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SAMPLING VARIABILITY AND ESTIMATES OF DENSITY DEPENDENCE:
A COMPOSITE-LIKELIHOOD APPROACH
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Abstract. It is well known that sampling variability, if not properly taken into account,
affects various ecologically important analyses. Statistical inference for stochastic popu-
lation dynamics models is difficult when, in addition to the process error, there is also
sampling error. The standard maximum-likelihood approach suffers from large computa-
tional burden. In this paper, I discuss an application of the composite-likelihood method
for estimation of the parameters of the Gompertz model in the presence of sampling var-
iability. The main advantage of the method of composite likelihood is that it reduces the
computational burden substantially with little loss of statistical efficiency. Missing obser-
vations are a common problem with many ecological time series. The method of composite
likelihood can accommodate missing observations in a straightforward fashion. Environ-
mental conditions also affect the parameters of stochastic population dynamics models.
This method is shown to handle such nonstationary population dynamics processes as well.
Many ecological time series are short, and statistical inferences based on such short time
series tend to be less precise. However, spatial replications of short time series provide an
opportunity to increase the effective sample size. Application of likelihood-based methods
for spatial time-series data for population dynamics models is computationally prohibitive.
The method of composite likelihood is shown to have significantly less computational
burden, making it possible to analyze large spatial time-series data. After discussing the
methodology in general terms, I illustrate its use by analyzing a time series of counts of
American Redstart (Setophaga ruticilla) from the Breeding Bird Survey data, San Joaquin
kit fox (Vulpes macrotis mutica) population abundance data, and spatial time series of Bull
trout (Salvelinus confluentus) redds count data.

Key words: American Redstart; Breeding Bird Survey; bull trout; covariates in population dy-
namics; estimating functions; Gompertz model; hierarchical models; nonstationary population dy-
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INTRODUCTION

Stochastic population dynamics models constitute an
important component of applied and theoretical ecol-
ogy. When analyzing population time-series data,
DeValpine (2002) makes a strong case for using such
mechanism-oriented models as compared to simple sta-
tistical regression models. These models are also used
extensively in population viability analysis (Morris et
al. 1999) with important implications in public-policy
decision making. Statistical inference for population
dynamics models has had a long history. Dennis et al.
(1991) provide a review of this literature and an intro-
duction to the method of maximum likelihood for es-
timation of parameters of population dynamics models.
However, the approach used in Dennis et al. (1991)
does not explicitly consider sampling variability. As
argued by various researchers, not taking into account
sampling variability can have significant impact on the
statistical and scientific inferences (Shenk et al. 1998).
Recently there have been several papers that attempt
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to deal with the problem of parameter estimation of
stochastic population dynamics models in the presence
of sampling error (Holmes 2001, DeValpine 2002,
DeValpine and Hastings 2002, Holmes and Fagan 2002,
Staples et al. 2004; B. Dennis, J. M. Ponciano, S. R.
Lele, M. L. Taper, and D. F. Staples, unpublished man-
uscript). These papers are based on the classical fre-
quentist approach. On the other hand, Meyer and Millar
(1999) suggest the use of a Bayesian approach to this
problem. See also Carlin et al. (1992) for a Bayesian
approach to statistical analysis of nonlinear, non-
Gaussian state-space models. For recent ecological ap-
plications of the Markov-Chain Monte Carlo (MCMC)-
based Bayesian approach to statistical inference for
complex models in ecology, see Calder et al. (2003),
Clark and Bjornstadt (2004), and references in both.
However, following DeValpine and Hastings (2002)
and B. Dennis, J. M. Ponciano, S. R. Lele, M. L. Taper,
and D. F. Staples (unpublished manuscript), I here con-
sider the frequentist approach to the problem. Since a
thorough review of recent literature on the issue of
incorporating sampling variability from a frequentist
viewpoint is available in DeValpine (2002) and B. Den-
nis, J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F.
Staples (unpublished manuscript), instead of re-
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reviewing the literature I only discuss, in brief, the
salient and distinguishing features of the problem and
the approaches proposed in the literature so far. There
are two components to this problem:

Component 1.—This consists of the stochastic pop-
ulation dynamics model that describes the relationship
between population sizes from one time point to the
next. Such models typically provide the one-step tran-
sition distributions. Given these transition distributions
and the equilibrium distribution f (N1; u), one can write
down the likelihood function, assuming we have T time
points, in a straightforward fashion as

L(u z N ) 5 f (N ; u) f (N z N ; u) · · · f (N z N ; u) (1)1 2 1 T T21

where u indicates the parameters in the model.
Component 2.—In reality, one does not have the ex-

act knowledge of Nt, the true population size. One may
only have an estimate of the population size, denoted
by N̂t. These estimates may be obtained through various
sampling procedures such as capture–recapture meth-
ods or counts from pheromone traps (Seber 2002). Dif-
ferent sampling procedures lead to different sampling-
error distributions. In general, these distributions might
contain parameters of their own for taking into account
observer effects and other covariates such as weather
conditions that might affect the accuracy of the esti-
mator. Let us assume that the form of the sampling
distribution is known, based on the sampling procedure
used. It is also reasonable to assume that conditionally
on the true states, sampling errors from one time point
to the other are independent of each other.

Now consider the likelihood function based on these
available data, namely, the estimated population sizes
N̂t. One cannot simply substitute N̂t in place of Nt in
the likelihood function in Eq. 1 because one has to
explicitly account for the sampling error. The likeli-
hood function that incorporates sampling error, how-
ever, can be written in a general form as

ˆL(u, f z N )

ˆ ˆ ˆ5 · · · P(N z N , f )P(N z N , f ) · · · P(N z N , f)1 1 2 2 T TEE E
f (N , N , . . . , N ; u) dN · · · dN .1 2 T 1 T

Here P(N̂t z Nt, f) indicates the probability mass func-
tion or probability density function of the sampling-
error distribution. Further, f (N1, N2, . . . , NT; u) indi-
cates the joint distribution of the original but unob-
served time series of population sizes. This joint dis-
tribution is the same in form as the likelihood function
given in Eq. 1.

Notice that the likelihood function that takes into
account the sampling error involves T-dimensional in-
tegration. This is far more complicated than the like-
lihood function without sampling error that was pre-
sented in Eq. 1. This likelihood function becomes fur-
ther complicated if each Nt is a vector-valued obser-

vation. Such is the case when one considers spatial time
series models (Dennis et al. 1998, Lele et al. 1998)
where an observation at a given time point consists of
population estimates at S spatial locations or the com-
munity-structure models considered in Ives et al.
(2003) where the observation consists of population
estimates of S species in the community. In such cases,
the likelihood function involves S 3 T dimensional
integration where S corresponds to the number of spa-
tial locations or number of species. Potentially this can
be an extremely high-dimensional integral. Likelihood
functions for the models that involve age or stage-
structured populations (DeValpine 2004) or models that
involve dispersal (Lele et al. 1998) are far too com-
plicated to describe here.

As shown by Dennis et al. (1991), if the actual pop-
ulation sizes Nt are available and one can write down the
likelihood function in Eq. 1, then it is relatively easy to
obtain parameter estimates using the maximum-likelihood
method of estimation. However, writing down the like-
lihood function and hence estimation by maximizing it
is substantially difficult if only estimates of the population
sizes are available. In some well-structured problems, the
likelihood function in the presence of sampling error can
be written down explicitly. B. Dennis, J. M. Ponciano,
S. R. Lele, M. L. Taper, and D. F. Staples (unpublished
manuscript), Holmes (2000), and Staples et al. (2004)
exploit the structure of the Gompertz and exponential-
growth models and the lognormal sampling-error distri-
bution to explicitly write down the likelihood in the pres-
ence of sampling error. Even when such a likelihood func-
tion can be written down explicitly, as reported by B.
Dennis, J. M. Ponciano, S. R. Lele, M. L. Taper, and D.
F. Staples (unpublished manuscript), maximizing such a
function can be a tricky task involving multiple modes
and such.

When computing the likelihood function for less
structured problems, one is confronted with the task of
high-dimensional integration. Because of the high di-
mensionality, standard numerical-integration tech-
niques are not practical. One way out of this difficulty
is found in the form of Monte Carlo integration. But
if the dimension of the integral is high, Monte Carlo
integration is computer intensive due to the ‘‘curse of
dimensionality’’ (Robert and Casella 1999:18). Thus
brute-force integration, numerical or Monte Carlo, does
not seem to be an effective answer to the problem.
Kitagawa’s algorithm (Kitagawa 1987) for nonlinear
non-Gaussian time series, adapted by DeValpine and
Hastings (2002) for ecological models, uses an inge-
nious combination of the structure of the problem,
namely the first-order Markov property, and repeated
use of one-dimensional numerical integration to reduce
the computational burden. However, these structural
advantages quickly disappear for vector time-series
data such as those occurring in spatial-time series. For
example, for spatial time-series data with S spatial lo-
cations and T time points, the application of Kitagawa’s
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algorithm involves repeated evaluations of several 2S-
dimensional integrals and S-dimensional integrals. This
is practically impossible if we have more than two
spatial locations. In essence, one cannot use Kitagawa’s
algorithm for spatial time-series analyses. Simple in-
troduction of covariates in the population dynamics
models (Lele et al. 1998, Dennis and Otten 2000)
makes the underlying population dynamics model non-
stationary. These models are also computationally dif-
ficult to handle using the existing methods. Thus, there
is still a need for a computationally simple statistical-
inference method for stochastic population dynamics
models in the presence of sampling error.

When the likelihood function is difficult to write or
involves computationally difficult problems, the meth-
od of composite likelihood has been effectively used
in the past (Besag 1975, Lindsay 1988, Lele 1997,
Heagerty and Lele 1998, Lele and Taper 2002). The
main attraction of the composite-likelihood method is
its computational and pedagogical simplicity. Previous
studies (Lele and Taper 2002, Henderson and Shimak-
ura 2003, Zhao and Joe 2005) suggest that relative loss
of efficiency as compared to full-fledged likelihood
analysis is likely to be small. When the sample sizes
are large or the model is complex, the statistically fully
efficient, but computationally difficult, method of max-
imum-likelihood estimation may have to be abandoned
in favor of a somewhat statistically less efficient but
computationally feasible method of estimation such as
the method of composite likelihood. This paper pre-
sents an application of the method of composite like-
lihood in the context of population dynamics models
with sampling error.

The outline of the paper is as follows. I introduce
the concept of composite likelihood; next I consider
the stationary Gompertz model with Poisson errors in
detail, and then I apply the methodology to reanalyze
the American Redstart counts data reported in B. Den-
nis, J. M. Ponciano, S. R. Lele, M. L. Taper, and D. F.
Staples (unpublished manuscript). The next section dis-
cusses application of the method to an important case
of the nonstationary Gompertz model where the in-
trinsic growth rate is affected by environmental con-
ditions. Currently available methods either are not ap-
plicable in this situation or have not been studied in
this context. To illustrate the method, I reanalyze the
San Joaquin kit fox population time-series data with
amount of rainfall as an environmental factor affecting
population growth. The next section addresses spatial
time-series data. This extension allows analysis of a
commonly occurring situation in ecology: availability
of spatial replications of short time series (Dennis et
al. 1998, Lele et al. 1998). I illustrate the method using
the bull trout data reported in Dennis et al. (1998).
Finally, I summarize the results and discuss further
extensions.

A BRIEF INTRODUCTION TO

COMPOSITE-LIKELIHOOD METHODS

A fairly elementary introduction to composite like-
lihood is available in Curriero and Lele (1999) and Lele
and Taper (2002). Here I provide a brief description
that will be sufficient for the application discussed in
this paper. Let the joint distribution of the observations
be given by f ( y1, y2, . . . , yn; u) where u denotes the
parameters. Then the full likelihood function for u can
be written as L(u z y) 5 f ( y1, y2, . . . , yn; u). However,
suppose writing down the joint distribution of all the
observations is difficult but one can write down the
joint distribution of pairs of observations as f ( yi, yj;
u) comparatively easily. Then, under regularity con-
ditions it can be shown, using the theory of estimating
functions (Godambe 1991), that the estimators obtained
by maximizing CL(u z y) 5 f ( yi, yj; u) aren21 nP Pi51 j5i11

consistent and asymptotically normal (Heagerty and
Lele 1998). Thus, when computation of the joint dis-
tribution of all observations is difficult, but computa-
tion of the distributions of pairs of observations is
relatively easy, then this provides a feasible method of
estimation. This particular idea of considering pairs of
observations has been used in various situations (Heag-
erty and Lele 1998, Lele and Taper 2002, Zhao and Joe
2005). In fact, one does not have to use only pairs of
observations. If one-dimensional marginal distribu-
tions are easy to obtain, then one can consider the prod-
uct of one-dimensional marginal distributions to con-
struct a composite likelihood CL1(u z y) 5 f ( yi; u).nPi51

In Markov random-field models, Besag (1975) notes
that the joint distribution is difficult to write but that
it is easier to specify the conditional distributions of
the form f ( yi z yj, j ∈ N(i); u) where N(i) denotes the
neighborhood of the ith location. Using this fact, he
considered CL(u z y) 5 f ( yi z yj, j ∈ N(i); u) andnPi51

called it ‘‘pseudo-likelihood.’’
Notice the commonality in all of the above methods.

Each one considers an objective function that is a prod-
uct of functions such that each component function in
the product is itself a proper likelihood (based only on
the joint distribution of two observations or one ob-
servation or conditional distribution, etc.). Thus, Lind-
say (1988) calls such an objective function ‘‘composite
likelihood.’’ The method of composite likelihood is
useful when writing the full likelihood is difficult but
lower-dimensional distributions can be written some-
what easily. Simply taking the product of these lower-
dimensional distributions provides an objective func-
tion that, when maximized, leads to reasonable esti-
mators of the parameters.

The justification for the composite-likelihood meth-
od is not based on the quality of its approximation to
the likelihood but through the estimating functions that
it generates. The resultant estimating functions are zero
unbiased and form a mixing sequence. Such estimating
functions yield consistent and asymptotically normal
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estimators. Thus, the main justification of the method
of composite likelihood is that it is a computationally
simple method that yields consistent, asymptotically
normal estimators of the parameters. For this method,
no general results about the loss of efficiency are avail-
able. However, past experience (Lele and Taper 2002,
Henderson and Shimakura 2003) suggests that the loss
of efficiency could be minimal. I suggest that this meth-
od be used only when the standard method of maximum
likelihood is computationally or otherwise difficult to
implement. This method is not a panacea. One has to
be careful to first prove that the parameters are esti-
mable using the marginal or conditional distributions.
For example, consider the case of simple Gaussian
auto-regressive time series of order 1. In this case, it
is known that the one-dimensional marginal distribu-
tion is given by the following (Chatfield 1989):

1
2f (y ; m, r, s ) 5i 2 2 1/2Ï2p [s /(1 2 r )]

22(1 2 r ) m
3 exp 2 y 2 .i25 6[ ]2s (1 2 r)

Suppose we consider the composite likelihood
CL1(u z y) 5 f ( yi; u). It can be shown that in thisnPi51

case the only estimable parameters are m /(1 2 r) and
s2/(1 2 r2). Essentially, we can estimate the marginal
mean and variance. However, that is not enough to tease
out the autocorrelation or the three parameters (m, s2,
r) separately. Unfortunately such analysis of identifi-
ability has to be conducted on a case-by-case basis and
general results are difficult to specify. In the following
section I consider the particular case of the Gompertz
model and show that two-dimensional marginal distri-
butions are sufficient to conduct the statistical analysis.

STATIONARY GOMPERTZ MODEL, SAMPLING

VARIABILITY, AND COMPOSITE LIKELIHOOD

Let us now look at the stationary stochastic Gom-
pertz model (Reddingius 1971, Dennis and Taper 1994,
Dennis et al. 2004) in detail. As before, let Nt denote
the population size and N̂t denote the estimated pop-
ulation sizes at time t where t 5 1, 2, . . . , T. Basic
structure of this model is as follows:

Actual population sizes are related to each other ac-
cording to the relationship Nt11 5 Nt exp(a 1 b log Nt

1 «t11) where the parameter a may be considered per
individual intrinsic growth rate and the parameter b
indicates how the growth is affected by the density
dependence. Logarithmic transformation of both sides
linearizes the model, yielding the Eq. log Nt11 5 a 1
(1 1 b)log Nt 1 «t11. We assume that «t ; (0, s2) areN
independent random variables. Note that after log-
transformation the Gompertz model corresponds to an
autoregressive process of order 1 (Chatfield 1989).
Hence, provided that z(1 1 b)z , 1 and that the process
has reached equilibrium, we can write down the joint
distribution of the log-transformed population sizes log

Nt as multivariate normal with mean vector and the
covariance matrix, respectively:

u 1

 u1
m 5  _ 

u 1

2 1 (1 1 b) (1 1 b) · · ·
 (1 1 b) 1 (1 1 b) · · ·

V 5 u  2 2(1 1 b) (1 1 b) 1 · · · 
_ _ _ _ 

where u1 5 2a/b and u2 5 s2/(2b[2 1 b]). Given this
result, one can write down the two-dimensional mar-
ginal distribution of a pair of observations (log Ni, log
Nj) as a bivariate normal distribution with parameters

u1
m 5 1 2u1

z j2i z1 (1 1 b)
V 5 u .i j 2 z j2i z[ ](1 1 b) 1

Note that given the parameters of the bivariate distri-
bution, namely (u1, u2, b), we can uniquely determine
the values of the parameters (a, b, s2) by using the
transformations a 5 2u1b and s2 5 2u2b(2 1 b).
Hence, composite likelihood based on two-dimensional
marginal distributions will be sufficient for estimation
(at least when there is no sampling error). Now let us
introduce sampling error into this model.

In biological field studies, several different methods
are used to estimate population sizes (Seber 2002).
Most of these sampling procedures provide not just
estimated population sizes but also the standard errors
or complete distributions associated with such esti-
mated values. The procedure outlined below is appli-
cable to any of these sampling procedures where the
sampling-error distribution is completely known. If the
sampling error is log-normal, then the model reduces
to the standard linear Kalman-filter approach (Kalman
1960; B. Dennis, J. M. Ponciano, S. R. Lele, M. L.
Taper, and D. F. Staples, unpublished manuscript). Sta-
tistical methods for the linear Kalman-filter situation
are widely available. In this paper the goal is to deal
with the case where the sampling distribution is not
lognormal and hence is a particular case of a nonlinear
Kalman filter. Kitagawa’s solution (Kitagawa 1987),
used by De Valpine and Hastings (2002), is a frequen-
tist approach to the problem of nonlinear Kalman-filter
models. In this paper, I apply the method of composite
likelihood to alleviate the computational burden of Ki-
tagawa’s algorithm. For the sake of concreteness, let
us assume that N̂t z Nt ; Poisson(Nt). In this model there
are no additional parameters that may, for example,
account for observer effects or other environmental
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conditions that may affect sampling error. I discuss
these general models later in the paper (see Nonsta-
tionary Gompertz model with sampling variability:
Negative binomial sampling error, below).

Let us now proceed with the Poisson sampling dis-
tribution. We can write down the bivariate marginal
distribution of (N̂i, N̂j) as

ˆ ˆf (N , N ; u , u , b)i j 1 2

ˆ ˆN Ni j(N ) (N )ji2N 2Ni j5 e eEE ˆ ˆ[ ][ ]N ! N !i j

3 g(log N , log N u , u , b) d logN d logN . (2)i j 1 2 i j

In the above formula, g(log Ni, log Nj) denotes the
bivariate normal density with parameters given earlier.
Conducting a two-dimensional numerical integration is
computationally simple and hence it is feasible to ob-
tain the bivariate marginal distributions of the pairs
(N̂i, N̂j). Now we apply the concept of composite like-
lihood to define an objective function CL2(u1, u2, b z N̂))
5 f (N̂i, N̂j; u1, u2, b). Notice that compu-T21 TP Pi51 j5i11

tation of this composite likelihood involves T(T 2 1)/
2 two-dimensional integrals. Recall that as the temporal
distance between two observations increases, these ob-
servations become almost independent. Thus little in-
formation is lost and computational effort can be great-
ly reduced by considering only those pairs that are
within a certain finite neighborhood. For example,
Heagerty and Lele (1998), when using composite like-
lihood for spatial binary data, only consider pairs that
are in the immediate neighborhood. The properties of
consistency and asymptotic normality are not affected
by this reduction.

A straightforward, naı̈ve maximization of the objec-
tive function CL2(u1, u2, b z N̂)) 5 f (N̂i, N̂j;T21 TP Pi51 j5i11

u1, u2, b) is feasible. One can use any of the standard
maximization routines such as the Newton–Raphson or
Nelder–Mead simplex algorithm (Press et al. 1992).
However, maximization of a function over several var-
iables, three parameters in the above case, requires a
significant number of function evaluations. One can
reduce the complexity of the maximization problems
further.

Consider one-dimensional marginal distributions of
N̂i. This is given by

N̂i(N )i2Nˆ if (N ; u , u ) 5 e g(log N ) d logN . (3)i 1 2 E i iN̂ !i

As before g(log Ni) denotes the probability density
function of a normal variable with mean u1 and variance
u2. Notice that this involves only one-dimensional nu-
merical integration. This is substantially simpler than
two-dimensional integration. One can write down the
composite likelihood based on these one-dimensional
marginal distributions: CL1(u1, u2 z N̂) 5 f (N̂i; u1,TPi51

u2). This composite likelihood is a function of (u1, u2)
and using this we can estimate (u1, u2). We still need

to estimate the density-dependence parameter b. I sug-
gest the following procedure to estimate (u1, u2, b):

Step 1.—Maximize the composite likelihood CL1(u1,
u2 z N̂) 5 f (N̂i; u1, u2) with respect to (u1, u2).TPi51

Step 2.—Fix the value of (u1, u2) at the estimates
obtained in Step 1 and then maximize the composite
likelihood CL2(u1, u2, b z N̂)) 5 f (N̂i, N̂j; u1,T21 TP Pi51 j5i11

u2, b) with respect to the parameter b.

Confidence intervals, missing data,
and non-Poisson sampling errors

Once the initial estimates are obtained, one can use
a parametric bootstrap to obtain confidence intervals.
The general procedure is explained elsewhere in detail
(Dennis and Taper 1994; B. Dennis, J. M. Ponciano,
S. R. Lele, M. L. Taper, and D. F. Staples, unpublished
manuscript). Since the basic logic is identical for com-
posite-likelihood-based estimators, I do not replicate
the description here.

Missing data is another common problem in ecolog-
ical data sets. If the data are missing completely at
random, the bivariate marginal distribution of the pairs
(that are formed only with the observed time points)
is unaffected. Hence computation of the CL is unaf-
fected by the presence of missing observations. On the
other hand, to compute the likelihood, e.g., using Ki-
tagawa’s algorithm, requires integrating over the miss-
ing values. Thus the complexity of Kitagawa’s algo-
rithm increases in the presence of missing observations.
It is the sequential nature of the computation of the
likelihood function that makes handling missing data
difficult using the maximum-likelihood estimators. On
the other hand, the method of composite likelihood
does not use the sequential nature and hence missing
observations do not pose a problem for this method.

So far I have described the method of maximum-
composite-likelihood (MCL) estimators for the Gom-
pertz model with Poisson sampling errors. However,
notice that none of the formulas depend on the Poisson
error distribution. If one has different sampling error,
one can simply replace the Poisson probability mass
function in Eqs. 2 and 3 by the probability mass func-
tion for the appropriate sampling distribution. Later in
the paper, we will consider sampling error induced by
the capture–recapture method of sampling (see Non-
stationary Gompertz model with sampling error: Neg-
ative binomial sampling error, below).

ILLUSTRATIVE DATA ANALYSIS AND STUDY

OF STATISTICAL PROPERTIES OF MAXIMUM

COMPOSITE-LIKELIHOOD (MCL) ESTIMATORS:
STATIONARY CASE

In the following, I present a reanalysis of the Amer-
ican Redstart counts data set reported and analyzed in
B. Dennis, J. M. Ponciano, S. R. Lele, M. L. Taper,
and D. F. Staples (unpublished manuscript). This is
strictly an illustrative analysis. I do not claim that all
model assumptions are fully satisfied. For example, the
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TABLE 1. Performance of the MCL (maximum composite-likelihood) estimators under the
Gompertz Poisson model, based on 100 simulations.

Parameter
Performance

measure

Estimates by time series, T

T 5 30 T 5 50 T 5 100

u1 5 2a/b 5 1.9244 mean 1.9239 1.9342 1.9212
median 1.9245 1.9278 1.9254
MAD 0.2285 0.1951 0.1485

Ïu2 5 Ïs2/[2b(2 1 b)] 5 0.4726 mean 0.3879 0.4164 0.4504
median 0.3886 0.3917 0.4541
MAD 0.1296 0.0922 0.0853

b 5 20.24 mean 20.3469 20.3249 20.2760
median 20.3091 20.2800 20.2770
MAD 0.2628 0.2329 0.1647

Notes: We use the estimated values obtained from the analysis of American Redstart count
data (in the Breeding Bird Atlas Survey, 1966–1005) to conduct the Monte Carlo study; these
estimates are shown in the first column. For all sample sizes, the estimator of the log (carrying
capacity), u1, behaves quite well. The estimators of the variance, u2, and density-dependence
parameter, b, are biased downward. This problem goes away as the sample size increases. Also
notice that bias is very small compared to the mean absolute deviation (MAD).

assumption of Poisson sampling error may not be strict-
ly correct. There are observer biases, environmental
conditions affect the sampling error, and the parameters
in the underlying Gompertz model might also vary with
the environment. For these data, information about
these complications is unavailable and hence, while
acknowledging their existence, I am unable to consider
them explicitly here. Some of these complications are
addressed in other analyses presented in the paper.

Description of the American Redstart counts data set

The North American Breeding Bird Survey (BBS;
Robbins et al. 1986, Peterjohn 1994) poses both chal-
lenges to and opportunities for ecological and statistical
analyses. While the BBS data are problematic for var-
ious reasons, investigators remain optimistic that
meaningful ‘‘signals’’ might be extracted (Link and
Sauer 1997, 1998). The major advantages of the BBS
data sets are their extensive spatial coverage and rea-
sonable time-series lengths. The hope is that the ex-
tensiveness of the data might trump the imprecision.
We consider the counts of American Redstart (Seto-
phaga ruticilla) from the BBS record number
0214332808636 observed during 1966–1995. These
data were reported and analyzed in B. Dennis, J. M.
Ponciano, S. R. Lele, M. L. Taper, and D. F. Staples,
unpublished manuscript) using the maximum-likeli-
hood (ML) and restricted maximum-likelihood meth-
ods (REML) under lognormal sampling-error distri-
bution.

Here we consider the Gompertz model, and a simple,
yet reasonable, Poisson distribution as the model for
sampling error. I use the algorithm described above to
obtain maximum-composite-likelihood estimates. Fol-
lowing Heagerty and Lele (1998) I use only the nearest
neighbors to form pairs. This decreases the computa-
tional burden substantially by reducing the number of
pairs at the same time allowing for the estimation of

all the parameters. Table 1 provides the estimated val-
ues of the parameters obtained under the Poisson as-
sumption. I further present a simulation study that stud-
ies various properties of the estimation procedure de-
scribed above. First, we study the effect of not taking
into account the sampling variability. These are the
estimators (ML-NAÏVE) obtained by using the method
described in Dennis et al. (1991) ignoring the fact the
observations are not true population sizes but only es-
timated population sizes. Then we study the maximum-
composite-likelihood estimators that take into account
the fact that we have estimated population sizes (MCL-
GP [Gompertz Poisson]). I provide evidence for re-
duced bias, consistency, and asymptotic normality of
the maximum-composite-likelihood (MCL-GP) esti-
mators as compared to the ML-NAÏVE estimators. Fur-
thermore, I wish to provide some assurance that the
loss in efficiency for MCL estimators is probably small.
As discussed earlier, the computation of the maximum-
likelihood estimators for the full model that takes into
account sampling error is difficult. Hence we cannot
do a direct comparison of the variance of the MCL
estimator with the ML estimator based on the estimated
population sizes. However, when there is no sampling
error, it is possible to compute both the ML (ML-ORIG
[original data]) and the MCL (MCL-ORIG) estimator.
Hence we compare the efficiency of the MCL-ORIG
estimator with that of the ML-ORIG estimator in the
situation where there is no sampling error. The implicit
argument is that if the loss of efficiency for MCL es-
timators is small in the no-sampling-error situation,
then it is likely to be small in the case when there is
sampling error.

Table 1 summarizes the distributional properties of
the MCL-GP estimator for time series of lengths 30,
50, and 100. These simulations were conducted under
the parameter values obtained from fitting the model
to the American Redstart data. In Fig. 1 we provide
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FIG. 1. Comparison of the performance of four estimators (ML-NAÏVE, ML-ORIG, MCL-ORIG, and MCL-GP) of (a)
u1, the log(carrying capacity), and (b–d) the square root of u2, the variance. The horizontal line corresponds to the true value.
All estimators behave quite well for estimating log(carrying capacity). The ML-NAÏVE estimator of the variance is biased,
and this bias does not go away, even with larger sample sizes. The bias characteristics of the ML-ORIG, MCL-ORIG, and
MCL-GP estimators of variance are quite comparable. Their bias goes to zero as sample size increases. Variability in MCL-
GP is higher than in ML-ORIG and MCL-ORIG. This is to be expected, given the presence of sampling variability. However,
notice that the variability of MCL-ORIG is very slightly larger than ML-ORIG, indicating very little loss of efficiency with
the use of the maximum-composite-likelihood (MCL) over the maximum-likelihood (ML) method.

comparison of ML-ORIG, MCL-ORIG, MCL-GP and
ML-NAÏVE estimators for the parameters u1 and u2.
The exact algorithm for this simulation study is de-
scribed in Appendix A. The results of this simulation
study are summarized below.

a) Fig. 1a indicates that estimation of the log(carrying
capacity) u1 works quite well using any of the estimators.
Since this parameter is estimated well by all methods,
its behavior is not presented for varying sample sizes.

b) ML-NAÏVE estimator of u2 has large positive bias
for all sample sizes. Moreover, this bias is not reduced
with increased sample size. Thus, ML-NAÏVE provides
an inconsistent estimator of process variability. This
estimator consolidates sampling variability with the
process variability.

c) It appears that the MCL-GP estimator of u2 is also
biased; however the bias is smaller than that for the
ML-NAÏVE. Thus, by taking into account sampling
variability, we have improved the analysis. Moreover,
the variance, as indicated by the spread of the box plots
for MCL-GP, also decreases as the sample size increas-
es (Fig. 1b, c, and d). These observations together lend
support to the claim of consistency of the MCL-GP
estimators. Also notice that the distributions are sym-
metric around the median supporting asymptotic nor-
mality of the MCL-GP estimators.

d) The ML-ORIG and MCL-ORIG estimators of u2

are also biased. Thus, even if there is no sampling error,
estimation of u2 is difficult. However, as the sample
size increases from 30 to 50 to 100 (Fig. 1b, c, and d),
this bias decreases. Also note that this suggests that
the problem of bias in MCL-GP is probably not a fault
of the composite-likelihood method but rather a prob-
lem intrinsic to the model itself.

e) The distributions of ML-ORIG and MCL-ORIG
are quite similar to each other. This indicates a minor
loss of efficiency by using the composite-likelihood
estimator as compared to the maximum-likelihood es-
timator when there is no sampling error. This result
provides indirect evidence for possibly only a small
loss of efficiency using MCL in the presence of sam-
pling error.

Fig. 2 shows the comparison of the estimators of the
density-dependence parameter, b, for time series of
lengths 30, 50, and 100. The first striking thing to notice
is the negative bias in the ML-NAÏVE estimator. If
sampling variability is not taken into account, we un-
derestimate the density dependence substantially. The
MCL-GP estimator of b is also biased but less so than
ML-NAÏVE. The MCL-GP improves the analysis by
accounting for sampling error. Moreover, as the sample
size increases the distribution of the MCL-GP esti-
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FIG. 2. Comparison of the distribution of the ML-NAÏVE,
ML-ORIG, MCL-ORIG, and MCL-GP estimators of the den-
sity-dependence parameter, b. The horizontal line indicates
the true value. It appears that even the ML-ORIG and MCL-
ORIG estimators are biased downward and that MCL-GP es-
timators are quite comparable with them in terms of bias.
MCL-GP estimators are, as expected, more variable than ML-
ORIG estimators. This is mostly due to the presence of sam-
pling error. From comparing the distribution of ML-ORIG
and MCL-ORIG, it appears that the loss of efficiency by using
the MCL instead of ML method is quite small when the orig-
inal data are available. One can implicitly conclude that the
loss of efficiency in using MCL-GP estimators in place of
ML-GP estimators must also be small.

mators becomes more concentrated around the true val-
ue. This result lends support to the claim that MCL-
GP is a consistent estimator. Symmetry of the distri-
bution also supports the claim of asymptotic normality.
Furthermore, the ML-ORIG and MCL-ORIG estima-
tors of b are also biased for small sample sizes. Thus,
the bias in the MCL-GP is not aberrant. Moreover, also
note that the distributions of ML-ORIG and MCL-
ORIG estimators are quite similar. This indicates the
loss in efficiency for MCL-ORIG is small, indirectly

suggesting that loss in efficiency for MCL-GP probably
is also small.

NONSTATIONARY GOMPERTZ MODEL

WITH SAMPLING VARIABILITY

To illustrate the power and versatility of the method
of composite likelihood, we now consider a case that
has not been dealt with in previous papers. This case
is extremely important for various applications of sto-
chastic population dynamics models. In the stationary
model considered above, it is assumed that the intrinsic
growth parameter, a, and the density-dependence pa-
rameter, b, do not vary from time to time. Ecologically
it is more sensible to model these parameters as de-
pendent on the environmental conditions. For example,
higher availability of food should lead to higher growth
rate and vice versa. Environmental conditions vary
from year to year; so should the parameters in the sto-
chastic growth model.

Suppose there are p covariates summarizing envi-
ronmental conditions that may affect the intrinsic
growth rate. Let Zt 5 (1, Zt1, Zt2, . . . , Ztp) denote the
covariate vector corresponding to time point t. I have
included ‘‘1’’ to account for the intercept. Let the re-
gression parameters be denoted by bT 5 (b0, b1, . . . ,
bp). The nonstationary Gompertz model is specified by
log Nt 5 at 1 (1 1 b)log Nt21 1 «t where at 5 Ztb.
Thus the intrinsic growth parameter is time varying
and depends on the environmental conditions at that
time. For this model, it can be shown that the joint
distribution is multivariate normal with means, vari-
ances, and covariance given by

t21E(log N ) 5 (1 1 b) log Nt 1

t22
k1 (1 1 b) Z bO t2k

k50

2s
2(t21)var(log N ) 5 [1 2 (1 1 b) ]t 21 2 (1 1 b)

t2scov(log N , log N ) 5 (1 1 b) var(log N ) for t . st s s

(see Appendix B for mathematical derivations).
Notice that the mean is a function of the initial pop-

ulation size and environmental conditions at all the
intermediate time points. The variances and covari-
ances, although independent of the covariates, are time
dependent. Since marginal distributions are easy to
compute, we can apply the method of composite like-
lihood to estimate the parameters. Somewhat counter-
intuitively, the nonstationary case is simpler than the
stationary case. This is because in the nonstationary
case, the one-dimensional distributions are sufficient
to identify the parameters of interest, namely, (log N1,
b, b, u2). We can use one-dimensional integrals instead
of two-dimensional integrals. This makes the compu-
tational problem easier to deal with. Thus, to obtain
the MCL (maximum composite-likelihood) estimators
we maximize the following objective function:
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TABLE 2. Analysis of San Joaquin kit fox time series under the nonstationary Gompertz model
with Poisson and negative binomial (NB) sampling errors.

Parameter Estimate 90% CL
Stationary
process fit

Intercept b0 0.5154 (NB: 0.5491) (20.8594, 1.7311) 2.6364
Rainfall b1 0.0693 (NB: 0.0694) (0.0534, 0.0931)
Density dependence 20.2800 (NB: 20.2873) (20.5203, 20.0046) 20.5323
Ïu2 0.2237241 (NB: 0.2194) (0.00012, 0.4473) 0.4494

Notes: The estimated values and 90% confidence limits (CL) for the parameters of the
nonstationary Gompertz model fit to the San Joaquin kit fox data. The environmental factor
of rainfall is significant in determining the population dynamics. Also notice the reduction in
the environmental variation in the stationary fit to the model that accounts for rainfall, indicating
the importance of the covariate in the model. Estimated carrying capacity under the stationary
model is 141.5773; under the nonstationary model at the average rainfall value it is 164.2728,
and the mean of the observed population size is 156.2308.

T

ˆCL (N , b, b, u z log N ) 5 f (log N ; N , b, b, u )P1 1 2 t 1 2
t51

where

ˆf (log N ; N , b, b, u )t 1 2

ˆ5 P(N z N )g(log N ; N , b, b, u ) d log N .E t t t 1 2 t

As before, g(·) indicates the probability density func-
tion of the normal random variable. We want to em-
phasize again that we have to estimate the regression
parameters as well as the initial population size. We
consider Poisson sampling error in the following.

Algorithm for nonstationary Gompertz model
with Poisson sampling error

Step 1.—Estimate the initial log-population size by
log Ñ1 5 log(N̂1 1 0.5).

Step 2.—Fix N1 5 Ñ1 and maximize the objective
function CL1(Ñ1, b, b, u2 z log N) 5 f (log N̂t; Ñ1,TPt52

b, b, u2) with respect to (b, b, u2).
Notice that this objective function only involves one-

dimensional marginal densities and hence requires only
one-dimensional numerical integration, reducing the
computational burden substantially.

To illustrate this method and to study the statistical
properties of these estimators under realistic parameter
values, I reanalyze the population time series of San
Joaquin kit fox (Vulpes macrotis mutica) from 1985
through 1994 reported in Dennis and Otten (2000). This
population time series is accompanied by the environ-
mental covariate of amount rainfall. As noted by Den-
nis and Otten (2000), the population sizes are estimated
values using the mark–recapture method. They also
provide standard errors associated with the estimated
population size. I refer the reader to the original paper
for more details on the data collection. To check the
reasonableness of the Poisson sampling error, I plotted
the estimated population sizes vs. the reported squared
standard errors associated with these estimates. I ob-
served that the plot (not presented here) was linear with
slope close to 1. There was some indication that var-

iance might be slightly larger than the mean, but given
the small sample size (12 years) and the illustrative
nature of our analysis, initially I chose to ignore this
minor deviation from the Poisson model.

Table 2 presents the estimated parameters along with
the parametric bootstrap-based 90% confidence inter-
vals. Given the small sample size, these confidence
intervals are expectedly wide. However it is remarkable
that even for such a small sample size, there is a clear
indication that rainfall has a significant effect on the
population growth (confidence interval excludes zero).
The strength of the density-dependence parameter is
also (although marginally) significant at the 10% level
of significance. In any case, for such a small sample
size, one cannot expect to obtain strong inferences. It
is also worth noting that these scientific inferences are
similar to the ones obtained by Dennis and Otten
(2000). For comparison, in Table 2 the estimated pa-
rameter values under the stationary Gompertz model
are presented. It is clear that the estimate of environ-
mental variance is substantially higher in the stationary
case. Much of the variation is explained by the rainfall
effect on the population growth. Thus, in the nonsta-
tionary case, the estimate of the environmental variance
is substantially smaller and is another indication that
the covariates might a play significant role in modeling
population dynamics.

The sample size for the original data is quite small.
To study the behavior of these estimators for larger
sample sizes, I conducted a Monte-Carlo study. I con-
sidered time-series lengths of 30, 50, and 100. The
covariate values for longer time series were generated
from a normal distribution with mean and variance
equal to mean and variance of rainfall in the original
time series. The results are shown in Fig. 3 and are
summarized below.

1) Regression coefficients indicating how environ-
mental variables affect the intrinsic growth rate are
estimated quite well for all sample sizes.

2) The density dependence parameter, b, is also es-
timated quite well for all sample sizes.

3) The environmental variance parameter is esti-
mated with a negative bias for smaller samples. How-
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FIG. 3. Monte Carlo study of the behavior of MCL estimators for a nonstationary Gompertz model for sample sizes 30,
50, and 100, based on 500 simulations. The horizontal line corresponds to the true parameter value. (In this figure we have
used CL, MO, and MN in place of MCL-GP, ML-ORIG, and ML-NAÏVE, respectively, to conserve space. In each panel,
the group of three box plots at the left has sample size n 5 30; for the middle three, n 5 50; and for the right-hand three,
n 5 100. Except for the variance parameter (u2), the environmental (b0, b1) and density-dependence (b) parameters are
estimated quite effectively for all sample sizes. As the sample size increases, the variance parameter is well estimated also.
The performance of MCL is comparable to that of ML-ORIG estimators, whereas the ML-NAÏVE estimator of variance is
biased upward for all sample sizes.

ever this bias is reduced as the sample size increases
indicating consistency of the estimator. Notice that the
ML-NAÏVE estimator of variance has positive bias
even for large sample sizes. As in the stationary case,
the ML-NAÏVE estimator consolidates the sampling
variability with the process error. Further the ML es-
timator of the environmental variance, even in the ab-
sence of sampling variability, is biased. This again
shows that the behavior of the MCL estimator is not
aberrant.

4) The distribution of the MCL estimator is sym-
metric, indicating reasonableness of the asymptotic
normality of these estimators.

The above simulations are based on the composite
likelihood that is based on only one-dimensional mar-
ginal distributions. To see if consideration of two-di-
mensional distributions reduces the bias in the esti-
mator of environmental variance, I fixed the parameters
(b0, b1, c) at the estimates obtained from one-dimen-
sional composite likelihood and used the two-dimen-
sional distributions, with nearest neighbors forming the
pairs, to obtain the estimate of the environmental var-
iance u2. The new estimated value was 0.0914, clearly
larger than the estimated value obtained using the one-
dimensional composite likelihood. The estimator based
on one-dimensional distribution is negatively biased
and hence it is reassuring that consideration of bivariate

distributions improves the performance of the MCL. I
conducted a simulation study (500 replications) to
study the behavior of the estimator of u2 based on two-
dimensional distributions. The median of the bootstrap
distribution of the MCL estimator with the one-di-
mensional distribution was 0.034, while with the two-
dimensional distribution it was 0.056. Although it is
not surprising, it is reassuring that consideration of
two-dimensional distributions reduces bias in the MCL
estimators substantially. However, this improvement in
the performance is obtained at an increased computa-
tional cost of using two-dimensional integrals in place
of one-dimensional integrals.

Negative binomial sampling error

As mentioned earlier, the plot of estimated values
versus their variances (square of the standard errors)
indicated that the relationship was not quite linear with
slope equal to 1. Variance appeared larger than the
mean, which indicates overdispersion. To account for
overdispersion, I fitted the variance function corre-
sponding to the negative binomial distribution, namely,
var 5 mean 1(mean)2/size. This achieved a better fit
than the variance function corresponding to the Poisson
distribution, var 5 mean. The estimated value of the
parameter ‘‘size’’ was 625. The value of the size pa-
rameter is fairly large indicating the difference between
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Poisson and negative binomial sampling model might
be negligible. However, to illustrate the fact that the
method of composite likelihood is not limited to using
only the Poisson sampling error, I considered the neg-
ative binomial distribution as the sampling-error mod-
el. Based on the one-dimensional composite likelihood,
the estimated values of the Gompertz parameters are
reported in Table 2. Notice that these estimates are
similar to the ones obtained under the Poisson distri-
bution except that the estimated environmental vari-
ance is marginally smaller. The estimates do not change
substantially because the size parameter is large enough
that the difference between the Poisson and the neg-
ative binomial distribution is fairly small.

One can potentially consider a nonstationary Gom-
pertz model where the density-dependence parameter
b is also a function of the covariates. However, it seems
more natural that the environmental conditions would
affect the intrinsic growth rate rather than the density
dependence parameter, which is an innate characteristic
of the organism. Nonetheless, it will be an interesting
study to analyze several data sets using the general
model where both a and b depend on the environmental
conditions and to check how often the submodel with
only a depending on the environmental conditions pro-
vides an adequate fit.

SPATIAL TIME SERIES AND SAMPLING VARIABILITY

It should be quite apparent from the simulation re-
sults presented thus far that estimation of the param-
eters of a stochastic population dynamics model is a
difficult task, with or without sampling variability. If
the length of the time series is small, even with no
sampling error, maximum-likelihood estimators are bi-
ased and highly variable. However, it is the ecological
reality that many ecological time series are short. One
reasonable way to boost the sample size is by using
spatial replications (Lele et al. 1998). Likelihood-based
statistical inference for spatial time series in the pres-
ence of sampling error is substantially more computer
intensive and complicated than for a single time series.
For example, to evaluate the likelihood function at a
single parameter value using Kitagawa’s (1987) se-
quential-integration method involves numerical eval-
uation of T, 2S-dimensional integrals and T, S-dimen-
sional integrals where S corresponds to the number of
spatial locations. Further, to obtain the maximum-like-
lihood estimator, numerical maximization requires re-
peated evaluations of the likelihood function. This is
prohibitive and practically impossible even for a small
number of spatial locations.

However, one can use the composite likelihood for
the analysis of spatial time-series data very easily. This
extension to the spatial time-series data entails minimal
increase in the computational complexity. The com-
posite-likelihood method requires only two-dimension-
al integrals and not S-dimensional integrals as are re-
quired by Kitagawa’s algorithm (DeValpine and Has-

tings 2002). This reduction in the dimension provides
substantial computational advantage because the com-
putational burden for numerical integration increases
exponentially with the dimension of the integral. What
is practically an impossible analysis for the maximum-
likelihood method is a feasible analysis for the com-
posite-likelihood approach.

Let us start with a description of a spatial Gompertz
model. Let S denote the number of spatial locations.
Then at each time point, an observation is an S 3 1
vector consisting of log(population sizes) at each of
the locations. Let us denote this vector by log Nt. The
spatial Gompertz model is given by log Nt 5 a 1 (I
1 B)log Nt21 1 «t. The vector a 5 (a1, a2, . . . , as)
corresponds to the intrinsic growth-rate parameters at
the S spatial locations. The matrix B 5 diag(b1, b2,
. . . , bs) is a diagonal matrix of dimension S 3 S and
I is an S 3 S identity matrix. The process error is given
by «t ; multivariate (0, S). In this general model,N
the spatial aspect comes from the fact that process er-
rors are spatially correlated. This completely general
model has S 1 S 1 S(S 1 1)/2 number of parameters.
To reduce the number of parameters, one generally
needs to assume a structure on the spatial correlations
such as an exponential covariogram (Cressie 1993).
One can model the spatial heterogeneity of the intrinsic
growth-rate parameters as well as that of density-de-
pendence parameters by considering location-specific
environmental covariates. One can also consider spatial
version of the random coefficient models such as those
considered in Zeng et al. (1998). The kind of model
chosen will depend on the availability of relevant in-
formation.

Let us consider the bull trout (Salvelinus confluentus)
data representing counts of redds (breeding sites) re-
corded during 1980–1993 on four tributaries of the
Middle Fork of the Flathead River, Montana, USA
(Dennis et al. 1998). This data set provides no infor-
mation on the environmental covariates, has only four
spatial locations and 14 time points. Also, the spatial
coordinates of the locations were not available to the
author. Given this fairly limited information, we con-
sider a model with spatially homogeneous intrinsic
growth and density dependence parameters. We also
assume spatially homogeneous process-error variance
and equi-correlation between the locations. In sum-
mary, our model is based on a 5 (a, a, a, a), B 5
diag(b, b, b, b) and

1 r r r 
 r 1 r r

2S 5 s . 
r r 1 r 
r r r 1 

To apply the method of composite likelihood, we need
to compute one-dimensional and two-dimensional dis-
tributions. Using the theory of multivariate autore-
gressive processes (Chatfield 1989), these can be writ-
ten as follows. Let u1 5 2a/b, u2 5 s2/[2b(2 1 b)].
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FIG. 4. Simulation comparison of ML-ORIG, ML-NAÏVE, and MCL-GP estimators for spatial time-series data. As in
the single time-series case, the MCL-GP estimators and ML-ORIG estimators are quite similar in their biases. ML-NAÏVE
estimators are positively biased for variance and negatively biased for density-dependence and spatial-correlation parameters.

Then parameters for our spatial Gompertz model are
(u1, u2, b, r). In terms of these parameters, the one-
dimensional marginal distributions of observations log
Nt,s are normal with mean u1 and variance u2 for t 5 1,
2, . . . , T and s 5 1, 2, . . . , S. Furthermore, the pairs
that are between time points (i, j) but within the same
spatial location s, namely, (log Ni,s, log Nj,s) are dis-
tributed as bivariate normal random variable with mean
vector

u11 2u1

and covariance matrix

z j2i z1 (1 1 b)
u .2 z j2i z[ ](1 1 b) 1

The pairs that are formed within the same time point
but between spatial locations, namely, (log Nt,l, log Nt,m)
are distributed as bivariate normal random variables
with mean vector

u11 2u1

and covariance matrix

1 r
u .21 2r 1

Using these results, we can write down the algorithm
for computing composite-likelihood estimators for spa-
tial Gompertz model with sampling error as follows.

Step 1.—Use the one-dimensional marginal distri-
butions to construct CL1(u1, u2; N̂1, N̂2, . . . , N̂S) 5

f (N̂i,s; u1, u2). Maximize this function withS TP Ps51 i51

respect to the parameters (u1, u2).
Step 2.—Use the two-dimensional marginal distri-

butions of the pairs formed within a spatial location
but between time points to construct the objective func-
tion CL2(u1, u2, b z N̂1, N̂2) 5 f (N̂i,s, N̂j,s;S T21 TP P Ps51 i51 j5i11

u1, u2, b). Fix the (u1, u2) parameters at the estimates
obtained in Step 1 and maximize with respect to b.

Step 3.—Use the pairs formed between spatial lo-
cations but within a time point to construct the objec-
tive function CL2(u1, u2, r z N̂1, N̂2, . . . , N̂S) 5

f (N̂i,s, N̂i,s9; u1, u2, r). Maximize thisS21 S TP P Ps51 s95s11 i51

function with respect to the parameter r with (u1, u2)
fixed at the estimated values from step 1.

In Fig. 4, we study the performance of MCL-GP
estimators. Clearly pooling information across space
has improved the performance of these estimators; they
are more stable and less variable as compared to what
was observed in the kit fox data where there were only
12 observations. The ML-NAÏVE estimator of the var-
iance is larger than the MCL-GP estimators because it
does not separate out the sampling variability. It also
has negative bias in both density-dependence parameter
and spatial correlation. These conclusions are similar
to the ones that were noted for single time-series anal-
ysis. As before, MCL-GP estimators are somewhat bi-
ased but this behavior is not aberrant; the ML-ORIG
estimators for data without sampling variability are bi-
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ased as well. The most important thing to note here is
that the method of composite likelihood facilitated the
analysis of the spatial time-series data without much
computational difficulty. This would have been a nearly
impossible task for the method of maximum likelihood.

SUMMARY AND CONCLUSIONS

The problem of estimation of parameters of sto-
chastic population dynamics models in the presence of
sampling variability is a computationally difficult prob-
lem. The standard frequentist approach to statistical
estimation is based on the likelihood function. The ap-
plication of likelihood to statistical analysis has been
generalized through the use of estimating functions
(Godambe 1991). For the problem of inference for sto-
chastic population dynamics models with sampling var-
iability I noted that writing down the likelihood func-
tion is difficult. To overcome this problem, I proposed
the method of composite likelihood. The main benefit
of the MCL (maximum composite likelihood) is the
reduction in the dimensionality of the integration to
two, no matter what the time-series length or the num-
ber of spatial locations is. This method thus provided
a practical, feasible approach to the problem of esti-
mation in the presence of sampling variability. Al-
though composite likelihood can be looked upon as an
approximation to the full likelihood, the main justifi-
cation of the method of composite likelihood is via the
theory of estimating functions. It generates estimating
functions that, under fairly general conditions, lead to
consistent and asymptotically normal estimators. These
estimators have somewhat larger asymptotic variance
as compared to the maximum-likelihood estimators.
But in the cases we study, maximum-likelihood esti-
mators are computationally difficult. Hence, in using
the method of composite likelihood we paid a price in
statistical efficiency but gained in computational fea-
sibility. However, previous studies (Lele and Taper
2002, Henderson and Shimakura 2003) as well as the
simulation studies presented in this paper indicate that
the loss in statistical efficiency is likely to be small.

Although I did not explicitly illustrate it, the method
of composite likelihood is also applicable in the pres-
ence of missing observations. Computing the likeli-
hood using Kitagawa’s algorithm, which is sequential
in nature, requires integration over the missing obser-
vations. This increases the computational complexity.
On other hand, the definition of the composite likeli-
hood is based on the marginal distributions. These are
unaffected by the presence of missing data. One forms
the composite likelihood based on the single or pairs
of observations that are actually present in the data set.
I also showed that the method of composite likelihood
can entertain any sampling-error model. We started
with an analysis of a single time-series data using the
Gompertz growth model with Poisson sampling error.
It was shown that the method of composite likelihood
is easy to apply and that the estimators have reasonable

statistical properties. Then we studied the rarely con-
sidered nonstationary Gompertz model where the in-
trinsic growth parameter varies with time. The sam-
pling-error model used was based on the mark–capture
method of estimation of population sizes. The method
of composite likelihood was easy to apply even in this
nonstandard situation and the estimators had reason-
able statistical properties. From the simulation studies,
we learned that to obtain reliable estimates and short
confidence intervals one needs large sample sizes. Most
ecological time series tend to be short, but spatial rep-
lications are usually available. In such situations, the
method of composite likelihood was shown to have
even bigger computational advantage over the existing
methods. Computational simplicity of the method of
composite likelihood also facilitates computation of
parametric bootstrap confidence intervals. One need
not depend on asymptotic methods to obtain standard
errors or confidence intervals. The method of compos-
ite likelihood involves computation of at most two-
dimensional numerical integrals. These routines are read-
ily available in many standard computer packages such
as R, MATLAB, GAUSS, or MATHEMATICA. Pro-
gramming the method of composite likelihood is straight-
forward and easier than the existing methods for the com-
putation of the maximum-likelihood estimators.

As is true of any method of estimation, there are
limitations to the application of the method of com-
posite likelihood. In this paper, I used only one- or two-
dimensional marginal distributions to construct the
composite likelihood. This particular construction is
applicable when such marginal distributions are easy
to compute. Furthermore, to be successful, these mar-
ginal distributions should be informative about the pa-
rameters of interest. This may not hold true for all
models of ecological interest. No general recipe can be
provided for the construction of suitable estimating
functions for models where small dimensional marginal
distributions are not informative. On the other hand, I
have shown that when such marginal distributions are
easy to obtain, the method of composite likelihood is
a reasonable alternative to more complicated methods
for analyzing stochastic population dynamics models
in the presence of sampling variability. Although the
discussion in this paper was based on the Gompertz
growth model, the method is equally applicable to other
stochastic population dynamics models such as the lo-
gistic growth model or the delayed density-dependence
models. However, some of the technical details are
more involved than for the Gompertz model and, hence,
these extensions will be discussed elsewhere.
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