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Abstract

Estimation of variance and covariance components has importance in various substantive ,elds
such as animal breeding and evolutionary biology among others. The most popular methods
of variance components estimation are maximum likelihood (ML), restricted maximum likeli-
hood (REML), analysis of variance and covariance (ANOVA) and minimum quadratic norm
(MINQUE). All these methods are computationally intensive. This computational barrier is par-
ticularly limiting in data obtained from large animal breeding experiments involving multiple
traits. The purpose of this paper is to introduce a new method, which we call maximum com-
posite likelihood (MCL), for the estimation of variance and covariance components. This method
is as generally applicable as the method of maximum likelihood: to cases where designs are bal-
anced or unbalanced, involving mixed e9ects and multiple traits or designs where random e9ects
are correlated to each other. The MCL approach, in contrast to ML=REML or ANOVA, however,
does not require inversion of matrices. As a consequence the computational burden is reduced
from O(N 3) to O(N 2) where N denotes the total sample size. Moreover, and in contrast to the
ML=REML estimating functions, the estimating functions obtained for MCL, after a minor mod-
i,cation, are shown to possess a unique solution thus guaranteeing convergence of the numerical
optimization routine. Conditions are speci,ed that assure consistency and asymptotic normality
of these estimators. These results do not depend on the assumption of a Gaussian distribution
of the random e9ects. Simulation study indicates that there is only a small loss of statistical
e<ciency in using MCL as compared to REML but a substantial gain in the computational
e<ciency. c© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Restricted maximum likelihood; Heritability; Maximum likelihood; Analysis of
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1. Introduction

Without question, analysis of (co)variance and estimation of (co)variance compo-
nents has held a central position in both statistical theory and statistical practice (Searle
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and McCulloch, 1996). Discussion of various applications and a thorough review of
the existing techniques for the estimation of variance and covariance components can
be found in Gianola and Hammond (1990), Searle et al. (1992) and Rao and Kle9e
(1988). Estimation of the covariance components is also important for many evolu-
tionary studies. The issues related to the applications of covariance components in
evolutionary studies are discussed in Shaw (1987, 1991), Lande (1979) and Kohn and
Atcheley (1988) and references therein.

There are a number of di9erent approaches available for the estimation of (co)vari-
ance components. The most prominent methods are analysis of variance (ANOVA)
(Henderson, 1953), based on equating the properly chosen sums of squares to their
expectations; maximum likelihood (ML) estimation (Hartley and Rao, 1967), based
on maximizing the likelihood of the observations, and restricted maximum likelihood
(REML) estimation (Patterson and Thompson, 1971), based on maximizing the likeli-
hood of the contrasts that eliminate the ,xed e9ects. Other commonly used methods are
those based on minimum norm quadratic estimation (MINQUE) (Rao, 1971; Rao and
Kle9e, 1988) and dispersion-mean approach (Seely, 1970; Pukelsheim, 1976). Each of
these methods has merits and demerits. For example, ANOVA estimators are usually
easy to understand and are unbiased but may lead to negative estimates of a nonnega-
tive parameter. In unbalanced data situations, ANOVA estimates may not be unique, in
the sense that the same data set analyzed by di9erent researchers can lead to di9erent
numerical estimates of the (co)variance components. See Chapter 5 of Searle et al.
(1992) for a detailed discussion of the non-uniqueness problem associated with the
ANOVA method for unbalanced data. MINQUE estimators are optimal only near the
a priori chosen value and also su9er from non-uniqueness problems. ML and REML
estimators are optimal under the model assumptions but can be extremely di<cult com-
putationally, especially for analyzing data involving multiple traits with missing data.
Searle et al. (1992) is a good source for these comparisons.

This paper proposes a new method for the estimation of (co)variance components
based on the idea of composite likelihood (Lindsay, 1988). This method is computa-
tionally simple, amenable to modern distributed computing environments and is sta-
tistically satisfactory in the sense that it is as generally applicable as the method of
maximum likelihood. The salient features of the method of maximum composite like-
lihood (MCL) are: (1) No need for the inversion of large matrices, (2) Consistency
and asymptotic normality of the estimators, (3) Uniqueness of the solution and (4)
Model robustness. The asymptotic loss of statistical e<ciency as compared to REML
is small, but the gain in computational simplicity is substantial.

The outline of the paper is as follows. In Section 2 we provide a brief review of the
basic ideas behind composite likelihood. In Section 3, we study some theoretical prop-
erties of the MCL estimators. In particular, we provide conditions for the uniqueness,
consistency and asymptotic normality of the MCL estimators for the single trait, ran-
dom e9ects model. Further, in Section 4, we show that the MCL estimating functions
for mixed e9ects and multiple traits cases can be reduced to the same structural form as
for the simple random e9ects case. Hence all the results from the random e9ects case
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generalize to these cases. In Section 5, we compare, using simulations, the statistical
e<ciency of the MCL estimators with the REML estimators for one-way unbalanced
designs with Gaussian random e9ects. For this simulation study we replicate the study
design used by Swallow and Monahan (1984) with some extensions to consider sample
sizes that are commonly obtained in practice. We also present e<ciency comparisons
under non-normal random e9ects with skew and kurtosis. We conclude the paper in
Section 6 by discussing future directions.

2. Composite likelihood preliminaries

A composite likelihood is formed by adding together individual component log-
likelihoods each of which is a valid marginal or conditional log-likelihood (Lindsay,
1988). The key utility of the composite likelihood is that the component score functions
form an additive estimating function that can be used to provide consistent parameter
estimates in settings where a full maximum likelihood is not feasible or is computa-
tionally di<cult. Key examples of successful composite likelihood approaches include
working independence generalized estimating equations (Liang and Zeger, 1986) for
longitudinal data, pseudolikelihood methods for Markov random ,elds (Besag, 1975)
and statistical inference for hierarchical spatial models (Heagerty and Lele, 1998). The
term composite likelihood simply refers to the pooling of likelihood contributions in a
multiplicative fashion in circumstances where the components do not necessarily rep-
resent independent replicates. As an example, consider a random vector YN of length
N with joint probability density fN (:; �), that is YN ∼ fN (:; �). Let f(Yi; �) denote the
marginal density of Yi, the ith component of YN . Similarly let f(Yi; Yj; �) denote the
joint density of any two components and let f(Yi|Yj; j �= i; �) denote the conditional
density of the ith component given all the other components. There are a variety of
di9erent “composite likelihoods” that one can write: CL1(�; YN ) =

∏N
i=1 f(Yi; �), which

is a product of marginal distributions, CL2(�; YN ) =
∏N−1

i=1

∏N
j¿i f(Yi; Yj; �), product of

all bivariate marginal distributions, or, CL3(�; YN ) =
∏N

i=1 f(Yi|Yj; j �= i; �), product of
all conditional distributions. If the marginal distributions are easier to describe, as in
the multivariate Gaussian distributions, one may prefer the ,rst two types of compos-
ite likelihoods whereas if the conditional distributions are easily speci,ed, as in the
Markov random ,eld situation, one may prefer the third type of composite likelihood.
Analytical simplicity, computational convenience, and the questions and parameters of
interest determine the form of the composite likelihood.

A simple example of the use of composite likelihood is in the case of spatial data.
Let Y denote the vector of observations at K locations. Suppose Y is a multivariate
Gaussian vector, that is Y ∼ NK (0; �()) where cov(Yi; Yj) = d(i; j) with d(i; j) denot-
ing the distance between the locations and ||¡ 1. The full likelihood for  involves
inversion of a K×K matrix as well as evaluation of its determinant. This could be pro-
hibitive if K , the number of locations, is large. Now suppose we consider all possible
contrasts of the type (Yi −Yj). The marginal distribution of these contrasts is Gaussian
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with mean 0 and variance 2(1 − d(i; j)). One possible version of composite likeli-
hood can be based on the product of the marginal distribution of all possible pairwise
contrasts: CL(; Y ) =

∏K−1
i=1

∏
j¿i f(Yi − Yj; ). Notice that this composite likelihood

involves no inversion of matrices. Maximizing this composite likelihood with respect to
 provides the maximum composite likelihood estimator of . This particular example
corresponds to the estimation of variogram parameters as described in Lele (1997) and
Curriero and Lele (1999). Notice that the evaluation of the full likelihood involves
O(K3) operations for the inversion of a K × K matrix, whereas the evaluation of the
composite likelihood involves O(K2) operations. This idea of using the composite like-
lihood based on contrasts can be successfully exploited in the estimation of variance
components. The computational advantage garnered by the use of composite likelihood
in the variance and covariance components estimation can be substantial. This may be
of particular importance in the analysis of large breeding pedigrees where K may run
into the millions.

3. Composite likelihood for variance components estimation---general theory

In this section, we develop some general theoretical results for the variance compo-
nents estimators based on the composite likelihood approach. In particular, we prove
that these estimators are consistent and asymptotically normal. We also show that a
consistent solution to the estimating function corresponding to the maximization of the
composite likelihood, called the composite score function, can be obtained uniquely.
This guarantees convergence of the numerical algorithm for any dataset. These theo-
retical developments for the composite likelihood estimator are shown to be general
enough to cover all the cases where ML or REML method can be applied: designs
with random e9ects, mixed e9ects, covariance components estimation that allows for
relationships between individuals and between random e9ects and missing traits. We
start with the notationally simplest situation, the simple random e9ects model.

3.1. Simple random e6ects model

Following the notation of Searle et al. (1992, p. 234), we write the linear model
corresponding to the simple random e9ects case as:
Y = �1+Z1u1 +Z2u2 + · · ·+ZRuR+e where Zr’s are design matrices, ur’s are random

e9ects and environmental variation is denoted by e. Assuming that the random e9ects
are Gaussian, that is, ur ∼ N (0; �2

r I); e ∼ N (0; �2
0I), and, they are independent of each

other, it follows that Y ∼ N (�1;
∑R

r=0 �2
r ZrZ

T
r ) where the environmental variation is

included in the term �2
0 with Z0 = IN. Let N denote the total number of observations,

the length of the vector Y . Consider a matrix A of dimension N (N − 1)=2 by N such
that each of its rows has exactly one entry of ‘1’, one entry of ‘−1’ with all other
entries ‘0’ and no two rows are identical. Premultiplying Y by A gives us the vector of
all possible contrasts between pairs of observations. Let W =AY then the distribution
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of the vector W is given by W ∼ N (0;
∑R

r=0 �
2
r AZrZ

T
r A

T). For the sake of notational
simplicity, let Cr =AZrZT

r A
T.

Consider the composite likelihood written as the product of only the marginal dis-
tributions of the components of W , namely, CL(�;W ) =

∏L
i=1 f(Wi; �) where �= (�2

r ;
r = 0; 1; : : : ; R)T and L=N (N − 1)=2. This can be explicitly written as

CL(�;W ) =
L∏

i=1

{
1√

2�(
∑R

r=0 �2
r Cii; r)1=2

exp

(
−1

2
W 2

i

(
∑R

r=0 �
2
r Cii; r)

)}
; (1)

where Cii; r denotes the ith diagonal element of the matrix Cr . The set of estimating
functions for the variance components are given by di9erentiating the log-composite
likelihood with respect to each variance component and equating the result to zero:

L∑
i=1

Cii;k∑R
r=0 �

2
r Cii; r

(
W 2

i∑R
r=0 �

2
r Cii; r

− 1

)
= 0 for k = 0; 1; 2; : : : ; R:

We call these estimating functions the ‘composite score functions’.
Let B〈i〉 = (Cii;0; Cii;1; : : : ; Cii;R)T, be a vector consisting of the ith diagonal elements

of the matrices Cr =AZrZT
r A

T and let B= (B〈1〉; B〈2〉; : : : ; B〈L〉). The matrix B is a (R+1)
by L matrix consisting of the diagonal elements of the Cr matrices. With this notation,
the marginal distribution of Wi can be written as Wi ∼ N (0; � TB〈i〉) and the composite
score functions can be written as

L∑
i=1

B〈i〉
k

� TB〈i〉

(
W 2

i

� TB〈i〉 − 1
)

= 0 for k = 0; 1; 2; : : : ; R: (2)

Strictly speaking, the MCL estimator is that value of the parameter vector that maxi-
mizes the composite likelihood function (Eq. (1)). However, we will somewhat loosely
call the consistent solution to the above set of equations (Eq. (2)) the maximum com-
posite likelihood (MCL) estimator. Notice also that this solution itself is not guaranteed
to be positive in contrast to the true MCL estimator which, by de,nition, is positive.
However we ignore this subtle di9erence in the rest of the paper.

The reason for the use of the notation in Eq. (2) will be clear when we deal
with more complicated situations such as correlated random e9ects, multiple traits with
missing data among others. For these general cases we will show that the estimating
functions can be reduced to the above generic form. Thus, the arguments developed
below for the uniqueness of the solution and asymptotic properties such as consistency
hold for all situations.

3.2. Consistency and asymptotic normality of the MCL estimators

In the following, we provide conditions under which the MCL estimators are con-
sistent and asymptotically normal. First we show that there exists at least one solution
to the composite score function which is consistent, that is, the estimators of variance
components converge in probability to the true values as the sample size increases. Then
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we show that this consistent solution, under additional assumptions, is also asymptot-
ically normal. Then we tackle the issue of ,nding the consistent solution out of all
possible solutions. Towards this goal, we modify the set of composite score functions
so that the resultant set has a unique, consistent solution. This solution is then used as
a starting value in the Fisher scoring algorithm for solving the composite score function
and obtain a one-step estimator, which is shown to be asymptotically equivalent to the
MCL estimator. This program is similar to the one-step e<cient estimators described,
for example, in Lehmann (1985, pp. 422–423) or SerQing (1980, pp. 258–259).

3.2.1. Consistency of the MCL estimator
Throughout, without explicit mention, we assume that the variance components are

unconfounded, that is to say, we assume that the design matrices are linearly indepen-
dent of each other. We also assume that the parameter space is an open subset of the
Euclidean space ER+1, that is, none of the variance components are zero. This assump-
tion avoids the technical di<culties involved when the parameters lie on the boundary
of the parameter space. The asymptotic theory for REML estimators in such situation
can possibly be adapted to show similar results for MCL estimators as well. We re-
fer the reader to Miller (1977) or Jiang (1996) for more details on the identi,ability
conditions for the variance components models.

3.2.2. Assumptions
A0: The entries in the design matrices Zr are uniformly bounded for all r = 0; 1; : : : ; R.
A1: Let nk = #(B〈i〉

k �= 0; i; 1; 2; : : : ; L). That is, nk denotes the number of non-zero entries
in the kth row of the B matrix. The number nk corresponds to the number of contrasts
that contribute to the estimating function for the kth variance component. We assume
that nk → ∞ for all k = 0; 1; 2; : : : ; R as N → ∞.
A2: Let C =

∑R
r=0 AZrZ

T
r A

T. Assume that the number of non-zero elements in any
row of this matrix divided by n= min(nk ; k = 0; 1; 2; : : : ; R) converges to zero as N ,
the sample size, converges to in,nity. Notice that the matrix C is related to the co-
variance matrix for the contrast vector W . This assumption says that there are enough
uncorrelated components in the estimating functions.
A3: Assume that matrix B is of full rank (R + 1).
A4:

lim
N→∞

1
min(nk ; nm)

L∑
i=1

Cii;kCii;m

(
∑R

r=0 �
2
r Cii; r)2

= Ik;m:

We assume that the matrix I = [Ik;m] is positive de,nite.
These assumptions are both intuitive and easily satis,ed in most practical situations.

Assumption A0 holds, for example, when Zr’s are incidence matrices. Assumption A1
says that, for all k, the number of contrasts that contribute to the estimation of �2

k
becomes large as the sample size increases. Assumption A2 assures that there are
enough uncorrelated pieces of information to estimate all the variance components.



S. Lele, M.L. Taper / Journal of Statistical Planning and Inference 103 (2002) 117–135 123

Assumption A3 relates to the identi,ability of the variance components. Assumption A4
says that information about each variance components goes to in,nity fast enough.

Theorem 1. Under the assumptions A0–A4; one of the solutions to the composite
score functions is a consistent estimator of the variance components.

The theorem can be proved by showing that with probability tending to 1, there exists
a solution to the estimating functions in an arbitrarily small neighborhood of the true
value. This follows from the zero unbiasedness of the estimating functions, Taylor
series expansion and convergence of the empirical information matrix to a positive
de,nite matrix. A detailed proof is given in the appendix.

3.2.3. Asymptotic normality of the MCL estimator
To prove the asymptotic normality of the consistent solution obtained using MCL

we need some additional notation and assumptions.
Additional notation: Let the vector of the ‘composite score functions’ be

denoted by

G(�) =

[
L∑

i=1

Cii;k∑R
r=0 �2

r Cii; r

(
W 2

i∑R
r=0 �

2
r Cii; r

− 1

)]
k=0;1;2; :::;R

:

We need to calculate the covariance matrix for these estimating functions, namely,
E(GG′). Notice that

Cov

(
W 2

i∑R
r=0 �

2
r Cii; r

− 1;
W 2

j∑R
r=0 �

2
r Cii; r

− 1

)
= Corr2(Wi;Wj):

Hence

E(GG′) =
L∑

i=1

L∑
j=1

Cii;k1Cjj;k2

(
∑R

r=0 �2
r Cii; r)2(

∑R
r=0 �2

r Cjj; r)2

(
R∑

r=0
�2
r Cij; r

)2

:

Let a matrix J of dimension (R + 1) by (R + 1) be de,ned by the entries

Jk1; k2 = lim
N→∞

1
nk1nk2

L∑
i=1

L∑
j=1

Cii;k1Cjj;k2

(
∑R

r=0 �2
r Cii; r)2(

∑R
r=0 �2

r Cjj; r)2

(
R∑

r=0
�2
r Cij; r

)2

;

where k1; k2 = 0; 1; 2; : : : ; R.
Additional assumptions:
A5: Assume that matrix J is positive de,nite.
A6: Assume that nk=L → hk where hk ’s are uniformly bounded, for all k = 0; 1; : : : ; R.
Note: Assumption A6 is not necessary if only componentwise asymptotic normality

is needed.

Theorem 2. Let �̂ denote the consistent estimator obtained by solving the composite
score functions. Under the assumptions A0–A6; as L converges to in8nity;
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the distribution of
√
L(�̂−�) converges to a Normal distribution with mean zero and

covariance matrix V (�) where V (�) = I−1JI−1.

Proof. The main step in proving the asymptotic normality of a consistent estimator
is the application of the appropriate central limit theorem for the estimating functions
evaluated at the true value of the parameters (See SerQing, 1980 p. 147). Consider
the set of composite score functions. These are sums of dependent random variables.
However, by assumption A2 the proportion of random variables that are dependent
is of order o(L). Thus the central limit theorem for a (correlation) mixing process is
applicable. We refer the reader to Heagerty and Lele (1998) for a detailed argument
for the asymptotic normality of the maximum composite likelihood estimators in the
dependent data situation. A very similar argument can be applied in the above situation.
We do not provide the details here.

Assumption A2 is the key in the proofs for consistency and asymptotic normality.
We would like to emphasize that both the consistency and asymptotic normality depend
only on the correlation decay and not on the independence of the random variables
and hence are valid for non-Gaussian random e9ects as well. Also note that, unlike
Miller (1977) and Jiang (1996), we do not have di9erent normalizing constants for
each variance component estimator. At ,rst sight, this may seem surprising. However,
notice that assumption A6 essentially says that number of contrasts for each of the
variance components is approaching in,nity at the same rate. Without this assumption,
one can prove componentwise asymptotic normality with normalizing constants that
are di9erent for each variance components estimator. For joint convergence A6 is a
su<cient but probably not a necessary condition.

3.2.4. Finding the consistent solution
The estimating functions corresponding to the composite likelihood do not necessarily

have a unique solution. Hence the real issue in practice is to identify which solution
is the consistent solution.

Towards this end, consider the following modi,ed set of estimating functions:

L∑
i=1

B〈i〉
k

(
W 2

i

� TB〈i〉 − 1
)

= 0 for k = 0; 1; 2; : : : ; R:

Theorem 3. Under assumptions A0–A4; the above system of equations has a unique
consistent solution.

Proof. First we show the uniqueness of the solution. Consider the Hessian matrix (or
equivalently the matrix of the ,rst derivatives of the estimating functions). A typical
entry in this matrix is given by

d
d�2

m

L∑
i=1

Cii;k

(
W 2

i∑R
r=0 �

2
r Cii; r

− 1

)
=

L∑
i=1

Cii;kCii;m

(
−W 2

i

(
∑R

r=0 �
2
r Cii; r)2

)
:
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Let D= diag( W 2
i

(
∑R

r=0 �
2
r Cii; r)2 ; i= 1; 2; : : : ; L). Then the Hessian matrix can be written as

H = − BDBT. To prove that this is a negative de,nite matrix, recall that rank(−H) =
rank(BD1=2). Moreover rank(BD1=2)¿ rank(B)+rank(D1=2)−L=R+1 and rank(BD1=2)
6min(rank(B); rank(D1=2) =R+1 (Barnett, 1990, p. 94, Eq. (5:11)). Hence rank(−H)
=R + 1. The assumption that B is a positive de,nite matrix, D is a diagonal matrix
with positive elements along with this rank result proves that H is negative de,nite.
Hence the solution to this set of estimating functions is unique. The consistency of
the solution follows along the same lines as Theorem 1 and we do not repeat the
arguments.

Now we use the standard method of one-step M -estimators as described in Lehmann
(1985) or SerQing (1980) to obtain estimators that are equivalent to the MCL
estimators.

Theorem 4. Let �̃ denote the solution of the system of Eq. (2). Let

�̂= �̃ + I−1(�̃)G(�̃):

Then
√
L(�̂− �) L→N (0; V (�)) as L → ∞.

Proof. Follows from Theorems 1–3 above and Theorem 3:1 (Corollary 3:1) of Lehmann
(1985, pp. 422–23) or SerQing (1980, pp. 258–259). This is a one-step estimator with
a consistent estimator as the starting value. Also note that this only involves inversion
of a (R + 1) by (R + 1) matrix.

It should be noted that the composite score functions are valid estimating equations,
in the sense that they are zero unbiased (Godambe and Kale, 1991), irrespective of
whether the random e9ects are normally distributed or not. The consistency and the
asymptotic normality of the resultant estimators also hold as long as the linear model is
correct whether the random e9ects are normally distributed or not. However, we shall
see in the discussion of our simulations that for small or medium sample sizes the
asymptotic normality of MCL (as well as REML) may not be a good approximation.

3.2.5. Optimal estimating functions and MCL estimators
Let us now turn to e<ciency issues. Consider a set of L estimating functions

gi(�) =
W 2

i∑R
r=0 �

2
r Cii; r

− 1 where i= 1; 2; : : : ; L:

There are L equations in R+ 1 unknowns. Let us denote the vector of these equations
by g(�) = (gi(�); i= 1; 2; : : : ; L). One can combine these L equations to obtain R + 1
equations in R + 1 unknowns. The general formula for such an optimal linear combi-
nation is given in Lindsay (1988). Let us denote the optimal linear combination of the
L estimating functions by g∗(�) =!∗ · g where !∗ is a R + 1 by L matrix. The set of
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optimal weights !∗ for the above set of estimating functions is given by

!∗ =


1 2

12 : : : 2
1L

2
21 1 : : : 2

2L
...

...
...

...
2
L1 : : : : : : 1


−1



C11;0∑R
r=0 �

2
r C11; r

: : : : : :
C11;R∑R

r=0 �
2
r C11; r

...
...

...
...

...
...

...
...

CLL;0∑R
r=0 �

2
r CLL;r

: : : : : :
CLL;R∑R

r=0 �
2
r CLL;r


:

Where ij = corr(Wi;Wj).
It is easy to see that the composite score functions correspond to ignoring the cor-

relation terms in the ,rst matrix similar to the working independence model for the
generalized estimating equations (GEE) discussed by Liang and Zeger (1986). How-
ever the key di9erence between the GEE and the composite likelihood method proposed
above is that GEEs utilize only the univariate marginal distributions whereas we use
all bivariate marginal distributions. Utilization of the pairwise correlation information
in the bivariate distributions seems to lead to high e<ciency for the MCL estimators
(see Section 5). This result parallels the result that GEE2 (Liang et al., 1992), in which
bivariate marginals are used, improves e<ciency over GEE1 in which only the uni-
variate marginal distributions are used. The idea of using a wrong correlation matrix,
to avoid matrix inversion, was also proposed by Marshall and Mardia (1985) in the
spatial statistics context.

4. MCL estimators for general linear mixed models

We now show how the above framework can be used for more complicated situations
than the simple random e9ects models.

4.1. Handling relationships

In the above development it was assumed that the realizations of any random e9ect
are independent of each other, that is, var(ur) = �2

r I . However, in many practical situ-
ations, this may not hold. For example, in a typical animal breeding experiment sires
are related to each other through common parentage. A matrix that quanti,es such
genetic relationships is called the relationship matrix. Let us denote this matrix by +.
This matrix is typically known a priori or can be calculated in O(N 2) operations (Hen-
derson, 1976). We now describe how the formulation of the MCL for the estimation
of variance components from simple random e9ects model can be generalized to such
a situation. We provide some of the details here.

When the random e9ects are related to each other, notice that var(ur) = �2
r+r .

It is easy to see that in such a situation Y ∼ N (�1;
∑R

r=0 �2
r Zr+rZT

r ) and W ∼
N (0 ;

∑R
r=0 �2

r AZr+rZT
r A

T). Now one can replace Cr’s by C+
r =AZr+rZT

r A
T in all the
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formulae in Section 3 and modify the conditions on Cr’s by similar conditions on C+
r ’s.

The uniqueness, consistency and asymptotic normality follow in a similar fashion.
It is also possible that two or more random e9ects may be related to each other.

This case can be handled similarly by noting the fact that in this case: Y ∼ N (�1;∑R
r=0 �2

r Zr+rZT
r +
∑R

r1=0

∑R
r2 �=r1

,r1r2Zr1+r1r2Z
T
r2

) where ,r1 ;r2 is the covariance between
the random e9ects r1 and r2. Let us consider some of the details in this situation.

Let C+
r =AZr+rZT

r A
T and C+

r1 ;r2
=AZr1+r1 ;r2Z

T
r2
AT. Let us also modify the parameter

vector to include the covariance parameters:
�= (�2

r ; r = 0; 1; 2; : : : ; R; ,r1 ;r2 ; r1 �= r2 = 0; 1; 2; : : : ; R)T. The B matrix now has di-
mension (R+2)(R+1)=2 by L with ith column containing the ith diagonal elements of
the above C matrices. With this notation, we can now write the marginal distribution of
Wi ∼ N (0; � TB〈i〉) and the composite score functions have the same form as equation 2.
This is of the same form as in the previous situation with more C+

r ’s to evaluate. The
rest of the theoretical results follow easily.

4.2. Multiple traits models

In many biological situations, scientists measure several di9erent traits on the same
individual. In such situations we are interested in estimating the covariance as well
as variance components. We now generalize the method of MCL to such situations.
To avoid notational complexity, we consider two traits situation. Also for the sake of
notational simplicity, we consider only the random e9ects case. We indicate how this
formulation may be extended to more than two traits. Extensions to the mixed e9ects
case and to random e9ects with relationships are straightforward.

We follow the notation of Searle et al. (1992, p. 382). The vector of observations
corresponding to the ,rst trait is denoted by Y1 and marginally has distribution Y1 ∼
N (�11;

∑R
r=0 �2

r;1Zr;1Z
T
r;1) and similarly the vector of observations corresponding to the

second trait is denoted by Y2 and has distribution Y2 ∼ N (�21;
∑R

r=0 �2
r;2Zr;2Z

T
r;2).

To begin with we assume that none of the traits are missing. Note that in general,
Zr;1 and Zr;2 will be identical to each other; however, if there are missing traits they
may be di9erent. Let W1 =AY1 and W2 =AY2 be the contrast vectors as de,ned in the
single trait case. Notice that

var(W1) =
R∑

r=0
�2
r;1AZr;1Z

T
r;1A

T; var(W2) =
R∑

r=0
�2
r;2AZr;2Z

T
r;2A

T

and cov(W1; W2) =
∑R

r=0 -r;12AZr;1ZT
r;2A

T where -r;12’s are the covariance components.
De,ne a new vector W3 such that W3 =W1 −W2. It follows that

var(W3) =
R∑

r=0
�2
r;1(AZr;1ZT

r;1A
T) +

R∑
r=0

�2
r;2(AZr;2ZT

r;2A
T) − 2

R∑
r=0

-r;12(AZr;1ZT
r;1A

T):

Now combine these three vectors to construct a vector W = (W1; W2; W3)T. The com-
posite likelihood in the multiple traits case can be constructed by taking the product
of the marginal distributions of the components of W .
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Let Cr;1 =AZr;1ZT
r;1A

T; Cr;2 =AZr;2ZT
r;2A

T and Cr;12 =AZr;1ZT
r;2A

T. De,ne the new pa-
rameter vector �= (�2

r; i ; r = 0; 1; 2; : : : ; R; i= 1; 2; -r;12; r = 0; 1; 2; : : : ; R)T of length 3R
and the new

B=


B1 0 B1

0 B2 B2

0 0 −2B12

 ;

where matrices B1; B2; B12 are de,ned by the diagonal elements of Cr;1; Cr;2; Cr;12, re-
spectively. The dimension of the matrix B is 3R × 3L. With this notation, it is easy
to see that the marginal distribution of Wi ∼ N (0; � TB〈i〉) and the composite score
functions have the same form as in Eq. (2). The theoretical results follow similarly.

The extension to more than two traits is straightforward. For example, for the three
traits situation, we construct Wi =AYi; i= 1; 2; 3 and Wi − Wj; i¡ j = 2; 3 and stack
them together to get W . The parameter vector and B matrix is changed accordingly.
These will be of length 6R and dimension 6R× 6L, respectively.

4.2.1. Missing traits
Missing traits, that is, observations for which not all traits are available, is a sub-

stantial problem for many types of data. If the researcher believes that the traits are
e9ectively missing at random, then there is a straightforward mechanism for calculating
the MCL estimates in the presence of missing traits. We ,ll missing values with any
missing traits code. The columns of the B matrix, corresponding to contrasts involving
missing traits, are ,lled with zeros. As we can see from Eq. (2), any contrast involving
a missing trait is thereby given a zero weight in the estimating functions. With this
minor change, the rest of the estimation procedure as well as the conditions for consis-
tency remain the same. Notice if only one trait is observed on a particular observation,
it is utilized in the estimation of the variance components corresponding to that trait.
This is clearly superior to the common practice of deleting all observations with any
missing traits (e.g. Wilkinson et al., 1990). The relative statistical and computational
e<ciency of this approach to handling missing traits and the “expectation maximiza-
tion” approach (Dempster et al., 1977) has yet to be investigated. However, particularly
for large problems, computationally our approach seems substantially simpler than the
EM algorithm.

4.3. Mixed e6ects models

Now consider the mixed e9ects models where Y ∼ N (X/;
∑R

r=0 �2
r Zr+rZT

r ).
Approach 1: One can estimate the ,xed e9ects / using the least squares approach

and behave as if Y ∗ =Y − X̂/ ∼ N (0;
∑R

r=0 �2
r Zr+rZT

r ). One can then follow the
MCL approach as described above behaving as if Y ∗ are observations obtained from
a random e9ects model. It is clear that the estimating functions corresponding to the
MCL approach in this situation will not be zero unbiased. However, the bias in the
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estimating functions approaches zero as the sample size approaches in,nity and the
asymptotic properties remain una9ected.
Approach 2: This approach parallels that of REML where we eliminate the ,xed

e9ects by using invariance. The steps are:
Let PX = I − X (X TX )−1X T be the projection matrix. Consider PXY ∼N (0;∑R
r=0 �2

r PX Zr+rZT
r P

T
X ). These are the observations that we will base the MCL es-

timators on. Now one can replace Cr’s by CI
r =APXZr+rZT

r P
T
X A

T (I for invariance)
in all the above development and modify the conditions on Cr’s by corresponding
conditions on CI

r ’s. The uniqueness, consistency and asymptotic normality follow in a
similar fashion. Although, the Y ∗ in the ,rst approach is identical to PXY , the distri-
bution used in the ,rst approach is approximate whereas the distribution used in the
second approach is exact. What approach 2 acknowledges is that the transformation
inQuences the variance of the Y ∗.

The above discussion clearly illustrates the general applicability of the method of
maximum composite likelihood to the problem of variance and covariance components
estimation.

5. E&ciency comparisons (unbalanced designs and non-normal e(ects)

In deciding whether to use an alternative method to REML for the estimation of
variance components, aside from computational ease, one needs to consider the rela-
tive statistical e<ciencies. In this simulation study, we investigate the e9ects of three
factors on statistical e<ciency: (1) Imbalance in the data, (2) Sample size, and (3)
Distributional assumptions.

(1) Imbalance and sample size: For simple models, it can be shown that for bal-
anced designs MCL and REML are equivalent. This appears to be true in more com-
plicated situations as well. However, real experiments, despite the best intentions of
empiricists, rarely generate balanced designs. The degree of imbalance in designs is
di<cult to characterize. Following Swallow and Monahan (1974), we investigate the
impact of mild and severe imbalance in small and large data sets for one-way ran-
dom e9ects designs. We consider the model Yij = � + ui + eij where i= 1; 2; : : : ; I and
j = 1; 2; : : : ; ni. Data sets with mild imbalance have e9ects with 3, 5, or 7 observations
each, while data sets with severe imbalance have e9ects with 1, 5, or 9 observations
each. For small sample size we replicate these basic patterns 6 times and for large
sample size we replicate 67 times. Thus, for small sample size and mild imbalance,
we have 6 e9ects with 3 observations, 6 e9ects with 5 observations, and 6 e9ects
with 7 observations for a total of 18 e9ects and 90 observations. For large sample
size and severe imbalance, we have 67 e9ects with 1 observation, 67 e9ects with 5
observations, and 67 e9ects with 9 observations for a total of 201 e9ects and 1005
observations.

In the notation of Eq. (1) one-way designs have two variance components, a residual
or environmental variance (�2

0), and an e9ect variance (�2
1). In the simulations, the
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Table 1
Mean absolute deviation ratios

E9ect Imbalance Data size E9ect variance
distribution

0.1 0.2 0.5 1.0 2.0 5.0

Normal Mild S 0.95 0.96 0.98 0.98 0.97 0.96
L 0.92 0.94 0.91 0.99 0.98 0.96

Severe S 0.95 1.00 1.00 0.94 0.95 0.89
L 0.89 0.96 0.96 0.96 0.93 0.88

Skewed Mild S 0.97 1.19 1.00 1.04 1.01 1.06
L 0.97 0.99 1.00 0.99 0.97 0.97

Severe S 0.95 0.96 1.02 1.03 0.96 0.95
L 0.99 0.97 0.97 0.91 0.89 0.85

Kurtotic Mild S 0.96 0.98 0.99 0.98 0.97 0.94
L 0.94 1.00 0.97 0.96 0.95 1.00

Severe S 0.96 0.99 0.98 0.94 0.92 0.88
L 0.95 1.00 0.97 0.93 0.91 1.00

environmental variance (�2
0) is held constant at a value of 1. The e9ect variance (�2

1)
ranges over the set {0:1; 0:2; 0:5; 1; 2; 5}.

(2) Distributional assumptions: We also investigated the relative impact of deviations
from normality in the distributions of the random e9ects by drawing random e9ects
from three kinds of distributions: (1) a normal distribution, (2) a symmetric but highly
peaked distribution (kurtosis = 7), and (3) a highly skewed distribution (skewness = 7).
All distributions have mean zero and a speci,ed variance. The distribution for the
environmental errors is always taken to be normal.

For every combination of control factors, 1000 data sets were constructed and pa-
rameters estimated using both REML (SAS 6.12 proc VARCOMP) and our own MCL
program. The measure of relative e<ciency we report is the ratio of the mean absolute
deviations of estimates from truth (MAD) for REML estimates to the MAD for the
MCL estimates. A MAD ratio less than 1 indicates that REML is more e<cient than
MCL, while a MAD ratio greater than 1 indicates that MCL is more e<cient than
REML. Table 1 gives the MAD ratios estimated from simulations for all 72 combina-
tions of our control factors.

We use the MAD ratio rather than the MSE ratio as our comparative measure because
for some combinations of our control factors the distributions of variance component
estimates are substantially skewed (Table 2) for both MCL and REML estimation
methods. Under these conditions the estimates of the MSEs are quite unstable, with
the deletion of a single estimate out of 1000 determining whether the MSE ratio
substantially favors the MCL method or the REML method. For comparative purposes,
negative MCL variance component estimates were truncated to zero before the MAD
was calculated. However, very few estimates were negative even with our smallest data
size and smallest true variance.
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Table 2
The estimated skewness of the distribution of the estimator of �2

1

E9ect Imbalance Data size E9ect variance
distribution

0.1 0.2 0.5 1.0 2.0 5.0

Normal Mild S 0.44 0.54 0.55 0.77 0.80 0.90
L 0.19 0.22 0.32 0.21 0.03 0.18

Severe S 0.41 0.66 0.72 0.93 0.83 0.82
L 0.12 0.22 0.22 0.25 0.15 0.23

Skewed Mild S 7.50 29.98 14.62 15.29 5.11 22.74
L 5.88 5.55 3.77 3.87 3.92 5.36

Severe S 8.92 20.56 13.58 13.19 7.05 5.66
L 4.26 10.33 5.14 4.45 6.98 19.67

Kurtotic Mild S 0.75 0.88 1.12 1.00 0.97 0.96
L 0.22 0.43 0.27 0.23 0.30 0.32

Severe S 0.80 0.99 0.95 1.30 1.30 1.19
L 0.20 0.18 0.32 0.35 0.27 0.49

The MAD ratios in Table 1 indicate that while in general the REML method is more
e<cient, the di9erence between the two methods is quite insigni,cant. Another way
to see this is to calculate the correlation between the MCL estimates and the REML
estimates for each group of 1000 data sets. Out of all 72 correlations, the minimum
was 0.87 and the average was 0.95. Put quite simply, the choice of estimation method
(MCL or REML) makes very little contribution to the uncertainty of the estimate. The
great bulk of the uncertainty in an estimate is due to the random processes involved
in the realization of the data.

Neither method produces estimates under any combination of control factors with
biases that are detectable with 1000 simulations given estimate variability. The distri-
bution of variance component estimates for normal and kurtotic e9ect distributions, is
indistinguishable from normal. On the other hand, when e9ect distributions are skewed,
distributions were strongly positively skewed and strongly positively kurtotic (peaky).
There was, however, no discernable di9erence between the distributions of the esti-
mators obtained from MCL and REML, both were either close to normal or di9erent
from normal in a similar fashion.

Probably the most important advantage of the method of composite likelihood method
for variance components estimation is computational. Theoretically it is clear that in-
stead of inverting an N ×N matrix that requires O(N 3) operations (unless one exploits
a particular structure of the covariance matrix), we have replaced it by the computa-
tional burden of calculating N (N − 1)=2 contrasts. This has reduced the computational
problem to O(N 2), which may represent a gain of many orders of magnitude if N is
large. The actual time scaling of working variance component programs validate the
theoretical calculations. We plotted the change in the computational time using the
MCL approach using our program and for REML using the SAS-VARCOMP program
as a function of the number of observation. The increase in the computational time
was quadratic for the MCL whereas it was cubic for the REML.
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6. Discussion

In this paper we have discussed a new approach to the estimation of covariance
components based on the concept of composite likelihood. We have shown that this
approach is as generally applicable as the method of maximum likelihood and that
the estimates are consistent and asymptotically normal. However, in contrast to the
ML or REML approach, MCL approach is computationally substantially less intensive.
It avoids the inversion of large matrices and thereby reduces the computational bur-
den from O(N 3) operations to O(N 2) operations. This computational gain is achieved
without substantial loss in the statistical e<ciency as shown by our simulation study.
Another important point to note that this computational advantage is obtained across
the border for all types of designs, relationship matrices and multiple traits situations.
In some special structured design matrices, computational burden for ML or REML
method can be reduced substantially. However, although one may design the study
that leads to special structured matrices, such a structure may be destroyed if there
are missing observations, making special methods for matrix inversion inapplicable.
This is not an infrequent situation in practice. In contrast, the method of MCL needs
no such special structures for the design matrices. In this paper, we have shown that
for the designs considered in the simulation study reported, the computational time
for ML using SAS programs increases as a cubic function of the number of observa-
tions whereas the computational time for MCL increases as a quadratic function of the
number of observations. Although, as pointed out by the referee, more comprehensive
simulation studies will be useful to substantiate this claim. Further, the MCL estimate
is unique, something that cannot be claimed by ML, REML, ANOVA, or MINQUE
estimates. A ,nal advantage to the MCL method is that a solution is guaranteed. There
are no convergence problems. This property becomes important if inference is to be
undertaken using bootstrap methods.

This paper does not develop procedures for estimation of ,xed e9ects or prediction
of random e9ects using the composite likelihood concept. These topics will be dis-
cussed elsewhere. Similarly methods for obtaining con,dence intervals for the variance
components and testing for the equality of covariance matrices will also be discussed
in detail elsewhere.
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Appendix A

A.1. Consistency of MCL estimators

(1) Zero unbiasedness: Let

G1(W; �) =
{

1
� TB〈i〉

(
W 2

i

� TB〈i〉 − 1
)}

i=1;2; :::;L

be a vector of estimating function. Notice that each component of this estimating
function has mean zero.

Let G(W; �) =B∗G1(W; �). It is clear that these are the composite score functions
in Eq. (1). These are also zero unbiased.

To show consistency, we need to show that within an 1 neighborhood of the true
parameter vector �0, with probability converging to 1 there exists a solution to the
above estimating functions.

Towards that end, de,ne a matrix

FN =


1=n1 0 · · · 0

0 1=n2 · · · ...
... 0 · · · ...
...

... · · · 1=n1

 :

(2) We will argue that FNG(W; �)
p→0 as N → ∞ under A0–A4.

Clearly E(FNG(W; �)) = 0. Moreover Var(FNG(W; �)) =FNBVar(G1(W; �))BTFN

→ 0. This follows from the observation that the diagonal elements of the above co-
variance matrix:

1
n2
k

{
L∑

i=1

2(B〈i〉
k )2

(� TB〈i〉)2
+

L∑
i=1

L∑
j �=i

r2
ij

(B〈i〉
k B〈j〉

k )
(� TB〈i〉)(� TB〈j〉)

}
→ 0

as N → ∞ under A0–A4:

The o9-diagonal elements converge to zero by Cauchy–Schwartz inequality. The
convergence in probability follows by Chebychev inequality.

(3) Now apply the Taylor series expansion to get

FN (G(W; � + 1) − G(W; �)) =FNG′(W; � ∗)1

and FN (G(W; �− 1) − G(W; �)) = − FNG′(W; � ∗)1.
If −FNG′(W; � ∗)

p→I , a positive de,nite matrix as N → ∞, then FN (G(W; � + 1)
and FN (G(W; �− 1) are reQections of each other. By continuity of G(W; �), it follows
that G(W; �) has to cross zero in the 1 neighborhood of the true parameter vector �0,
with probability converging to 1, which in turn implies that P{||�N − �||¿1} → 0

as N → ∞ where �N is a solution of G(W; �). The convergence −FNG′(W; � ∗)
p→I
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follows from application of Chebychev inequality and assumptions A0–A4 in a manner
similar to Step 2.
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