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Abstract. Understanding how organisms selectively use resources is essential for designing
wildlife management strategies. The probability that an individual uses a given resource, as
characterized by environmental factors, can be quantified in terms of the resource selection
probability function (RSPF). The present literature on the topic has claimed that, except when
both used and unused sites are known, the RSPF is non-estimable and that only a function
proportional to RSPF, namely, the resource selection function (RSF) can be estimated. This
paper describes a close connection between the estimation of the RSPF and the estimation of
the weight function in the theory of weighted distributions. This connection can be used to
obtain fully efficient, maximum likelihood estimators of the resource selection probability
function under commonly used survey designs in wildlife management. The method is
illustrated using GPS collar data for mountain goats (Oreamnos americanus de Blainville 1816)
in northwest British Columbia, Canada.
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INTRODUCTION

‘‘When resources are used disproportionately to their

availability, use is said to be selective’’ (Manly et al.

2002:15). Understanding the differential selection of

resources by animals is an essential component of

conservation biology, wildlife management and applied

ecology (Boyce and McDonald 1999). Two common

tools used for gathering such understanding are the

resource selection probability function (RSPF) and the

resource selection function (RSF). There are many

excellent sources that describe the fundamental concepts

and variety of applications of these tools. For example,

Manly et al. (2002) discuss the statistical and ecological

underpinnings of the resource selection by animals.

Additionally, a recent edited volume (Huzurbazar 2003)

and a special section of the Journal of Wildlife

Management (March 2006) dedicated to the study of

resource selection functions provides further evidence

for the importance and use of resource selection

functions in conservation biology, wildlife management,

and other applied ecological studies. Given the wide

availability of such literature, we concentrate on the

problems and issues related to the statistical inference

for the RSPF. Many studies that try to infer differential

selection of resources by animals rely on sequential

animal locations (Manly et al. 2002). A common

assumption is that if an animal is present at a location,

then the habitat at that location is being used.

Furthermore, if an animal is present within a particular

habitat disproportionate to the availability of that

habitat, there is differential selection. Generally, infor-

mation on the availability of different habitat types is

obtained through biological surveys or information in

geographic information systems (GIS).

The RSPF is a function that gives the probability that

a particular resource, as characterized by a combination

of environmental variables, will be used by an individual

animal. Manly et al. (2002) discuss various models such

as the exponential, logistic, probit and the log-log link

models for RSPFs. They note that, under the sampling

protocol where used locations and unused locations are

observed, one can fit any of these RSPFs. However, if

unused locations are unknown and available locations

are randomly sampled, standard logistic regression

procedures can be used to estimate parameters of the

exponential RSPF, except its intercept parameter. This

procedure provides relative probabilities of use, relative

to a reference location, provided exponential RSPF is

appropriate. Manly et al. (2002) term this relative
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probability function a resource selection function (RSF).

Specifically, if one reference location has a probability of

use of 0.1 and another location has a probability of use

of 0.5, then this procedure provides us with the

information that the second location is five times more

likely to be used than the first location. However, it does

not offer any information on the absolute probabilities

associated with these two locations. Thus, if the

reference location has a probability of use of 0.001

and the second location has a probability of use of

0.005; the relative probability calculations will describe

the second location as five times more likely to be used

than the reference location; irrespective of their absolute

probabilities.

The simplicity of estimating RSFs has made the

exponential form of the RSPF popular in practice.

However, as noted by Manly et al. (2002:Eq. 5.9), the

exponential RSPF constrains the parameter values so

that the exponent of the function is negative for all

values of the covariates. Such constraints prompted

Keating and Cherry (2004) to express reservations about

the usefulness of the exponential form of the RSPF.

Furthermore, Keating and Cherry (2004) recognized the

difference between the use-available study design and

the case-control study design. Studies have demonstrat-

ed that if some of the ‘‘controls’’ are in reality ‘‘cases,’’

the simple logistic regression procedure leads to biased

estimators (Lancaster and Imbens 1996). In the context

of resource selection, the random sample of available

resource units contains both ‘‘used’’ and ‘‘unused’’ units.

Therefore, the estimation procedure in Manly et al.

(2002) can potentially lead to biased estimators.

Following the terminology of Lancaster and Imbens

(1996), Keating and Cherry (2004) call this a contam-

ination problem. They suggest that if the amount of

contamination is small, the potential bias in the

estimation of RSF is likely to be small as well.

Johnson et al. (2006), in response to Keating and

Cherry (2004), argued that the use-available study

design is properly formulated in terms of weighted

distributions (Patil and Rao 1978). They proposed an

alternative method based on logistic discriminant

analysis (Seber 1984) and showed that, under the use-

available sampling design (sampling protocol A, sam-

pling design I; Manly et al. 2002), all parameters of the

exponential RSPF, except for the intercept, can be

estimated using standard logistic regression.

The purpose of this paper is to extend the ideas in

Johnson et al. (2006). We demonstrate that parametric

forms other than the exponential RSPF allow estimation

of absolute probabilities. This method provides flexibil-

ity in modeling and generates absolute probabilities as

opposed to relative probabilities. Estimating the abso-

lute probabilities under use-available sampling designs

will be a major advantage in the analysis of commonly

collected survey and radio-collar data in ecology and

wildlife management (McDonald and McDonald 2002).

We describe in detail the simulated maximum likelihood

estimation method (Robert and Casella 1999) for

estimation of parameters for any RSPF, removing the

restriction of employing only the exponential RSPF in

the analysis of use-available data. Furthermore, we

extend the method to practically important cases of

location dependent and home range dependent distribu-

tions of available resources. We illustrate our method

using GPS collar location data on mountain goats in

northwest British Columbia. In addition to providing

estimates and confidence intervals for the parameters, we

show that the Logistic RSPF obtains a better fit to the

data than the exponential RSPF. The Logistic model not

only fits the data better but also provides the absolute

probability of use rather than the relative probability of

use. This underlines the importance of using RSPFs that

are different from the exponential RSPF.

RESOURCE SELECTION PROBABILITY FUNCTION

AND WEIGHTED DISTRIBUTIONS

We start with the most straightforward situation of the

used–unused design. We assume that the use of the

resource is nondestructive. Since the resource use is non-

destructive, a particular location may potentially be

visited repeatedly. Suppose we have a sample of size N

from the study area. Suppose that, for each sample point,

we know whether it was used or unused. Let X¼ (X1, X2,

. . . , Xp) denote the vector of environmental covariates

representing resources that may be used by animals. Let

us denote the data by (Yi, Xi), i¼1, 2, . . . ,N where Yi¼1

if the ith sample point is used, Yi¼ 0 if that sample point

is unused and Xi are the set of environmental covariates

associated with that location. To study how the

environmental covariates affect the probability of use,

one models P(Y¼1 jX¼x)¼p(x, b) where p(x, b) is any
function such that 0 � p(x, b) � 1 for all possible values

of x and b. This probability function is called the resource
selection probability function (RSPF). Under the

used�unused design, the maximum likelihood estimation

of the parameters b can be carried out by maximizing

the log-likelihood function: RN
i¼1 fYilog p(xi, b)

þ (1�Yi)log(1� p(xi, b)g. Under the use-available study

design, the situation is somewhat different. In this case,

we know only those sample points where Yi¼1. The goal

of the analysis, however, remains the same: to estimate

the resource selection probability function p(x, b) or

equivalently to estimate the parameters b. To do this, we

need to make an additional assumption. We assume that

the covariate vectors Xi are a random sample from some

multivariate distribution fA(x). Provided this assump-

tion is reasonable, standard probability argument leads

to the following result:

f UðX ¼ xjY ¼ 1; bÞ ¼ PðY ¼ 1jX ¼ x; bÞf AðxÞ
PðY ¼ 1Þ

¼ pðx; bÞf AðxÞR
pðx; bÞf AðxÞdx

¼ pðx; bÞf AðxÞ
PðbÞ :

This distribution is known as the weighted distribution
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(Patil and Rao 1978). When use-available study design is

implemented, we can use the likelihood based on this

weighted distribution to estimate the parameters b.
Before discussing the estimation procedure, it is impor-

tant to establish the identifiability of the parameters.

Following the results in Gilbert et al. (1999), all

parameters in the RSPF p(x, b) are identifiable if for b
6¼ h, [p(x, b)]/[p(x, h)] 6¼ K for all values of x and any

constant K. That is, no two RSPFs are exactly

proportional to each other. In precise mathematical

terms, if b 6¼ h, then maxx jp(x, b)� Kp(x, h)j . 0 for all

K . 0.

Most standard forms of RSPFs such as the logistic,

probit, and the log-log link (Eqs. 5.1, 5.2, and 5.3 in

Manly et al. 2002) satisfy the identifiability condition as

long as not all covariates are categorical. Hence if one

uses any of these models, one can estimate absolute

probability of use. However, there are two common

situations where the second condition is not satisfied and

only relative probabilities are estimable. The first case

occurs when all covariates are categorical. In this case,

similar to the Logistic regression case, one of the

categories is considered as a reference category (Hosmer

and Lemeshow 1989:48). The relative probability of

selection, relative to the reference category is estimable,

but absolute probability of selection is not. Similarly, for

the exponential RSPF, exp(b0þ b1X ) where b0þ b1X ,

0 for all parameter values and for all covariates (Eq. 5.9

in Manly et al. 2002), only the relative probabilities,

relative to some reference location, are estimable but

absolute probabilities are not (for a detailed proof of

non-identifiability in these two cases, see the Appendix).

The limitation of being able to estimate only relative

probabilities, along with the constraints on the permis-

sible values of the parameters, may limit the usefulness

of the exponential RSPF (Keating and Cherry 2004).

However, logistic, probit, and log–log RSPF put no

such constraints and allow estimation of absolute

probability of selection.

We have now established that when data are collected

under the ‘‘use-available’’ study design (sampling

protocol A, design I described on page 15 of Manly et

al. [2002]), the distribution of covariates of the ‘‘used’’

sites fU(x; b) can be written as a weighted distribution

(Patil and Rao 1978, Johnson et al. 2006):

f Uðx; bÞ ¼ pðx; bÞf AðxÞ
PðbÞ

where P(b) ¼ E [p(X; b)] ¼
R

p(x; b) fA(x) dx and fA(x)

denotes the distribution of the covariates in the available

population.

We are interested in estimating parameters b in the

function p(x; b) given a random sample from the

distribution fU(x; b). This can be achieved using the

method of simulated maximum likelihood (Robert and

Casella 1999). The exact description of the method

follows. In addition to the two conditions discussed

earlier, we make assumptions A1–A8 and B1–B6

described on pages 12–14 of Manly et al. (2002).

Let s1, s2, . . . , sn denote telemetry locations. Let x1,

x2, . . . , xn denote environmental covariates at these

locations. Based on these observations, the log-likeli-

hood function can be written as: l(b; x1, x2, . . . , xn) ¼
Rn

i¼1 flog p(xi; b) � log P(b) þ log f A(xi)g. The

probability density function fA(x) is independent of

the parameter b, and it can be ignored when maximizing

the log-likelihood function. Furthermore, the probabil-

ity density function fA(x) is not known in an analytical

form, hence the form of P(b) is not known analytically

as well. However, since we can sample observations

from the availability distribution by randomly choosing

points from the study area and observing the environ-

mental variables at those sampled locations, we can

obtain a Monte-Carlo estimate of P(b) for any fixed

value of b. Thus, one can obtain a Monte-Carlo estimate

of the log-likelihood function (ignoring the terms

independent of b) using

l̂ðb; x1; x2; . . . ; xnÞ

¼
Xn

i¼1

log pðxi; bÞ � log
1

B

XB

j¼1

pðx�j ; bÞ
" #( ) ð1Þ

where x�j , j¼ 1, 2, . . . , B is a simple random sample with

replacement from the distribution fA(x). Provided the

value of B is large, �10 000 so as to ignore the Monte-

Carlo error, one can apply standard numerical optimi-

zation techniques to maximize the function in Eq. 1 and

obtain the maximum likelihood estimator of b. These
estimators, being maximum likelihood estimators, are

fully efficient, consistent, and asymptotically normal.

The asymptotic standard errors and confidence intervals

can be computed using the inverse of the matrix of the

second derivatives. Such a matrix is readily available

from numerical optimization routines. The usual meth-

ods of model selection such as the Akaike information

criterion (AIC), its variants and likelihood ratio test of

hypotheses are applicable without any modification.

LOCATION- AND HOME-RANGE-DEPENDENT DISTRIBUTION

OF THE AVAILABLE RESOURCES

So far, we have assumed that the distribution of

available resources is identical for all animal locations. In

practice, that assumption is not always tenable. Re-

sources closer to used locations are more accessible than

resources farther in space. Similarly, if individual animals

have specific home ranges, the distribution of the

available resources is different for each individual. A

common practice is to define a buffer around the used

location and assume only resources within this buffer or

a specified home range are available (McClean et al. 1998

and references therein). This study design is claimed to be

akin to the matched case-control design in epidemiology

(Hosmer and Lemeshow 1989: Chapter 7, Compton et al.

2002) and conditional likelihood method is used for
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estimation. Hence, it is claimed that under the exponen-

tial RSPF, a standard logistic regression package can be

used to analyze this type of data. However, the effects of

contamination and overlap (Keating and Cherry 2004,

Johnson et al. 2006) are likely to have even more serious

consequences for this procedure. As pointed out by

Johnson et al. (2006), the use-available study design is

properly modeled as a weighted distribution and not as a

case-control study. When approached from this perspec-

tive, the issue of contamination becomes irrelevant. The

logistic discrimination method (Johnson et al. 2006) can

be extended to deal with location and home range

dependent distribution of the available resources. Such

an extension leads to a stratified logistic regression and

not a conditional logistic regression method (Appendix).

In stratified logistic regression, the number of parameters

increases at the same rate as the number of used locations

resulting in biased and inconsistent estimators (Hosmer

and Lemeshow 1989:Chapter 7). However, a simple

adaptation of simulated likelihood facilitates the use of

the non-exponential RSPFs. These are more flexible than

the exponential RSPF and provide consistent estimators

of absolute probabilities as opposed to relative proba-

bilities.

Location-dependent availability.—Since the distribu-

tion of available resources is different for each used

location, the weighted distribution for used locations

varies with location. The weighted distribution corre-

sponding to location si can be written as

f U
i ðx; si; bÞ ¼

pðx; bÞf A
i ðx; siÞ

PiðbÞ

where Pi (b)¼
R

p(x; b) f A
i (x; si) dx. The notation f A

i (x, si)

denotes the distribution of resources available for

location si. These may correspond to all resources

within a certain distance of location si. The log-

likelihood function can be written as

lðb; x1; x2; . . . ; xnÞ ¼
Xn

i¼1

½log pðxi; bÞ � log PiðbÞ�:

Using the notation of the previous section, the

corresponding simulated log-likelihood function is

l̂ðb; x1; x2; . . . ; xnÞ

¼
Xn

i¼1

logpðxi; bÞ � log
1

B

XB

j¼1

pðx�j ; bÞwðdij�Þ
" #( )

where w(dij*)¼1 if dij* , d and w(dij*)¼0 if dij* � d, for a
circular buffer of radius d. This function is maximized

with respect to b to obtain the maximum likelihood

estimators. The size of the buffer is usually fixed based

on biological considerations such as the maximum travel

distance within a certain amount of time.

Home-range-dependent availability.—Similar to the

previous case, the application of the Logistic discrimi-

nant function approach (Johnson et al. 2006) leads to a

stratified logistic regression model where each individual

constitutes a stratum. The resultant estimators are

generally biased and inefficient. However, the method

of simulated likelihood provides consistent and efficient

estimators.

Since the distribution of available resources is different

from individual to individual, the weighted distribution

for used locations also varies from individual to

individual. The weighted distribution corresponding to

the locations used by the ith individual can be written as

f U
i ðx; bÞ ¼ pðx; bÞf A

i ðxÞ
PiðbÞ

where Pi (b) ¼
R

p(x; b)f A
i (x ) dx. The notation f A

i (x)

denotes distribution of resources available within the

home range of the ith individual. Suppose there are I

individuals in the sample. Let (xi1, xi2, . . . , xini
) be the

data corresponding to the ith individual. The log-

likelihood function then can be written as

lðbÞ ¼
XI

i¼1

Xni

j¼1

½log pðxij; bÞ � log PiðbÞ�:

Using the notation of the previous section, the

corresponding simulated log-likelihood function is

l̂ðbÞ ¼
XI

i¼1

Xni

j¼1

log pðxij; bÞ � log
1

B

XB

k¼1

pðx�ik; bÞ
" #( )

where x�ik, k¼ 1, 2, . . . , B is a random sample from the

distribution of the available resources within the home

range of the ith individual. The maximum likelihood

estimator of b is obtained by maximizing this function.

STATISTICAL PROPERTIES: A SIMULATION STUDY

We now study the statistical properties of the

simulated maximum likelihood estimator using simula-

tions. In a simulation study, used as well as unused sites

are known. Hence we can compare the performance of

estimator based on the use-available study design using

weighted distribution formulation with the estimator

based on the ‘‘used–unused’’ study design. We consider

the logistic RSPF:

pðx; bÞ ¼ expðxbÞ
1þ expðxbÞ

so that logistic regression will be an appropriate method

for the used–unused data. However, note that the

weighted distribution based method is not restricted to

this functional form, one can choose any function that

takes values in the range (0, 1) and satisfies the

identifiability condition described earlier. Consider a

hypothetical landscape, where corresponding to each

location there are two environmental covariates. For

simulation purposes, we assume that these covariates

follow a bivariate Normal distribution with mean vector

0 and identity matrix as the covariance matrix. Let bT
denote the value of the regression parameters under

which simulations are conducted. We assume that the
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resources at a location can be used repeatedly, that is, the

use is nondestructive. The steps in the simulations are:

1) Randomly select a location from the hypothetical

landscape. Let x denote the habitat covariates corre-

sponding to the selected location.

2) This location is used with probability

pðx; bTÞ ¼
expðxbTÞ

1þ expðxbTÞ

and with probability

1� pðx; bTÞ ¼
1

1þ expðxbTÞ

it is not used. The used locations are indexed by 1 and

the unused locations are indexed by 0.

3) Repeat steps 1 and 2, for N number of times. At the

end of step 3, we have N locations with their covariates

along with the index of whether they were used or

unused.

4) Apply the logistic regression to estimate the

parameters b based on the used�unused data.

To mimic the ‘‘use-available’’ study design, we now

ignore information on all those locations that were

unused. We only consider information on the used

locations. Let x1, x2, . . . , xn denote the covariates at the
‘‘used’’ locations.

5) Select a simple random sample with replacement of

size B ¼ 10 000 locations from the hypothetical

landscape. Let the covariates at these random locations

be denoted by
�
x�j , j¼ 1, 2, . . . , 10 000.

6) Maximize

l̂ðb;
�
x1;

�
x2; . . . ;

�
xnÞ

¼
Xn

i¼1

log pð
�
xi; bÞ � log

1

B

XB

j¼1

pð
�
x�i ; bÞ

" #( )

with respect to b to obtain the simulated maximum

likelihood estimator based on used-available study

design.

7) Repeat steps 1–5, S¼ 1000 number of times.

To mimic small, medium, and large sample sizes, we

considered N ¼ 500, 1000, and 2000. In Table 1, we

report the mean and the standard deviation of the

sampling distribution of the estimators based on the two

methods. As expected, when used�unused data are

available, logistic regression method works well. More

importantly, the simulated maximum likelihood method

based on the weighted distribution and the used-

available study design also works very well, providing

estimators of all parameters that are nearly unbiased.

The variance of these estimators is somewhat larger than

the ones that are based on used�unused sampling

design. This is to be expected given that the use-

available study design contains less information than the

used–unused study design. Notice also that as the

sample size increases, the bias and the variance of the

simulated maximum likelihood estimators decreases,

illustrating the consistency property of these estimators.

EXAMPLE: ANALYSIS OF MOUNTAIN GOAT

(OREAMNOS AMERICANUS DE BLAINEVILLE 1816)

TELEMETRY DATA IN NORTHWEST BRITISH COLUMBIA

In this section, we provide an example analysis using

the logistic RSPF. This example does not constitute a

full-fledged ecological analysis of the data per se.

Analysis detailing data exploration, graphical methods

for model construction, effect of the consideration of

home-range- and location-dependent available resourc-

es, and so on is provided elsewhere (S. R. Lele and J. L.

Keim, unpublished manuscript). The purpose of this

analysis is to show that our approach provides sensible

answers for these data. Furthermore, this example

illustrates that a non-exponential RSPF may provide a

better fit to the data than the commonly used

exponential RSF, underlining the importance of the

methodological extension described in this paper.

Mountain goat telemetry data were collected in the

Coast Mountains of northwest British Columbia,

Canada (58848 0–598120 N, 133818 0–1338480 W). The

study area is located approximately 60–100 km east of

the Pacific Ocean at the Alaska panhandle. In general,

the area contains a transition of environmental condi-

tions between a drier colder climate found in the interior

of northwestern British Columbia and a warmer more

TABLE 1. Comparison of the logistic regression (used�unused design) and simulated maximum
likelihood (use-only design) estimators.

Statistical summary

N ¼ 500 N ¼ 1000 N ¼ 2000

Mean SD Mean SD Mean SD

Logistic regression (used–unused)

b0 2.474 0.234 2.451 0.163 2.439 0.113
b1 2.264 0.248 2.249 0.168 2.234 0.119
b2 1.423 0.194 1.418 0.138 1.409 0.094

Simulated maximum likelihood (used only)

b0 2.716 1.292 2.551 0.6378 2.484 0.451
b1 2.450 0.909 2.326 0.445 2.266 0.312
b2 1.539 0.582 1.464 0.323 1.433 0.218

Notes: True values of the parameters are b0¼2.434932, b1¼2.229461, b2¼1.407078. Sample size
N is the number of sites.
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humid climate found in coastal southeastern Alaska.

Topographic relief in the area is variable; ranging in

elevation from 300 to 2500 m above sea level. In general,

alpine tundra occurs above 1400 m above sea level.

Winter temperatures can drop to �408C with snow

accumulations often reaching depths greater than 5 m in

some areas. Estimates of mountain goat density of 0.45

mountain goats/km2 have been reported within areas of

this geographic range.

We used 6337 animal locations collected by global

positioning system (GPS) radio collars (Lotek GPS 2000

model collars; Lotek Wireless, Newmarket, Ontario,

Canada) from 10 mountain goats (seven females and

three males). We used winter (defined as 1 January to 20

April of the calendar year) data from 2000, 2001, and

2002. The GPS collars were programmed to attempt

acquisition of GPS locations six times per day at four-

hour intervals (fix rate of 81%).

In this analysis, we considered only topographical

covariates: elevation, slope, heat load index (HEAT),

and access to escape terrain (ET; see Plate 1). The heat

load index (McCune and Keon 2002) is a function of the

latitude, longitude, slope and aspect of a given location.

For mountain goats, access to steeper terrain is critical

to avoid predation. We define access to escape terrain as

the distance to the nearest 458–608 slope. The log-

likelihood values for different models are provided in

Table 2. These indicate that ET is the most important

topographical covariate and that heat load index is the

next best covariate. Other covariates such as elevation

and slope were statistically insignificant. The final model

we use is

pðX; bÞ ¼ exp½b0 þ b1expðHEATÞ þ b2ET�
1þ exp½b0 þ b1expðHEATÞ þ b2ET� :

The parameter estimates along with their standard

errors are provided in Table 3. These standard errors

were obtained from the inverse of the estimated Fisher

Information (Hessian) matrix. All covariates are signif-

icantly different from zero. This analysis shows that

mountain goats prefer habitats with a high heat load

index and in close proximity to escape terrain. To

provide a comparison to the standard method of

analysis, we also fit the exponential RSF model to this

data. As discussed earlier, the intercept parameter of the

exponential RSPF is non-identifiable. The Bayesian

information criterion (BIC) value (Burnham and An-

derson 2002) for the fitted logistic RSPF is �18 307.43,
whereas for the exponential RSF (with the same

covariates), it is �18 170.11. This indicates that the

logistic RSPF model is a better descriptor of the data

than the exponential RSPF model. In addition, the

logistic RSPF model provides absolute probabilities of

use whereas the exponential RSF model provides

information only on relative probability of use.

DISCUSSION

Earlier, we defined the concept of RSPF in the context

of used–unused study design. The concept of weighted

distribution was proposed as a solution for estimation of

the RSPF when data on used locations only are

available. The explanation of RSPF in the framework

of used�unused data and binary regression, although

commonly proposed in the literature (Manly et al. 2002),

is somewhat confusing. The nature of the telemetry data

is such that we never know which locations were visited

but not used. Any location that is visited is implicitly

assumed to have been used. Thus, given enough time,

eventually most of the study area gets visited and one

could, albeit incorrectly, infer that probability of use is 1

for every type of habitat. However, it is clear that if a

particular type of habitat is visited more often than some

other habitat, we should say that such a habitat is used

preferentially. There is an alternative explanation of the

concept of RSPF that reflects this thinking directly. This

explanation is closely related to the concept of response

dependent probability sampling in the theory of survey

sampling (Godambe 2002) where sampling units,

depending on their characteristics, have differential

probability of being reported in the sample. In the

survey sampling situation, if the sampling is done with

replacement, the observed sample follows a weighted

distribution with weights corresponding to the reporting

probabilities (Godambe 2002). The derivation of the

weighted distribution in the context of RSPF as

described in our paper is identical to the one provided

in the survey sampling context in Godambe (2002). In

the RSPF context, one can imagine an animal as a

sampler who is selecting samples from the population of

available resources. A unit is used, or in other words,

reported in the sample, with some unknown probability

p(x ; b). In the survey sampling context, the reporting

probability is completely known and based on the

observed sample, one wants to infer about the unknown

TABLE 2. Log-likelihood values for various models.

Model Log-likelihood

exp(HEAT) 4212.84
sin(slope) þ sin(slope)2 5069.99
ET 7419.25
sin(slope) þ sin(slope)2 þ ET 7428.85
exp(HEAT) þ ET 9166.84

Notes: A model with a larger log-likelihood value is
considered to provide a better fit. Key to variables: ET, access
to escape terrain; HEAT, heat load index.

TABLE 3. Estimates and standard errors for the parameters in
the resource selection probability function model.

Parameters Estimated value SE

Intercept �4.990 0.086
exp(HEAT) 2.166 0.064
ET �0.019 0.0004

Note: The resource selection probability function model,
with HEAT as the heat load index and ET as the access to
escape terrain, is p(X; b)¼fexp[b0þb1exp(HEAT)þb2ET]g/f1
þ exp[b0þ b1exp(HEAT) þ b2ET]g.
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population. In the context of RSPF, the reporting

probability is unknown and based on the observed

sample and the known population distribution fA(x ),

we want to infer about the unknown reporting

probability. The concept of ‘‘available units’’ in RSPF

context corresponds to the concept of ‘‘population’’ in

the sampling theory; the ‘‘used units’’ correspond to the

observed sample in the sampling theory and ‘‘resource

selection probability’’ corresponds to the ‘‘reporting

probability.’’ The methodology developed in this paper

shows when and how the reporting probabilities can be

estimated using the observed sample and the known

population. In this paper we assume that sampling is

with replacement and that reporting probability is a

function of the location specific habitat characteristics.

The analogy between response-dependent probability

sampling and RSPF estimation also helps indicate how

one might include spatial correlation in the analysis of

telemetry data. We simply need to infer about the spatial

sampling plan using the known population and the

observed sample. One can use mixed models to extend

this methodology to account for individual variation

and herd effect. It is also important to take into account

measurement error in the GPS location data (Friar et al.

2003). Such extensions will be discussed elsewhere.

Spatial extent of the pixel or the spatial unit is another

important issue. Change in the pixel size affects the

distribution of the available resources. In the terminol-

ogy of sampling theory, changing the pixel size changes

what is considered as the population from which the

sample is drawn. Similar to the sampling theory, in

RSPF inferences are conditional on what are considered

the available units. The problem of the modifiable area

unit problem (MAUP) is as relevant to RSPF as it is to

spatial statistics. It relates to the issue of what is the right

scale to study a particular phenomenon. We are not

aware of any general solution to this problem.

Relative probability maps based on estimated RSFs

are routinely used in applied ecology and wildlife

management (Manly et al. 2002, McDonald and

McDonald 2002, Johnson et al. 2005). However,

absolute probabilities of use are more desirable than

the relative probabilities (Keating and Cherry 2004; M.

Boyce, personal communication) and are a more power-

ful tool for managers. In heavily altered habitats,

knowledge of absolute probabilities is critical as some

of the ‘‘relatively good’’ habitats according to RSF may

PLATE 1. Photograph of mountain goats in escape terrain (northwest British Columbia, February 2006). Photo credit: J. L.
Keim.
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actually be not so desirable in terms of absolute

probabilities (RSPF).

The methodology developed in this paper provides

applied ecologists with a tool to estimate the absolute

probability of use under the use-available study design.

Furthermore, it removes the restriction of exclusively

using the exponential RSPF and expands the applicable

class of models that includes models such as logistic,

log–log, and probit link among others. This increases

the usefulness and applicability of telemetry data in

scientific understanding and decision making.

The example data and the computer code written in R

(R Development Core Team 2005) used for the data

analysis is available in the Appendix. A user-friendly

version of the code that facilitates use of link functions

other than the logistic link, model selection, and mixed-

model inference is under preparation.
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APPENDIX

An alternative derivation of Johnson et al. (2006) method and proof of nonidentifiability of the intercept parameter for
categorical covariates (Ecological Archives E087-181-A1).

SUPPLEMENT

Source code in R for estimating logistic resource selection probability function and the data set used in the paper (Ecological
Archives E087-181-S1).
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