates and confidence

intervals, respectively.

The mean and median of the MPLE are closer to the

true values than MLE and provide almost unbiased

estimators in every case, except when the probability of

occupancy is large. Notice that the bias of the naı̈ve

estimates is large for large values of the probability of

occupancy (Table 1); consequently, the MPLE may be

TABLE 1. Summary of the simulation results for 100 simulated data sets with 30 sites, two surveys, and constant probability of
occupancy across the sites when the probability of detection is the same across the sites and surveys.

True
probability
of detection

True mean
occupancy

MLE Naı̈ve MPLE

Mean Median SE MSE Mean Median SE MSE Mean Median SE MSE

0.10 0.29 0.73 1.00 0.44 0.38 0.06 0.03 0.05 0.06 0.30 0.16 0.26 0.06
0.50 0.82 1.00 0.35 0.23 0.10 0.10 0.06 0.17 0.46 0.46 0.26 0.07
0.80 0.85 1.00 0.31 0.10 0.15 0.17 0.06 0.43 0.63 0.73 0.26 0.10

0.30 0.30 0.66 0.92 0.37 0.27 0.16 0.17 0.07 0.02 0.45 0.41 0.27 0.10
0.49 0.63 0.53 0.27 0.10 0.25 0.23 0.07 0.06 0.52 0.45 0.23 0.06
0.79 0.80 0.83 0.21 0.04 0.40 0.40 0.08 0.16 0.71 0.73 0.20 0.04

Notes: The MLE are obtained by maximizing the likelihood of the zero inflated binomial, while the naı̈ve estimates are obtained
assuming that the probability of detection is 1. The MPLE combines the theoretical correctness of the MLE with the stability of the
naı̈ve by means of the penalized likelihood. Observe that MLE (maximum likelihood estimation) overestimates the occupancy,
whereas MPLE (maximum penalized likelihood estimation) is nearly unbiased with smaller standard errors.

2 hhttp://www.abmi.ca/abmi/home/home.jspi 3 hhttp://www.proteus.co.nz/home.htmli
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biased when the probability of occupancy is large.

Nevertheless, the standard errors of the MPLE are

smaller than for the MLE in every case. As observed in

Table 2, the coverage of the bootstrap confidence

intervals based on MPLE is closer to the nominal

coverage than the ML-based bootstrap intervals.

Table 3 presents the results of the simulation study

under the regression setting, where the probabilities

depend on covariates. In this case, there are two

quantities of interest, the regression coefficients, which

measure covariate effects, and the average occupancy.

For the latter, the simulation results show that the MLE

and the MPLE perform equally well, with the MLE

slightly overestimating and the MPLE slightly underes-

timating average occupancy. For the regression coeffi-

cients, the MLE are extremely unstable. This is because

the likelihood function is fairly flat. The means of the

MLE are substantially different from the medians, and

consequently the standard errors are quite large. This

indicates that, with a small number of sites and/or visits,

it is highly likely that one might obtain MLE that are

practically useless. On the other hand, the mean and the

median of the MPLE are close to each other, indicating

numerical stability, and are also closer to the true values

of the parameters than the ML estimates (Table 3). The

standard errors for the MPLE are also substantially

smaller than those of MLE. Finally, the lengths of the

confidence intervals obtained by the MPLE are at least

10 times shorter than the ones obtained by the ML

method (Table 3). More importantly, except for the

intercept parameter, the actual coverage of the MPLE-

based confidence intervals is closer to the nominal

coverage than for MLE-based confidence intervals. This

means that the effect of the covariates is better estimated

by the MPLE than by the MLE. In summary, simulation

results show that, for those cases where MLE fails, the

MPLE works extremely well; at the same time, when

MLE does work well, MPLE works equally well.

EXAMPLE DATA ANALYSIS

We illustrate the MPLE method using two occupancy

studies: one for the Blue Ridge two-lined salamander

(Eurycea wilderae) and the other for the Black-capped

Chickadee (Poecile atricapillus).

The Blue-Ridge two-lined salamander study was

conducted in the Great Smoky Mountains National

Park during 2001. The data are available as part of the

software Presence (see footnote 3). The data consist of

39 sites visited once every two weeks for a total of five

surveys. There are no covariates available for the

occupancy and detection probability models. Hence we

use the simple model of constant probability of

TABLE 2. Coverage (the percentage of confidence intervals that contain the true value of the parameter), mean, and median length
of the 90% confidence intervals under constant probability of occupancy and detection.

True
probability
of detection

True mean
occupancy

MLE Naı̈ve MPLE

Coverage
(%) Mean Median

Coverage
(%) Mean Median

Coverage
(%) Mean Median

0.10 0.29 60 0.60 1.00 6 0.11 0.10 72 0.50 0.61
0.50 53 0.52 0.86 0 0.16 0.17 86 0.63 0.69
0.80 31 0.29 0.00 0 0.20 0.20 74 0.56 0.60

0.30 0.30 57 0.54 0.79 34 0.20 0.20 75 0.62 0.69
0.49 74 0.59 0.74 15 0.24 0.24 84 0.63 0.70
0.79 83 0.53 0.22 2 0.27 0.03 87 0.54 0.18

Note: Observe that the coverage for MLE-based confidence intervals is smaller than nominal coverage, whereas MPLE-based
confidence intervals have better coverage and are shorter.

TABLE 3. Summary results of the estimated parameters for the occupancy for 100 simulated data sets, with n¼ 100, two surveys,
and two covariates for the occupancy.

Parameter
True
value

Mean
estimate

Median
estimate SE

Coverage
of 90% CI

Mean length
of 90% CI

Median length
of 90% CI

MLE

b0 0.500 46.932 1.039 108.374 0.940 232.763 199.244
b1 �1.000 �32.389 �1.460 64.890 0.870 164.670 122.346
b2 1.200 29.344 2.004 65.356 0.850 214.047 163.653
Mean occupancy 0.340 0.373 0.334 0.169 0.960 0.474 0.476

MPLE

b0 0.500 �0.371 0.148 7.748 0.770 17.423 19.531
b1 �1.000 �1.564 �0.961 1.893 0.930 5.266 4.069
b2 1.200 3.187 1.417 5.552 0.910 15.867 18.546
Mean occupancy 0.340 0.314 0.277 0.172 0.900 0.453 0.445

Notes: Observe that MLE estimates are biased and have large standard errors. The MPLE estimates are almost unbiased with
substantially smaller standard errors. Moreover, the MPLE-based confidence intervals for the parameters are 10 times shorter
without sacrificing the coverage.

MONICA MORENO AND SUBHASH R. LELE344 Ecology, Vol. 91, No. 2
R

ep
or

ts



occupancy and constant probability of detection. The

goal of the analysis is to compare the estimated

occupancy obtained by the MLE and MPLE and their

confidence intervals and standard errors under various

scenarios.

We first present the analysis for MLE and MPLE

using all five visits. The results presented in Table 4 show

that the MLE and MPLE are quite similar, although

standard errors and confidence intervals based on

MPLE are somewhat shorter than for MLE. This is to

be expected because when the number of visits is large,

the penalty function is small and MPLE and MLE are

similar. Next we consider the possibility of only two

visits. There are 10 such combinations possible. In Table

4, we present the estimated occupancy obtained by using

the ML and MPL estimators for every possible pair of

visits. Notice that in every case the standard errors of the

MPL estimator are smaller than the ones obtained by

the ML estimator. The bootstrap confidence intervals

based on the MPLE are shorter than those based on the

MLE estimators. MPLE, thus, provides a more precise

representation of the occupancy than the MLE. It is also

interesting to note that the inferences from different

pairs of surveys vary substantially from each other, with

occupancy estimates ranging from 0.24 to 0.92. This

suggests that perhaps the validity of this assumption of a

closed population during the time of the study is

questionable.

The second example corresponds to an occupancy

study that was conducted on lands managed by Millar

Western Forest Products in western Alberta from 2000

to 2002 (E. Bayne, unpublished manuscript). For

illustrative purposes, only the data for the Black-capped

Chickadee (BCHH) are used. The data were collected

over a period of three years. Each year, 40 sites were

visited once every week starting on 15 May and ending

on 28 July. Two different observers, randomly assigned

to the sites, were used. The purpose of the analysis is to

determine whether or not there was a trend for the

occupancy of the BCCH over the three years of the

TABLE 4. Summary results of the estimated probability of occupancy and its standard error for the Blue-Ridge two-lined
salamander (Eurycea wilderae) data.

Surveys

MLE MPLE

ŵ SÊ 90% CI ŵ SÊ 90% CI

1, 2, 3, 4, 5 0.59 0.15 0.43 1.00 0.59 0.15 0.43 0.94
1, 2 0.31 0.35 0.12 1.00 0.24 0.27 0.10 0.88
1, 3 0.54 0.24 0.32 1.00 0.48 0.22 0.28 0.95
1, 4 0.31 0.19 0.16 0.78 0.29 0.14 0.13 0.57
1, 5 0.64 0.28 0.26 1.00 0.48 0.25 0.23 0.95
2, 3 0.92 0.23 0.32 1.00 0.65 0.23 0.30 0.97
2, 4 0.78 0.25 0.31 1.00 0.57 0.24 0.28 0.95
2, 5 1.00 0.00 1.00 1.00 0.92 0.07 0.79 0.96
3, 4 0.46 0.16 0.27 0.82 0.44 0.15 0.25 0.71
3, 5 0.72 0.23 0.37 1.00 0.62 0.22 0.35 0.98
4, 5 0.31 0.15 0.18 0.56 0.30 0.11 0.18 0.49

TABLE 5. Estimated parameters, 90% confidence intervals, and standard errors for the occupancy and detection model of the
Black-capped Chickadee.

Parameter

MLE MPLE

Estimate (90% CL) SE Estimate (90% CL) SE

Occupancy model

Intercept 8.785 2.126 3.223 0.789
(2.524, 9.680) (1.654, 4.240)

Year 2 �9.882 2.150 �4.324 0.858
(�10.734, �3.624) (�5.587, �2.664)

Year 3 �10.310 2.113 �4.746 1.397
(�11.503, 4.272) (�5.994, �3.249)

Detection model

Intercept �1.506 0.167 �1.475 0.164
(�1.766, �1.222) (�1.724, �1.191)

Mean conditional occupancy 0.476 0.026 0.464 0.028
given detection history (0.444, 0.524) (0.419, 0.510)

Detection probability 0.182 0.025 0.186 0.025

(0.146, 0.228) (0.151, 0.233)

Notes: The standard errors and confidence intervals were estimated using 200 bootstrap samples. Notice that the confidence
intervals for the occupancy model parameters obtained by the MPLE are ;60% shorter than the confidence intervals obtained by
the MLE.
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study. The covariates for the occupancy model corre-
spond to the year of the survey, the reference (year 1)

being year 2000. For the detection probability model
covariates such as the observer, Julian date and the time
of the survey were tried. Because they turned out to be

nonsignificant, a constant detection model was fitted.
Table 5 presents the MLE and MPLE of the

parameters for this model. The standard errors, as well

as the 90% confidence limits, were calculated using 200
bootstrap samples. It was found that the standard errors
for the occupancy model provided by the MLE were

substantially larger than the ones obtained by the
MPLE, and that the MPLE’s confidence intervals were
shorter than the ones obtained by the MLE. On the
other hand, the standard errors and confidence intervals

for the detection model were almost the same for both
the MLE and the MPLE. Using the MPLE estimates it
can be concluded that there was a decreasing trend for

the occupancy of the BCCH. During the first year the
estimated mean occupancy was ;0.9616, dropping for
the second year to 0.2495 and decreasing further for the

last year to 0.179. These data are part of a large
ecological study of how forest density affects occupancy.
Nearly 50% of the trees were removed from the area

between year 1 and year 2. The drop in occupancy is the
likely outcome of such a change in the forest density. A
full analysis of the experiment is beyond the scope of this
paper, but is underway for publication (E. Bayne,

personal communication).

DISCUSSION

If the number of sites and number of surveys are small
as compared to the complexity of the model, namely the
number of covariates, estimation of the parameters for a

site occupancy model using MLE can be unstable.
Moreover, the estimated standard error obtained by the

MLE, based on the inverse of the Fisher information, is

also unstable. On the other hand, the penalized

likelihood estimators have better statistical properties

with smaller mean squared error and bootstrap confi-
dence interval coverage closer to the nominal coverage

than for the ML estimator. Furthermore, the estimates

for the occupancy model obtained by the MPLE are

somewhat conservative, while the estimates obtained by
the MLE are optimistic. We feel that from a conserva-

tion and management perspective, it is better to provide

stable, albeit somewhat conservative, estimates of

occupancy than wildly unstable, optimistic estimates of

occupancy. We also found that the bootstrap confidence
intervals, but not the standard errors, for both MLE and

MPLE tend to be stable, and hence we recommend their

use in practice. From a practical perspective, the use of

penalized likelihood estimators can lead to a substantial

reduction in the required number of surveys and sites.
This ultimately can lead to a substantial reduction in the

cost of implementing such surveys.
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APPENDIX A

A detailed explanation of how the penalty function was derived (Ecological Archives E091-025-A1).

APPENDIX B

An algorithm to obtain the bootstrap confidence intervals (Ecological Archives E091-025-A2).
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