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(A2
where Loas oo lower ¢ r triangular naris,
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Inner Produet Matrices, Kriging, and
Nonparametric Estimation of Variogram'
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INTRODUCTION

Varios seientific disciplines require the collection amd prediction of daty aver
space. For example, in mining whene the goul is 10 predict ore concentribons
ever the entire study arca, samples are collected ot sariows locatens, To predic)

comeentration ol lecativns where the samples are not collected, peostilistics uses

a lechmigque known as kriging, Kreiging produces i of ore coneemre
far thee entice site which can be wsed for planning and operating minimg activites
This sime technigque Tus applications i epvirommental duta collection where the
poal s o predict environmental degradation er clean-up based an thae data cel
lected at 2 discrete number af monitoriog locations ol @ site. As inomining,
wselul tool Tor sie pasessment and clein-up al o contamingted sie s o contour
mup of contaminant concentrations over the ansy ob interest, Envirommental
decision makers then coubd use this map to elemily those arcas which should
e excavated o protect public bealth, those which pose lntle or no nsk. and
those where the uncertainty is lage enough to warrnt additional sampling
PHecrived 25 June PR seviaed B December 1994
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The attrmmetion of the krigimg procedure i these apphicatiions is twobold,
First, it offers a statistical justification for the way it takes point data (date from
locations thet have been sumpled) and genemtes o smboth, inerpolated nwp
(e eantour plot) ol contmmpant concentmtions, This s o contrast o the
other conventional metbids of two-dimensional smoothog aod imespolaton that
grenerally are kool edged 1w be gd foe, altheogh effective. Second, the kreing
procedure genertes explicit urcertainly measures (e.g., prodiction imterals) for
the nterpobated ami smootbed estmaetes—both Tor esinmates ol concentmtions
ot particular locations, and for estimates of averspes within @ delined aren. These
pmcerhniny menstenes can be wsed for bualding precise manging of saliey ino g
decision rule that uses the estimate {e.g., a decision nale for guiding o clean-up
for the boundares of & contaminant sourced and they van be wsed in more
sophisticated adagnive procedures (oo, o value-ol=inlonation. approach) lor
mugking decisions about collecting ndditional data and Tor optimal selection of
sampling locations [or additional data
sie (D401 or Joumel and Hujhreprs (1978) for
detailed muthematical as well ss applicd deseription of the kriging technigue.
However, the basie idea behind kriging ts easy 1o undesstand. Suppose one
wittty 10 prodacl o contaninamt concenteaten al g new, ansampled location. It
intuitively makes scnse to consader o weighted linear combination of 1he oh-
served contpminen concentranons as o predictoe, Te also makes sense (o pive

W refer the readler o Cre

more weipht 1o thase observations ar locptiions that are more similar o the
location al which prediction s desired, than the ones which are differenl. Kriging
thus needs (Journel, [9HE)!

(1) identification of a “dissimilacny ™ or distance”™ measune between lo-
cations, The variogram model provides this; and

(2 identification of “optimad”T weights based on the varogrem model

Kriging, as typically unplemented (assuming that the data are detrended
properlyl, thus reguines the pracitioner o select o vanogrom model, Moreover,
hecause the parameters in the selected model vsoally ane unknown, ene hiss 1o
decide the method for the cstimation of these porumeters (e.g,, ordinary leas
squares, weighted least sgquases, maximun lkelthoed, ele b ond then, based on
these estimated panmmeters, predict e unknewn concentotions abong with the
prediction eror associoted with theny, 1 w0 the sumber of sampled locations, is
larpe, vne his o decide the kriging neighborhomd (e subsel ol the o] sample)
o reduee the computatiomal bunben

The goal of this paper is severdl fold,

(1} Recemly there have been several attemprs ot eliminating the sclection
of variogmm model step in Enging through the ose of nonpammelne
estimators of vanogram (Shapire and Botha, 19905 Hall, Fisher, and

Menparnmetric Estinsion Yaciogeam sl Kreiping [y

Hollwan, 19945 Cherry, 19943, In this paper, an allerative sonpar
metric estinmtor which s compuationally easy is suppested.

(2] There have Been several sugpestions om the use of orthoponal busis [or
Kriging prediction (Joumel, 1977 Kacewics, 1991 Vecehi, 19973,
The vsual definition of kriging neighboomd b5 i tems of “peograph-
teal neamess™ . We sugpest to define noighbarhoml in werms of sty
tcal neamess. The use of orthogonal basis Tor the selection of o st
tstcal keging neighborhood™ is recommuended, The number ol terms
m the kriging predictor (defined notemms of the arthogomal basis) iy
determined in a sequential Tashion. The computational burden is don-
anstrated o be substantally smatler thim the standard keiging proce-
dure. Mereover it is demonsteated that the predictor based on the firs
few anthogonal terms s reesonahly close 1o the optioad predictor. Thus,
we o el Lose statistical eflicieney . but stamd o gain substimtally i
cormputationgd simpliciy.

i3 Keoging invalves not just the point prediction ol an observation ol a

new Jocation bt also, and perheps more imporanly, the uneemaimy
fi.e., prediction error) associted with it Zimmerman and Cressie
CLTE discuss dgomusly the problem of estimation of prediction ermorn
based on the estimated variogram, They show that, in general, csli-
matet mean squared prediction errar is oo optisnistic fsmaller tham the
actual mean squared prediction ereor and lence the associated predic-
tion intervals, in gencral, have snaller than sominal coverige. In this
paper, it is demonsteated that if the kriging predicior is hased oaly on
thee first few oatheponal lerms, it temds o estinale the e prediction
errar accuralely and henee obtam prediction mereals which have coy-
erage close o the nomind covere. Thus, alibongh these predictors
wre suboptimal, they rend o be reflective of the tnuh related o the
statement about the uncertninty measore. This oo highly impoman)
feature for the environmental mamagement decision-making Proccss,

NOTATION AND PRELIMINARY RESULTS
The following aotation is wsed throughout the paper.,

C1y %00 $p 000 o 3, denote the locations of sites where the [rocess i\
alserved

(2 2 200, -0zt d denote the observalions ot the corresponding
focations. 240, Zis), 0 2 denote the mndem vanalles a
these Tocations. o peneral, capital leters denote the mandom vafables
el the corresponding small letlers denote the realization of hose
randon varizhles,
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3 Z = 02w, 2 ., Aa0 denotes the vectar of gedom vari
dbles, Vectoms wee considered. column vecilors, Yeelors with shper-
SR e trssposed vectons, and Lence ane mw veclons,

(4 2 = (L) — 2, 2y = 2o cany Ziny = e denotes
the vector of contmists.

(5

P odbemotes e varianee—covarianee matrx ol the vocwor ol conlesty

£+ This i 3 square, symmietric matrix of dimension n — | by o —

Lo Thes the (7, it entry in this matris comesponds w coy [zlhlr

Aluh, Z[.l.;,! - Zlywhere f = 2,3, ... . n and =20 0 o,

Covariance beiween two modom variables is denoted by “'coy.""

s termed the ““laner product variogrm matris, .

(63 The varogram value between locations | and 7 is denoted by 25,
Thus; 2y, = vur {(Z{x}-7 Lo whene "var™ denotes (e varaoce of
a rndom variable, Mere dand j = 1, 2, ..

(70 The “variogrm mairis® is denoted by T, thus the (7, 7 ih entry in T

is 2y, . '

() The s Tocation, at which the prediction is desired, i denited T
s The mndom varable o be predicted is denoted by 2(x,) -

{9} The vecior containing the vilues cov (Z(s) ~ Zix,), L) — Fis by,
f=20 M oo e s denoted by . This s of lenpil fn — 1)

CLER The wector cottaining the valoues var [ 8 TR a0 | Sy L

o rmis denated by gl This s ol lengil o

Follewing ane some preliminary results g propeeties of the ¥ muatris,
. Reswle 1o 10 the anderlving process s intansically stationary, F matrix
[ 4 1
froof From the basie propenics ol Hilben Spave with o inner produc
o 3y we know that; 2, 03 = Luwd + oy 0y — o= ot — o we
deline covanince hetween fwo vectors s the inner preshuct, then it fiallows thag:

oo (Z48) — Zix,). L) = Zin = var (2x) = Zis )
A ovar (i) = Zixn)

var (Zv) — Zis))

or vguividenly,
q.” s Yl s Mt 1 (1}

Because the underlying process is intrinsically stationury (Cressie, 199 . -
b1}, the right-hund side exisis and hence ¥ cxists, The lollowing relationship

Monparmmeteie Estioction Yoriogein amd Roriging [Py

follows mmmediately from (1)

2y,= Ty b ¥

] al
i _*P” (2

i
Resalt 200 The matria T ds necessarily o positive senidefinite nuerix
This follows imneedmtely frome the ehsernation thal %05 0 varanee co-

walriiCe s,

Resielr 420 can be written as ¥ = POP whene 205 o diapaonal natris

of cigenvadoes of, oy oo Lol and P s oo matris of cigenvecions of 1§,

Thias s just a spectrul decompesttion ol real, symmetne matng, Bote thic

Becitse W as positive seonidefinite, the eipenvaloes o are nonnegative, although

s ol then may be e,

ORINNARY KRIGING IN TERMS OF INNER PRODUCT
VARIOGRAM

Chrdimary kriging selers o spatial prediction aoder e following two s
sumnptives (Cressie, (991, po 120
(L) Forall g in the domain £ of the process,
Llx) = ok 0ix)
wlere oo an unksown real mmber sepresenting the mean of the
process sl S0 ) b5 zero mean, mbrinsically statismary process,
(2} The predicior pie; s, s such that:

S a) = 2 RN
I

where B, & = L.

The secomd condition puarantees unifomn wabinsedness of the predicior,
W want to determine & set of A such that the menn-sguared prediction error
s mieiiecd . The mean-squared prediciion crmor 15 piven by

{.I:-t — E[zf-'l'n:l = J'":z- -"'-.l.:|:|:

We now derive the solution set b, Becawse B & = |, we i write:

1] i

Ziwg) = 24 N = (Zlyg) — 2000 = 2N E) - 260D
I '

L}

Hend 31 is imporiant o note that &y, o, are uneonstinined, The pre-
dietor is writlen as: Ziat 4+ B MAE) — Sl 1onew iy casy to see thal:
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EiZ s, - .'L'I MNZ = E@ () — Zia’ + 2 NEZi) — 2i))°

+ 20 NNENZI) — Zis)(Z(s) — Zes,0)

(]
]
'

2 4 MNEWZEY — 20 — ()

=2yj0 + 2 N, + 2 Ak, —2 XA

4 b

o

1 ¥
T rentiaet i ] S 1 1

Differentiating with respeet 1o h anl cquating the dervatives m rers, we ol

ME o B, = g,

[
i . . .
fore = 203, .00 Inomareix notation, this can be writlen as
= ]
YA =gy

where X' = (Ao Xy, oo A
Provided that ¥ is positive definite, the optimal ot of As is given lw;

M=l

I bs only positive semidefinite, il implics thot some of he contrasts in 7 are
linearly related 1o cach otber. This iplics that some of the ks can he :*:]nl-.m:d
tr rem without any loss.

This lust commuent points 1o the possihility of wsang the principal aonppo-
rents Collitfe, 1986) of 2. us predictors instepd of the individus Compoments
sepaniiely. We explore this possibility next. Let P be the matiy of cieenvecion
of T owith &, the ith eigeovector. Ther h

it

PlaZe = 2 PolZig) — Zts,)

i the ith principal component of 2, For notational stnplicity it will be denoted
by v We cansider the predicion:
Pz s = 200 + 2 Kl v
Using the tesults about the principal components, namely £iv) = 0 and
E{vioy) = 0ild # jand E{y]) = ey, ome can write;

Lk

suppursmetric Estimation Variogram aml Kriging o
,:_'{km_;,,] by = _1-,) = EiZisg) — Zs' 4 2 (N d,

P=

— 2 2 W E(wiEin) — Zisn

= 2y + 2 AN di - 2 8 NP
{3

Differentinting with respect o A s equating o zero and writing e the males

nOGILLGN, We get

It = -i"'ll.nle'h
Thi aptimal h¥s are thus given by

-"\:I. = :'||'|':"-I"|""|l-I

o, = M = 0, voresponding ;\I*.'i are defined to be v,
Preddiction Ervor for p (7 s, Using Fquation (33,01 s casy loowrite the
prediction ermr far p O] 50 as:

i

"

1 L o bk
= :.I“r'“, t >.J [ &) “rl .3 l- M P::”'vr’n
r=31 =1

= 1"r'm = }—' r"”:.'."r':'uﬁ-""-'l. {4

Let us look a the interpretation o the decomposition of the prediction ermor
given b Fquition (4,

(b1 Suppose only one ol the ebservations {2050, 20, o0 Zla) s
used o predict Zisg). Then, it is obvious than 0T Zix) is used as the
predictor of Zi,), the kriging prediction ermor would be 2y,

(A |'F,’,,¢-,,}:.-':.|'._~, indicate the successive reduction in the prediction ereor
becaese of the inclusion of thie @th principal component in the predicios
function,

{51 The mldivion of the principal components can e done conveniently in
a seguential fashiom, Note that each &' depends only on the ith eigen-
vector af the matrx ¥, For laree matrices, it is a relatively simple
nurerical wnalysis problem to evilite cigenvalues and cigenvecions
im A sequentinl fashion (Goelub and van Loan, 1984
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A scheme for selecting the number of principal components 1o be fncluded
In the prediclor p(Z; s, vsing the decomposition in Equation (4 and the com-
menls, now can be presenbed.
Given ¥, by and vy, calenlore:
Predicior Prediction ermor

PEEE ey = Filh ) o = 2y 15

PSS ) = 2000 + A w 8. = 2 — {P[:,l.',-,,]z.".."!

Stop adding principal components w0 the predictor when the prediction eror
oL .1::11:1Ih_-r than s prescribed number, or when the incremental improvement
m o, is smaller than o prescribed number or when o, s become negligihle, This
s what we consider “statistical neighborhoml ' See Davis and Crive [RREEEY
for an interesting discussion of local versus global kriging neighborhood. 1f 5
5 fixed, the neighbomond discussed lere corresponds 1o the **global neielibor-
hood. " Note that we are indexing the eipenvalues and uigl.:rnfu.:cmrs of ¥ from
2o and NOT 1w in = 1)

NOMPARAMETRIC ESTIMATION OF VARIOGRAMS

In the development of the previous section it is assumed that the variogram
uned hence the inner product variogram natrices are known. OF course, in prac
tiee., they are seldom known and need 1o be estimated using the available datn,
Various estimators, both parmetric and nonparametric. have been sigpested in
the lemture. Sce Cressie (1991, chapter 2) or Zimmerman amd Zimmermman
LG Tor a survey of the available methodologics and thearetical results s
soctated with them. 1

Muost of the estimation proceduses ane hased on the assumption that only
one realization from the underyving process 1 avsilable. Therefore, we have o
assume certain stationarity and ergodicily properties of the underlying process
and wse the spatial replication 10 estimate the variogram. Another assumption is
that of isetropy implying that the virogram depends only on the distince be-
tween two locutions and not on the direction. Geometric amsotropy may e
included i the pammetric model. Though the development of the vy
section g5 independent of the asswmptions of stationurity and isolropy, for any

data analyhie applications we need 1o assume these propenies. For the purpose
af this paper, we will assume stationarity and 1sotropy.

IT the undedying precess is stationary and isotropic, several different esti-
mators of vanegram are available (sce Cressie, 1991, chapter 3; Journel, 1988).

Nugarametric Estimatien Yarimermm sl Keiging ]

For the results described here, all that is needed is 8 consistent cstimator of the
variogmn, In the following, the classical or momaent estumator of the vanogrim
15 descrbed,

Mewient Estimator of the Vartogeam.  Given the observations zi5), 2i5:h
ooy 2is,). the moment estimator of the varingram at a distance & 15 given by

ik = NI B ) — 2P

Mif
whern:
Ny = s s lls =gl =h Li=12,,.. 0

and TN O] is the number of distine pairs in N0, |5 — 5 ]| s e Buelidean
distance hetween the locations & and 5. 10 the date are spaced rvegulanly, the

variognie estinsior wsually s smombol acconding 1w some wleranes regaon,
One also can simply smooth the scatter plot of (ziy) — :HJH; LTI | f
using any kernel smoothing or spline smoothing method (5iverman, 1986},

Unforemately, such o smoohed vanogram is nel guarsnteed 1o ke condi-
nenally mepative delinite and henee ingeneral, would not be a valid vanogram
(Chritakos, [984), Atlempts hisve Been made Tor Bieing 2 function from the class
ol conditionally negative definite functions (Cherry, 19945 Shapine anil Botha,
1990 Hall, Fisher, md Hoflwan, 19940 1o this scatter, These definiely are of
great interest both ta those who use kriging for prediction and o thase who usc
varagmms o chameterize spatial dependencies. However, the class of condi-
tonally negative delinte functions (Schoenberg, 1938; Chntakos, 19843 5 dil-
ficult methematically 1w handle, especially Tor two wnd Bipher dimensional data,
For example, the basis Tanctions ina twe-dimensional siteanion are Bessel fane-
tions, These, themselves, are infinite senes. Thus approximating an estinusted
variogram (which need net be conditionally negative definite) by a valid con-
ditionatly negative delingie fmetion 15 a difficolt mathematical and computational
task.

The class of positive definite functiong themg a dual) is equally difficult w
hanidle, However, given a finite dimensional matnx, it 3s comparatively gasy 1o
approsimate it owith o positive definite matns (Roussecow and Molenherghs,
1993; Devlin, Gnonedesikan, and Ketenring, 1973 Mead, 199 Gouland and
Volg, 19923, We propose 1o tansform the problem of estimation of the valid
variogram matrix (which is condiionally nepative definie) w the problem of
catimation ol the valid inner prodoct variopram matiis {(which needs e be o
positive definite matris),

In the following we describe steps o oblain o nonparmmetric estinutor of
varognm. An argament for the validity, that is the conditional negative defi-
niteness, of the resultant estinator will follow,

Step . Caleulate the squared differences 3(2(s) — E{.'rJ]]E- Caleulate the
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e, then there exists an least one valid variogmm function w61 such th

e, ) = efd) =] i

al lcast as & =+ oo such that [of, 35 are dense in . In othes wirds, as o -+ oo
correspomding (o cach conditionallv negative definite matris of dimension »
f, these s vanogram model,

Combming these three results, one can arpoe that the itterpalant abtiine
at the end ol Sep 6 is @ valil vanogram function, Iy the simulations as well as
wvitrions data analysis, the mterpolant was 2 valid varmgnem function,

T summriee the diseussion: We abtain g moment estinaitor of the un-
derlying varivgram. smooth the moment estimator using a spline smoother. The
spline smocther is evaluated ol o indlely many pomts, These POANTS e appros-
mmated by oo collection of conditionally negative delinite values [Sieps 3-5),
Then, these conditionally negative definite values pre smoothed using a spline
sipnother. These steps are repeated ontl (e spline simoenbier and the spline
migrpolator ane wentical. At this stage, theorems [ oand 2 which apply 1o an
interpolact can be evoked 1o show that the resultant variogram, in fact, i con-
ditiemally negative definile,

On the ather hand, Cherry (19941, Shapiro and Botha (19919, and Hall,
Fisher, and Hotfman (1994 oy oo smoeth the moment estimator i functioons
which wre conditionally negative definite, For two-dimensional da, the basic
funetions vsed Tor this -;r1|1_m:|||11g are Bessel lunctions, Soowhich are themselves
mfinite series. This class is dithicult to treat mathematically and compatationdly
especiplly when conditions of smoothness, monetmicily. ete., pre imposcd.
Morcover, none of the studies include pedformance of their variogram estimator
in terms of prediction and prediction error, Theorotica dnd computational com-
parisans between the twa classes of approaches woulkl be of ineres

SIMULATION STUDY

In order o stady the practical eflicacy of the suppested kriging procedore,
a simudanion stedy was conducted. The purpase of this simulation study was 1o
study the performance of the nonparamerric variogram estimator and also the
effectiveness of the principal components hased kriging neighbarliood.

A deseribed carlier, a varogram js wsed for the purpose of predicting an
observation ata new, unsampled location, Thus, the porformanee of @ varopram
may be judged in ferms of the accurey of the prediction o, more penemlly,
the coverage properies of 1he corresponding prediction intesvals, By coverage
propetties of a prediction interval, we mean the percentage of tmes the true
vathue 35 contalned in the prediction interval. OF course, the COVerape peroeniage
is not the anly feature of the prediction interval that is important; its length s
also important. Tdeally, one wants a short interval with good coverage.

; ok i 6H5
manparamelric fstimation Yariogriom and Keiging

[n this paper, it is suggested that one may use only the it few principal
components for obtaining the predictions. This obwionsly reduces the compu-
tational burden substantially. The usual strategy for neducing the computtional

% 5 . b T sl " 1 ST ITE v |':|

Burden, when faced with a large data, is to select o geographive! nu.;.l,hhtr-rh-m.
of the new location and hase the predictions only on the sanple within this
repion, Our approach emphasizes the saraical neighborioasd which is w glohal
peighborhood in the sense of Thavis aml Grver (1959), The coverge properics

h g T 1 i v o " H ¥ § o ST EA ok l' fire
of the prediction intervals bused only on the fiest few principal companents ar
studied. The penm predicior obtamed §s unbiased: however the predichion ermor
and henee the associnted prodicion interval §s ot the shortest [1 35 elserved,
besed on the simulation resubs, that the difference between the aptimal interval

; - o1 b ke 1%
and thas interval is denorshly smasdl but the computatiomas] simplicity obtauined 15
* X = -
substantisl .

The simulstion study was conducied as follows,
i s T

Srep 0. Let COUNT = 0, TRUE = O, AVPE : [ .

Step £ Gienerate 63 observations on o regulisr grid under e expenentig
variogram model (Cressic, 1991, p. of) N

';':.:«;l 2 Bhased on 2oy, cy mtead, pradict Hseah Let ng denote this
predicied value by p () s .

Srep 4 Calenlste the prediction error [(Ey D] associatod with p{f sel.
Let us denote it by poes (20 5l

Step d. Coleulate the prediction imerval, mnnely

A T I \-'I:ri-.e'. {5 2es)

Sten 5. Check if 23 the 65th abservation belongs to the prediction
interval. 171t belangs to the interval, then

COUNT = COUNT + 1
Step 6, Caleulate
TRUEPE = TRUEPE + [z(4s) — pF 58]
AVPE = AVPE + poe dZ 5ud

Step 7. Repeat Steps 1-6, B number of times. We select B = 223
Srepr & Caloulie

- COUNT
Coverage probability = — :
i
: TRUEPE
Trwe prediction ermor = T
o AVPE
Averupe estimated prediction ermoe = — '
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Similar quantities were cnle [ : ; !
: cnleulated lor data of size 145, Firs
4ol s . First 144 observations abhle- 3. il e iilih With E withal WV mosiram Moder?
were used to prediet the 145th observation. " : i Tahle 2. Sumilstion Restlis with Expimential Variogram Moder
It the: van s . gt ; :
; i I !n-.l_l!l:lr:;.f...\llr'lhltil-t’ and the estimator of ]1|-;:|ju_'lm|| Error ane xru-nnd_ Variubifity Gt AV, extimatid Acrual
en coverage probability 15 ¢lose R ; : ’ - .
_ ;- HI.- privha I"Il'fr 15 close 1o the nomimal covermge of 95% . Moreover, (%) 1 prediction cimol prediction smor
‘ ; II'IIL: prediction ¢rror™™ and *average estimated prediction error”® wlso are sim-
thar. To check o o . . AR TR T
g: r. To check lllh‘ correciness of the data generation algorithim, the tree vario- 6 =1, G =1.G=1023
i grmm was used to ob ¥ e B/ ST o i = True vanogrim k.6 (16554 fh61%6
! i r bLain g2 ) in Sep 2 and poes (£ 8 in Step 3. The n.-|-|u|-nu:n-u ey P 0.7 1 SRERT} {572
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% e iy i lu.lnll.nl.'l- AvE. estirmateil Mctal NanparsmENTC viriogean: 0% 074 | 3530 L41H
b prediction. ernor prediction gornor TV U7 L1717 I 5244
; Ly =1 Ey = L= H L] | a2 15400
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Cp = 00, = X6, =05 410 laA5E HOK 74,1 1.3d80 | o34
True variognzm 06,4 [LHE3T 0B39O 1% T 145920 U} =1
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(2) The estimated prediction eror based on he same number af principal
components, nogeneral, s better reflective of the pewal prediction
error. This is Ihe reason for gelting goed coverage propertics lor the
prediction mtervals based on the lisst few principal components. Thus,
althosieh these intervals are not the sherest, the confidence statements
baseid on thew are reflective of the . This probably is due to the
result that estiminion of the lorge eipenvalues and the cormesponding
erpenvectors tends w be pumerically stahle,

T

The change in the prediciion error and the sctuad point pradiction s
small after the first fow prncipal components. Both seem 1o settle down
it about the same number of principal components.

A REANALYSIS OF CRESSIE'S (19846) TRON-ORE DATA

This is a standard data ser deserbed and snalyzed by Cressic {1986) wnl
Zimmerman and Fiommerman (19909, This dataser consists of iron-ore me-
surements tiken from an orchody in Austealia, The dita and their spatial loca-
tions were displayed in Cressie (1986). The spatial locations form an incomplete
rectangular grid whose intemedal spacing equals 50 meters. The residuals Froum
median polish ane wsed for Eriging. Anisatmpy in the N-8 dircction was noticed
by Cressie (19860 and corrected by donbling the scale in than dircction. Instepd
of liing o parametric variogeam (Zimmerman and Zimmerman, 1991, the
nonparamelne vinegram estimator is used as sugpested in this paper. The es-
timate of the vanogram supenmposed on the moment estimitor is shown in
Figure | This figure also shows the pammetne variogrm estimmor obtined
by Zimmerman wnd Zimmerman (18915, This estimstor evidently 12 close o

Cressie’s (1986) lron-Ore Data

% ' :
;g w

Crsiancn

Fipure 1, Estmated sermvinoprm for son-ote residuals bosed on sl dasuees less than 75525
nepandless of direction. Wetghied lest-sguans fil of pummerric vaioprs dused by Simmenman
and Eammwnnan, 19911 is shown by doned line. Nonpasmetric VIMOERET T e S i
sadiel Tine. Similarity of two vanngmms s sinking,

Monparamelric Estimation Variogeam and KEriging LIk

theirs, except that this estimator does not use any parmeteic assumpions. The
sume locations wre predicted s those predicied by Zimmerman and Limmenman
(19915, The resulis are displayed in Table 3. The conclusiony e
(1) The predictions obtained under the nonparametric vanogrim ane simili
to the one obtained by Cressie (1980) and Zimmerman and Zimmemian
191

The prediction intervals given here ane almost of the same length

(2

(33 17 one vses the predictions and prediction infervals based on the et
12 praneypal companents (explaining around TO% vanability), they are
extremely close w the opimal predictions and predichion miervals,
Thus, a tenfold saving inocompulation is feasible, moaddition 1w the
advantage of assuming no passmelric models.

Phe decision to select 12 principal components wis based on the decrease
in the prediction error as deserbed previously, Graphically it s shown how the

Table 3, Predicied Valoes and Associaied Prodicion igeeval an Two Locibons for Cressie’s (1986 tron one

[hats’
Prodected Lengihy of the
Lascation Methisl witlug Procheton auterval prediction imtemviil
[ Munparamstng
(82 PCsb
Moy shomnlencity {12842 {5723 5.4426) 1164
Whith moasEonacaty L3025 14 B1 59 5. 4200 [ Restit
(Al POy
ek monatonicity AR =509 5187 1182162
With mormbomicin [FRERE | =3 00ET A 84EN 4HLT
Pt

Lrmerman el —{1, 2300 =5 2004 . B0 JURLIEY

Summernan

(19ay)

2 MNonpammetnic
112 PC5)
B mamsanicity [T { = 1169 4. 3075) e 247
With memnotonicily 13467 (=3 HUTH.5911 [
(Al 24
o monntonicity I} 475G | = 302 6.0RY ) 14,2263
Woith inonateniciny [REAEE] [ =4 BT h, 21 10,4034
Parmetric

Aanmmerrnnn il 103y = D3RG TE T2

Lirmimerman

(1597}

Thee Finmenman and Zinuserman, 1990 for detals
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