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Spatial data are often sparse by nature. However, in many instances, information may exist in the form
of “soft” data, such as expert opinion. Scientists in the field often have a good understanding of the
phenomenon under study and may be able to provide valuable information on its likely behavior. It is
thus useful to have a sensible mechanism that incorporates expert opinion in inference. The Bayesian
paradigm suffers from an inherent subjectivity that is unacceptable to many scientists. Aside from this
philosophical problem, elicitation of prior distributions is a difficult task. Moreover, an intentionally
misleading expert can have substantial influence on Bayesian inference. In our experience, eliciting
data is much more natural to the experts than eliciting prior distributions on the parameters of a
probability model that is a purely statistical construct. In this paper we elicit data, i.e., guess values
for the realization of the process, from the experts. Utilizing a hierarchical modeling framework, we
combine elicited data and actual observed data for inferential purposes. A distinguishing feature of
this approach is that even an intentionally misleading expert proves to be useful. Theoretical results
and simulations illustrate that incorporating expert opinion via elicited data substantially improves
the estimation, prediction, and design aspects of statistical inference for spatial data.

KEY WORDS: Bayesian inference, elicited prior, hierarchical models, honesty parameter, kriging,
optimal sequential sample design.

INTRODUCTION

Spatial data are often sparse by nature, and in many applications, the studies
are frequently characterized by lack of sufficient data on the quantity of interest
(Journel, 1986; Kulkarni, 1984). Limited amount of data leads to a relatively flat
likelihood surface that is not very informative. One way out of this problem is to
augment the available data by incorporating other available sources of information.
In many instances, hard data on an attribute such as pollutant concentration, or pres-
ence/absence of species, is difficult to come by. However, a wealth of information
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may exist in the form of “soft” data such as expert opinion about whether pollutant
concentration exceeds a certain threshold or not (Journel, 1986; Kulkarni, 1984).
Further, scientists in the field often have a good understanding of the phenomenon
under study and can provide valuable information on its likely behavior. It will thus
be useful to have a sensible mechanism that incorporates such soft information or
expert opinion in the process of inference.

One of the standard approaches for incorporating expert opinion is the
Bayesian paradigm (Steffey, 1992; DeGroot, 1988; Genest and Zidek, 1986; von
Mises, 1943). Unfortunately, scientists in the field are reluctant to use the Bayesian
paradigm for a variety of reasons (Royall, 1997; Mayo, 1996; Dennis, 1996; Efron,
1986). It is the subjectivity inherent in specifying a prior that is most troubling to
the scientists. For example, Efron (1986) observes that “subjectivism. . .has failed
to make much of a dent in scientific statistical practice” because “strict objectivity
is one of the crucial factors separating scientific thinking from wishful thinking.”
A related problem is that the prior provided by the expert may be intentionally mis-
leading. For example, in environmental sampling for pollution investigations, an
industry expert may want the sampling effort to be concentrated on the top of a hill
in the study area where there is little chance of finding any contamination. An en-
vironmental activist, on the other hand, may want it to be exclusively concentrated
at the bottom of the hill, where a high degree of contamination may be expected.
Dennis (1996) discusses other instances in ecological applications where subjec-
tive priors elicited from intentionally misleading experts could have serious public
policy implications. He argues that “the Bayesian philosophy of science is scientific
relativism” where “truth is subjective” (Dennis, 1996). This “scientific relativism”
is unacceptable to many scientists. Moreover, Royall (1997) and Journel (1986)
have demonstrated that the standard Bayesian practice of expressing lack of prior
information as a uniform distribution can also be patently misleading.

Even if we set aside the philosophical objections to the Bayesian formulation,
quantification of prior belief in the form of a probability distribution on the pa-
rameter space, is a complex problem (Garthwaite and Dickey, 1992). West (1988)
observes that “. . . it is often (or rather, always) difficult to elicit a full distribution
with which an expert is totally comfortable.” Why is it so difficult to elicit a prior
distribution? It is important to recognize that the concept of a prior probability
distribution on the parameters of a statistical model is a statistical construct that
is hard for most scientists to visualize. It is more natural for an expert to think in
terms of the process under study and not in terms of statistical distributions over a
parameter space. The sensible approach, then, is to ask the expert to provide guess
values for observable data, not a prior probability distribution.

Kulkarni (1984) and Journel (1986) have suggested methods that modify the
Bayesian framework to enable the use of expert opinion in the form of elicited
data. They formulate the problem in the following manner. Uncertainty about
the unknown process under study is characterized by its probability distribution,
conditioned by available expert information. This posterior probability distribution
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is estimated by combining both expert opinion and actual observations. Inferences
about the process are based on this distribution. Suppose we have actual dataZ(xi )
for a processZ(x) observed atn locationsxi , i = 1, . . . , n. Similarly, we denote
expert information in the form of elicited data, asE(xj ), which is available form
locations,j = 1, . . . , m. Then, the posterior c.d.f.F(.) is estimated by

F∗(c) =
n∑

i=1

λi I [Z(xi ) ≤ c] +
m∑

j=1

γ j G j (c)

whereG(.) denotes the prior probability distribution,I’s are indicator functions, and
theλ’s andγ ’s are weights assigned to different data points. The prior distribution
G(.) characterizes the expert opinion, and it has to be constructed from the expert
dataE(xj ), j = 1, . . . , m. One way to do this is to assume a suitable functional
form for G(.), and then estimate the parameters of this distribution from the given
expert data (Kulkarni, 1984). OnceG(.) is available, a point predictor for any
unobserved locationxp is the conditional expectation associated with the posterior
c.d.f. (Journel, 1986) given by

Ẑ(xp) =
∫

R(Z)

z · d F∗(z(xp))

where the integration is overR(Z ), the range of all possible values ofZ. Note that
the weightsλi , i = 1, . . . , n, andγ j , j = 1, . . . , m, in F∗(.) are considered optimal
in the best linear unbiased prediction sense, and determined by standard kriging
methods (Cressie, 1993, p. 105), so that the prediction error forZ(xp) is minimized.

In this paper we utilize and expand on the ideas of Journel and Kulkarni to
augment our knowledge about the process under study by the use of data elicited
from experts. However, instead of the paradigm used by Kulkarni (1984) and
Journel (1986), we use hierarchical models to formulate the problem of combin-
ing observed data and guess values obtained from experts. In a spatial data setup,
information may be elicited from experts in the form of observable data, for the
whole study area. Hard data would generally be available for a limited number of
locations in the same area. The problem then essentially becomes that of drawing
inferences about the underlying process from a combination of the two likeli-
hoods, one provided by the elicited data, and one provided by the observed data.
This approach is similar in spirit to Efron’s method (1996) of assessing information
concerning one set of data by combining information from several experiments.
He considered the following problem. SupposeK independent experiments are
conducted, yielding datax k, k= 1, . . . , K . These data are generated fromK dif-
ferent likelihood functionsLk(θk | x k), whereθk are the parameters of interest,
k= 1, . . . , K . The statistical problem consists in combining theseK likelihoods
in order to make inferences on any one of theθk’s. Empirical Bayes likelihood
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theory is used to combine all these likelihoods to get an interval estimate for some
θk (Efron, 1996).

The situation that we are concerned with in this paper is, however, different
from that considered by Efron in one crucial aspect. In our approach, the two sets
of data (expert guesses and actual observations) cannot be assumed independent,
as they relate to the same underlying phenomenon. A hierarchical Empirical Bayes
type model still provides the basis for combining these two kinds of information,
with the caveat that it should allow for dependence between the two sets of data.
This dependence reflects the credibility of the expert, and can be taken into account
in the inferential process. In this way, even a misleading expert opinion can be
informative. For instance, if we find that data elicited from an expert are negatively
correlated with real data, this is useful information that can be used to suitably
adjust our inferences.

The goal of this paper is to show how expert opinion or elicited data can be
incorporated to augment likelihood inference in the spatial context. Key features
of our approach are the elicitation of observable data (and not prior distributions)
from the expert, and the ability to validate it, so that inferences can be calibrated
in a suitable manner. The paper is organized as follows. In the next section we
present a general modeling framework for augmenting observed data by incor-
porating data elicited from experts. In the following three sections, we apply this
model for different data structures and explore the effect of adding expert data on
different aspects of statistical inference, including estimation of model parameters,
prediction of unobserved values and designing of optimal sampling schemes. We
conclude with some general observations.

A HIERARCHICAL MODEL FOR THE ELICITED DATA

In this section we propose a hierarchical modeling approach that provides a
framework for the augmentation of observed data with data elicited from experts.
We couch our discussion in terms of the finite population setup, which is natural for
spatial data. Suppose there areN locations indexed by 1, 2,. . . , N, in a study area
D. Let the true values of the quantity of interest at these locations be denoted by
Y = (Y1, Y2, . . . , YN). TheY’s may be numeric, categorical or binary. For example,
we may be interested in the amount of pollutant contamination (numeric values),
level of pollutant contamination—low, medium, or high (categorical values)—or
presence/absence of particular species (binary values). Suppose we have only one
expert. We ask the expert to provide his/her best guess for the values ofY. Let
the expert guess values, the elicited data, be denoted byE = (E1, E2, . . . , EN).
These may, in turn, be numeric, categorical or binary. For instance, if the expert is
prepared to guess exact values for the amount of pollutant contamination, then we
have numeric expert data. On the other hand, it may be much easier for an expert to
provide categorical (high, medium, or low contamination) or binary values (high
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or low) over the whole study area, rather than coming up with exact numbers. We
assume the following relationship between the truthY and expert guess about the
truth, E:

• The vectorY is a realization from a distributionf(y; θ ), indexed by unknown
parametersθ .
• GivenY = y, expert opinionE has a distributiong(e| y; η), whereη is an

unknown parameter that characterizes the dependence betweenY andE.

The parameterη plays a central role in the inferential process. It captures the degree
of dependence between the truth and expert guess, thus providing a mechanism to
evaluate the sincerity of an expert. Information from a good expert closely mimics
reality, and this should be reflected in a high positive value ofη. Conversely, a high
negative value forη indicates misleading expert opinion. Ifη is very small, expert
opinion is purely random, bearing no relation to reality. Thus,ηmay be thought of
as an “honesty parameter,” which tells us whether the expert is credible. Suppose
we have sampled the process atn locations, with the sampled values denoted by
Ys = (Y1, Y2, . . . , Yn), and the unknown values denoted byYns = (Yn+ 1, . . . ,
YN), n< N. The sampled observations, along with the expert guesses, enable us to
estimate the honesty parameterη. This estimate helps in suitably calibrating any
information provided by an expert, so that proper inferences can be made.

Notice that the model presented here is very general. We do not assume any
particular distributional structure for eitherY or E. This enables different kinds of
expert information to be combined with real data. For instance, while the actual
response may be continuous, elicited data could be either continuous or discrete.
In the following sections we explore specific instances of particular distributions
for Y and (E |Y) and their implications for estimation and prediction, as well as
sampling designs.

A SIMPLE SITUATION: NORMAL–NORMAL HIERARCHY

In this section we apply the hierarchical modeling framework in the relatively
simple situation of Gaussian independence to gain some insight on the inferential
aspects of this setup. This facilitates explicit derivation of theoretical properties
concerning the effect of the honesty parameterη on estimation and prediction.
Consider the following regression setup:

• Let Yi be normally distributed with meanx iβ and varianceσ 2, i = 1,
2, . . . , N, independently, wherexi ’s are known covariates for locationi
andβ, the unknown vector of regression coefficients.
• (Ei |Yi) is independently normal with meanηYi , varianceσ 2(1 − η2),

i = 1, 2,. . . , N, whereη is the unknown correlation coefficient betweenYi

andEi (1)
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Thus, marginally,Ei ’s have an independent normal distribution with meanηxiβ

and varianceσ 2, i = 1, 2,. . . , N. As both the real and elicited data are normally
distributed, the honesty parameterη is just the correlation coefficient between
these two. It would be close to 1 for a good expert,−1 for a misleading expert,
and nearly 0 for a random expert. In the following subsections we derive some
relevant theoretical properties for the inferential aspects of this normal-normal
mixture setup.

Estimation of Parameters

First, we consider estimation of the model parameters, which should be based
on the observed sample of hard dataYs = (Y1, Y2, . . . , Yn) and the expert supplied
elicited dataE = (E1, E2, . . . , EN). The likelihood function for parameters (β,
σ 2, η) is thus given by

L(β, σ 2, η |Ys, E) =
n∏

i=1

[ f (Yi | xi , β, σ
2) f (Ei |Yi , η, σ

2)]

×
N∏

i=n+1

f (Ei | xi , β, η, σ
2) (2)

where distributions ofYi , (Ei |Yi ) andEi are as given above. Letβ̂ denote the MLE
based on (Ys, E) andβ̃ denote the MLE based onYs only. Standard calculations
show that (see Das, 1998, for details) in these two cases, the Fisher Information
for the estimates ofβ, given the other parameters, are

I (β̂ | σ 2, η) = 1

σ 2
X′sXs + η2

σ 2
X′nsXns[1− f (β, σ 2, η)]

where

f (β, σ 2, η) = [(N + n)β2(1− η2)X′nsXns]/σ 2

(N + n)
[
n+ β2

σ 2 {X′sXs + (1− η2)X′nsXns} + 2nη2

1−η2

]− 2n2η2

1− η2

(3)

and

I (β̃ | σ 2) = 1

σ 2
X′sXs (4)

where Xs and Xns are the portions of the design matrixX, corresponding to
the observed dataYs and the unobserved dataYns, respectively. Observe that,
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I (β̂ | σ 2, η = 0) = I (β̃ | σ 2). This is natural because, whenη = 0, the expert
is useless. On the other hand,I −1(β̂ | σ 2, η=±1) = σ 2(X′X)−1, whereX is the
covariate information corresponding to allN locations. This is equivalent to ob-
servingY = (Ys,Yns) at allN locations. Further, note that the denominator of the
function f (β, σ 2, η) in (3) can be written as

1

σ 2
[(N + n)β2(1− η2)X′nsXns] + 1

σ 2
(N + n)β2X′sXs + 2Nnη2

1− η2

which implies thatf (β, σ 2, η)< 1. Since (1/σ 2)X′nsXns> 0, it then follows from
(3) and (4) that

I (β̂ | σ 2, η)> I ( β̃ | σ 2), ∀η 6= 0

Thus, whether the expert is good or misleading, he helps improve the inference. A
plot of I −1(β̂ | σ 2, η), a theoretical measure similar to MSE, vs.η (Fig. 1) shows
that it is symmetric aroundη= 0. The quantityI −1(β̂ | σ 2, η) becomes smaller as
the dependence between observed and elicited data gets stronger in either direction.
Also observe that additional information gained from elicited data is an increasing

Figure 1. Plot of inverse of Fisher Information for the estimator ofβ with elicited data (solid
line) and without elicited data (dashed line). This quantity, when based on expert opinion
in the form of elicited data, gets smaller as correlation between real and elicited data differs
from zero in either direction. Even the elicited data from an intentionally misleading expert
(negative correlation) is useful.
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function of X′nsXns, which is large when the sample sizen is small. Using expert
opinion is thus most profitable when very little observed data are available (n is
very small) and the covariates for the unobserved responses are substantial (i.e.,
X′nsXns is large). As more of actual data are observed (largern), there is less use
for any additional elicited data.

The theoretical results in this section indicate that using good or misleading
data elicited from experts could significantly improve the estimation of parameters.
However, we have introduced an additional parameterη into the model. What
burden does the estimation ofη place on the estimation ofβ, which is the parameter
of interest, in a small sample situation? To answer this question, we performed
simulations to investigate actual performance of the MLE’s ofβ in terms of mean
squared errors, both with and without expert opinion. We choseβ = 2, σ 2= 1,
N= 100, andn= 5, with η varying from−1 to 1 in steps of 0.05.

Figure 2A shows a plot of the observed mean squared errors forβ (MSE,
averaged over 1,000 simulations) for the two competing scenarios (with and with-
out elicited data) over the range ofη. Estimates utilizing elicited data are always
closer to the truth than those based solely on the observed data, unless the elicited
data is characterized by small values ofη, and does not add to our state of knowl-
edge aboutβ. More importantly, both good and misleading experts are equally
useful. The similarity of this plot to Figure 1 where the theoretical inverse of the
Fisher Information is plotted againstη ∈ (−1, 1) implies that MSE’s produced by
the simulations are close to their theoretical values. This indicates that soft data
elicited from experts generally improves parameter estimates.

Prediction of Unobserved Values

The goal of a spatial analysis may not be estimationper se, but prediction
at unsampled locations. It is equally important to provide precise measures of
accuracy for such predicted values (i.e., prediction intervals). Here we investigate
how the incorporation of expert opinion helps in this aspect of inference.

Note that under model (1),

E(Yi |YsE) = E(Yi | Ei ) = Xiβ + η(Ei − ηXiβ)

and

var(Yi |Ys, E) = var(Yi | Ei ) = σ 2(1− η2), i = n+ 1, . . . , N (5)

Thus, given data (Ys, E), the predictor for an unknown responseYi would be

Ŷi = Xi β̂ +η̂(Ei − Xi η̂β̂) with estimated prediction error vaˆr(Ŷi ) = σ̂ 2(1−η̂2),

and 90% prediction intervals given byŶi ± 1.68×
√

var̂(Ŷi ). (6)
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Figure 2. Simulation results for normal normal mixture, independent case: A, ratio of observed
MSE(β̂) with elicited data, to MSE(̃β), calculated without elicited data; B, prediction error; C, 90%
prediction interval width (a dashed line indicates the value 1, where the two scenarios would have
similar results); D, 90% prediction interval coverage, solid line for elicited data and dashed line for
no elicited data. Estimation and prediction error for elicited data scenario gets smaller as correlation
between real and expert data differs from zero in either direction. Observe that elicited data from an
intentionally misleading expert is also useful. Also notice the similarity of these plots with theory.

Then, from (6), we see that for the perfect expert (η = 1), we simply use
his valueEi as the predictor at theith location. For the totally misleading expert
(η = −1), we go in the exact opposite direction, with−Ei as the predicted value.
In both these cases prediction is perfect, as the prediction error is 0 [from (6)].
Further, elicited data from a random expert (η = 0) is ignored, and the standard
linear predictor based only on the observed data, is used to predictYi . In that case,
prediction error is the same as when there is no elicited data. Thus, the prediction
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error is very small when there is a high degree of dependence (positive or negative)
between elicited data and the reality. It follows that prediction intervals based on
these prediction errors should also be very precise for high absolute values ofη.

We verified the prediction performance of our approach for utilizing elicited
data through simulations. We fixedβ = 2,σ 2= 1, N= 100, andn= 5, while vary-
ing η from −1 to 1 in steps of 0.05. We fixed one of the nonsampled locations
where prediction is desired. Let us call the corresponding valueYp. At each iter-
ation of the simulation, we used (Ys, E) to predictYp, checked if the true value
is covered by the prediction interval and also calculated (Ŷp − Yp)2. Similarly, we
predictedYp using onlyYs. We remind the reader that because this is a simulation
study, the true valueYp is known.

Figure 2B shows a plot of the observed prediction errors (values averaged over
1,000 simulations) based on observed and elicited data and observed data alone—
for different values ofη. Predictions that utilize data elicited from experts are
very close to truth when there is strong correlation (positive or negative) between
observed and elicited data, and perform no worse than the conventional predictors
when elicited data is of little value (η close to 0).

Expert opinion expressed through elicited data also improves the coverage
and precision of prediction intervals. A plot of the coverage properties under the
two scenarios (expert and no expert) against different values ofη (Fig. 2D) shows
that actual coverage of nominal 90% prediction intervals using elicited data (mean
of 89.1%) are consistently closer to their nominal value than prediction intervals
based only on the observed data (mean of 75.4%). This correct coverage does
not come at the cost of precision; which is clear from Figure 2C, where we plot
average widths of the 90% prediction intervals for the two competing scenarios,
against different values ofη. As Equation (6) suggests, prediction interval width
is smallest for an informative expert, when there is high dependence, and largest
for a noninformative expert (η ≈ 0). At that point it is very similar to prediction
interval widths based solely on the observed data. Note that, even though prediction
intervals based solely on observed data are generally wider than those based on
observed and elicited data, coverage for the former is much less than the latter.
This is because point predictors in the former case are quite inferior to those based
on elicited data, and consequently, wider prediction intervals cannot compensate
for their wrong centering values.

A couple of points on the honesty parameterη are worth noting here. First,
from Equations (5) and (6) we can see that ifη is estimated wrongly, there could be
problems with both point and interval prediction ofY. Fortunately, sinceη captures
the relationship betweenY andE, its estimation draws on both these sources of
information. Thus, even though we only have five observed data points (n = 5),
we still have the whole population of elicited data (N = 100) available, and this
helps in proper estimation ofη. This is true for all the simulations presented in this
paper, and in fact,η was uniformly well estimated in all these situations. A second
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related issued could be misspecification of the form ofg(η), the link function that
postulates howYandE are related. Thus, model (1) may not properly characterize
the relationship betweenY and E. In practice, we should protect against such
problems of model misspecification by applying simple exploratory tools such as
scatter plots of (Ys, E) for building the hierarchical model for elicited data. Further,
we should also do some model checking by studying diagnostic plots of residuals
from the data fitted to this model. These graphical explorations would be useful
in finding a proper form of the honesty parameterη for combining observed and
elicited data.

Results in this section suggest strongly that expert opinion available in the
form of elicited data over the entire study area can significantly improve estimation
of parameters and predictions at unobserved locations. Not only are the point pre-
dictions better, the combination of observed and elicited data produces prediction
intervals that are precise and have close to nominal coverage properties.

GENERALIZATION TO DEPENDENT DATA

In this section we generalize the ideas of the previous section to dependent
data, and investigate how augmentation of observed data with elicited data may
help in making inferences. This is important because most spatially distributed
data are correlated. In the following, we modify the hierarchical model in (1) to
incorporate spatial dependence:

• Let Yi be normally distributed with meanx iβ, varianceσ 2 and corr(Yi ,
Yj ) = γ d(i, j ), (i, j ) = 1, 2,. . . , N, whereγ is a measure of spatial de-
pendence,d(i, j) is the distance between locations indexedi andj, x i ’s are
covariates for locationi andβ, the vector of regression coefficients.
• (Ei |Yi ) are independent normal with meanηYi and unit variance (i = 1,

2, . . . , N), η being the correlation coefficient betweenYi andEi . (7)

Notice that model (7) for (Ei |Yi ) is slightly different, and probably more realistic,
as compared to model (1). Here the correlation structure for theY’s assumes
that spatial dependence among locations decreases with distance. The honesty
parameterη has the same implications as before—it is positive for good experts,
negative for misleading experts, and close to zero for random experts. Note that
given observed and elicited data (Ys, E), parameters (β, σ 2, γ, η) in model (7) can
be estimated using method of maximum likelihood.

Estimation and Prediction: Simulations

Because of the introduction of dependence in the model, unlike Section 3,
theoretical derivation of the Fisher Information for parameters (β, σ 2, γ, η) are
mathematically intractable. We thus report the results of a simulation study. Recall
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that in Section 3 we have shown that simulations faithfully reproduce theoretical
conclusions.

The simulation framework is similar to Section 3.1, except that now we
chooseγ (=0.5), and generate (Y, E) under model (7). Figure 3A plots the ratio
of observed MSE’s forβ (average of 1,000 simulations) in the two competing
scenarios with and without elicited data, againstη. Addition of a spatial dependence
parameter does not appear to change the bottom line: estimates using expert opinion
in the form of elicited data are almost always closer to their true values than those
based solely on observed data, unless the expert information is random (η ≈ 0).
In Figures 3B and 3C we show similar plots for observed MSE’s ofσ 2 andγ ,
respectively. The conclusions are the same. Incorporation of expert information via
elicited data, whether good or misleading, improves estimates of all the parameters,
and even when it is just noise (η ≈ 0), these estimates are not worse than MLE’s
based exclusively on the observed dataYs.

Next, we investigate the effect of expert data on prediction performances. It
can be shown that under model (7), for anyi that does not belong to the dataYs,

E(Yi |Ys, E) = xiβ + (6i,n η6i,N)

(
6n,n η6n,N

η6N,n IN + η26N,N

)−1(
Ys− x sβ

E − ηxβ

)

and

var(Yi |Ys, E) = σ 2− (6i,n η6i,N)

(
6n,n η6n,N

η6N,n IN + η26N,N

)−1(
6i,n

η6i,n

)
(8)

where6N,N = ((σ 2γ d(i, j ))) is theN by N variance—covariance matrix forY.
Predicted values for unknownYi ’s are thus given by substituting estimates

for the corresponding parameter values in the conditional expectation in (8). Pre-
diction intervals are based on the estimated prediction error. This is obtained by
plugging in the corresponding parameter estimates in the conditional variance in
(8). On the other hand, when no expert opinion is available,

E(Yi |Ys, E) = xiβ +6i,n6
−1
i,n (Ys− x sβ)

and

var(Yi |Ys, E) = σ 2−6i,n6
−1
n,n6n,i . (9)

We can similarly use (9), plugging in the corresponding estimates based on ob-
served data, to get point predictions and prediction intervals when no expert is
available.
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Figure 3. Simulation results for normal normal mixture, dependent case: A, ratio of ob-
served MSE(̂β) with elicited data, to MSE(̃β), calculated without elicited data; B, MSE(σ 2);
C, MSE(γ ); D, observed prediction error; E, 90% prediction interval width (a dashed line
indicates the value 1, where the two scenarios would have similar results); F, 90% prediction
interval coverage, solid line for elicited data and dashed line for no elicited data. Estimation
and prediction error for elicited data scenario gets smaller as correlation between real and ex-
pert data differs from zero in either direction. Observe that elicited data from an intentionally
misleading expert is also useful.
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Figure 3D plots observed prediction errors (averaged over 1,000 simulations)
based on both observed and elicited data and observed data alone—for different
values ofη. We see that the use of elicited data can greatly improve predictions,
as long as the expert is informative, i.e.,|η| is high, though, forη ∈ (−0.2, 0.2),
point predictions are slightly worse than those based solely on the observed data.
However, notice that coverage of 90% prediction intervals (Fig. 3F) for elicited
data (mean of 90.6%) is much closer to the nominal value than that for observed
data alone (mean of 82%). Also, prediction intervals based on elicited data are
narrower than those based on observed data (Fig. 3E). Since precise prediction
intervals are generally more important from a policy perspective than point pre-
dictions, these results again indicate that using elicited data in addition to observed
data remains profitable even when the simple independence model in Section 3
is generalized to take account of dependence structures in the data. Simulations
show that we get improved parameter estimates, as well as better predictions, as a
result.

Sampling Designs

The preceding discussions have shown that augmentation of observed data
with elicited data generally improves estimation and prediction. In this subsection,
while confining ourselves to the same modeling framework as in (7), we deal with
another aspect of inference—sampling design. In resource or pollution investiga-
tions, it is both financially and operationally impossible to obtain data at all spatial
locations on the site under study. Good sampling strategy is thus of immense
practical importance.

Sequential Design Algorithm

The primary goal in spatial studies is often prediction of unknown values. For
instance, in pollution investigations, the quantity of interest is the amount of con-
tamination at each of the unobserved locations. The aim in prediction sampling is
to select a set ofn locations such that based on thesenobservations and the assumed
model, the rest of theN−n values can be predicted with minimal prediction error.
However, this selection is a computationally difficult task (Christakos and Killam,
1993; Benedetti and Palma, 1995; Lee and Ellis, 1996). An intuitively appealing
and computationally manageable, although not necessarily optimal (Cressie, 1988;
Cressie, Gotway, and Grondona, 1990), approach is to solve the problem sequen-
tially. Suppose values atn sites have been already observed. Then the (n + 1)st
site is added so that based on these (n+ 1) observations rest of the (N − n− 1)
unknowns can be predicted with least prediction error. This process is continued
until the desired sample size is achieved.
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Expert Opinion in Sample Design

In sequential sampling designs, selection of the first sample is critical and
tricky. Usually, one just selects a simple random sample of sizen and proceeds
from there. In our formulation, however, one can use expert opinion in the form of
elicited data to select the first sample. Of course, elicited data is used throughout
the process as well.

Selection of the First Sample

Note that, under model (7),

(Y | E) ∼ N[Xβ + η6(I + η26)
−1

(E − ηXβ), 6 − η26(I + η26)
−1
6]

(10)

where6 is as in (8). To obtain var(Yi | E), i /∈ s, we need to obtain estimates of
(σ 2, γ, η). Unfortunately, the marginal distribution of Eis:

E∼ N(ηXβ, I + η26) (11)

making only (ηβ2, η2σ 2) estimable. However, notice that var(Y | E) can be written
asσ 2[ I − σ ∗2R(I + σ ∗2R)

−1
]R, whereβ∗ = ηβ, σ ∗2= η2σ 2 andR is the corre-

lation matrix corresponding to6. Hence theranking of locations in terms of
their prediction errors depends on [I − σ ∗2R(I + σ ∗2R)−1]R, which is an es-
timable quantity. We thus include that locationi in the sample which has the
largest value for the (i, i)th element of the estimated preediction error matrix
[ I − σ ∗2R(I + σ ∗2R)−1]R, i = 1, 2, . . . , N. Selection of the rest of the sample
locations is straightforward. Given (Ys, E), and the distribution of (Yi | Ys, E),
i /∈ s (8), we estimate the parameters (β, σ 2, γ, η) and choose that location that
has the largest variability (prediction error), i.e., the one for which the estimated
variance in (8) is the largest.

Simulations

We compare the above scheme with simple random sampling without replace-
ment (SRSWOR). Notice that the ordinary sequential sampling scheme where no
elicited data is used (Cressie, 1993, p. 314) corresponds toη = 0.

Results of the simulations are visually presented in Figures 4A–4C. In
Figure 4A we plot average values (over 100 simulations) of the observed pre-
diction errors based on sequentially designed samples (with and without elicited
data) and SRSWOR, over different values ofη. Sequential designs perform much
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Figure 4. Simulation results from sample design for normal normal mixture: A, ratio of observed
prediction error from sequentially designed samples using elicited data, to that from SRSWOR;
B, 90% prediction interval width (a dotted line indicates the value 1, where sequential samples
with elicited data and SRSWOR, are similar); C, 90% prediction interval coverage. Both in terms
of prediction error and coverage, sequential designs are better than SRSWOR. Within sequential
designs, prediction error for elicited data scenario gets smaller as correlation between real and expert
data differs from zero in either direction.

better than the SRSWOR design. Even the worst sequential design had an ob-
served prediction error that was 50% lower than the simple random samples. The
plot further shows that use of an informative expert (η 6= 0) produces a better sam-
ple. Observed prediction errors are highest for a noninformative expert (η = 0),
which is the same as ordinary sequential sampling with no elicited data, and fall
off quite rapidly asη gets farther from 0 in either direction. Even a moderately
informative expert (η = ±0.5) produces a sample that reduces prediction error
by more than 30% over ordinary sequential sampling (η = 0). Figure 4C shows
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that prediction intervals with better coverage are produced by ordinary sequential
samples (η = 0) as compared to simple random samples (73% vs. 67%). Moder-
ately informative experts (0< | η | ≤0.5) improve this still further (78.33%), and
coverage gets close to nominal as experts become more informative (88.25% for
0.5< | η | ≤1). In Figure 4B we see that improved coverage does not come with
less precision. In fact, prediction interval width is smallest for a sequential sample
based on informative elicited data, and largest for noninformative elicited data.
Prediction interval widths for ordinary sequential samples based solely on the
observed data are very similar to those produced by simple random samples.

To summarize the discussion of this section, we note that incorporation of
expert opinion, in terms of elicited data, improves estimation, prediction, and sam-
pling designs. An extremely important feature of our approach, which addresses
the concerns voiced by critics of the Bayesian paradigm (Royall, 1997; Mayo,
1996; Dennis, 1996; Efron, 1986) and needs to be emphasized strongly, is that
elicited data from an intentionally misleading expert can be usefully incorporated
into our analysis. This is in stark contrast with the effect of elicited prior from an
intentionally misleading expert in a Bayesian setting. Unless one has large amounts
of observed data (at which point Bayesian analysis is less influential anyway), such
a misleading prior has large influence on the Bayesian inferences.

NORMAL DATA WITH BINARY EXPERT OPINION

In this section we consider the situation where, although real data are con-
tinuous and normally distributed, expert opinion is elicited in the form of more
imprecise binary information. For example, in a pollution investigation where data
consist of amounts of contamination at different locations, it may be much easier
for an expert to provide binary values (high or low contamination) over the whole
study area, rather than coming up with exact numbers.

We now introduce the model that provides a basis for combining actual con-
tinuous data and elicited binary data:

• Let Yi be normally distributed with meanxiβ, varianceσ 2 and corr(Yi ,

Yj ) = γ d(i, j ), (i, j ) = 1, 2, . . . , N, whereγ is a measure of spatial de-
pendence,d(i, j) is the distance between locations indexedi andj, xi ’s are
covariates for locationi andβ, the vector of regression coefficients.
• GivenYi , conditionally,

(Ei |Yi ) ∼ Bernoulli

(
eη(yi−c)

1+ eη(yi−c)

)
(12)

independently,i = 1, . . . , N, where the log odds ratioη characterizes the
dependence betweenY andE and the thresholdc is a known constant.
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Note that, as the elicited data here has a Bernoulli distribution, the honesty param-
eterη is the log odds, which are positive for a good expert who mimics reality,
negative for a misleading expert, and close to 0, for a random expert.

Estimation and Prediction

We now investigate the effect of augmenting information by incorporating
binary data elicited from experts, on estimation and prediction. For that, we first
note that the modeling framework in (12) belongs to the class of generalized lin-
ear mixed model (GLMM) (Breslow and Clayton, 1993). Parameter estimates
for this GLMM are obtained by the Monte Carlo Newton Raphson methods
(McCulloch, 1997). Note that predictions must be based on the conditional distribu-
tion (Yi | Ys, E;β, σ 2, η), i /∈ s, which is difficult to evaluate analytically. In fact,
a Monte Carlo approach can avoid such tedious calculations. We use the Metropo-
lis Algorithm (Hastings, 1970) to generate a batch of realizations ofYi from its
conditional probability distribution (Yi | Ys, E;β, σ 2, η), i /∈ s, after plugging in
the parameter estimates. If we denote these values by (Y(1)

i ,Y(2)
i , . . . ,Y(B)

i ), then,
for a sufficiently largeB,

E(Yi |Ys,β̂,σ̂
2,η̂) ≈ 1

B

B∑
j=1

Y( j )
i

is our point predictor forYi . Note that in a similar situation in Section 5.1, we
used the maximum posterior as a point predictor. However, here we use the mean
of the posterior distribution to see whether prediction performance is sensitive to
the choice of a particular predictor. Nominal 90% prediction intervals forYi are
approximated by the 5th and 95th percentile values of the empirical distribution
function (Y(1)

i ,Y(2)
i , . . . ,Y(B)

i ). Details are provided in Das (1998).
Simulation results presented in Figures 5A to 5D show that the introduc-

tion of spatial dependence does not appreciably change estimation and predic-
tion properties. There is significant benefit from the incorporation of elicited
data (both good and misleading), and the choice of the posterior mean instead
of the posterior mode has no effect on the performance of the point predic-
tor. (Note that to facilitate comparison with previous plots, the transformation
(en − 1)/(en + 1) has been applied to theη’s in this and subsequent plots to
restrict their values between−1 and 1.) A couple of points are worth mention-
ing. First, we note that forη ≈ 0, the gain in estimation from using elicited
data is somewhat greater here compared to the normal normal hierarchy (Sec-
tions 3 and 4). This is because, unlike the normal hierarchy, hereη andβ are
both identifiable, and can be separately estimated based onE alone. Second,
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Figure 5. Simulation results for normal binary mixture, dependent case: A, ratio of observed
MSE(β̂) with elicited data, to MSE(̃β), calculated without elicited data; B, observed predic-
tion error; C, 90% prediction interval width (a dotted line indicates the value 1, where the
two scenarios would have similar results); D, 90% prediction interval coverage, solid line
for elicited data and dashed line for no elicited data. To facilitate comparison with previous
plots, the transformation (eη − 1)/(eη + 1) has been applied to theη’s in this and subsequent
plots to restrict their values between−1 and 1. Estimation and prediction error for elicited
data scenario gets smaller as correlation between real and expert data differs from zero in
either direction. Observe that elicited data from an intentionally misleading expert is also
useful.
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results show that though elicited data greatly improves predictions, as long as
the expert is informative (i.e.,| η | is high), for η∈ (−0.25, 0.25), point predic-
tions are slightly worse than those based solely on the observed data. How-
ever, as before, coverage of 90% prediction intervals (Fig. 5D) for elicited data
(mean of 89%) is closer to the nominal value than those based on observed
data alone (mean of 85%). Moreover, prediction intervals are narrow for infor-
mative experts and similar to those based on observed data for random experts
(Fig. 5C). Thus, the loss in precision for point predictions whenη∈ (−0.25, 0.25)
is compensated by improved prediction interval coverage. These results indicate
that using binary expert opinion in addition to hard data improves estimates, as
well as point and interval predictions even when it is in the relatively impre-
cise binary form, whereas the actual observations are continuous and spatially
correlated.

Sampling Design

We now do a simulation study of sequential sampling designs based on expert
opinion in the form of binary data. In this case, however, notice that (Yi | E,Ys) is
not a Gaussian random variable. So here, instead of including that locationi in the
sample, for which var(Yi | E,Ys) is the largest, we substitute var(Yi | E,Ys) by
the width of the prediction interval for theith location in the sequential sampling
scheme described in the previous section.

Note that hereη andβ are both identifiable, and can be separately estimated
based onE alone. To select the first sample, we first estimate the model parameters
based onE alone. Then, we generate a batch of realizations ofYi , i = 1, . . . , N,
from the conditional distribution (Yi | E) and get the Monte Carlo prediction in-
tervals from this empirical distribution function, selecting that location for which
width of the prediction interval is the largest. Selection of rest of the sample loca-
tions follows a similar procedure, except that once we have an initial samples, we
generateYi , i /∈ s, from the conditional distribution (Yi | Ys, E). Further details
appear in Das (1998).

We present results of the simulations graphically in Figures 6A to 6C. Sim-
ilar to the normal–normal mixture in Section 4.2, we see that sequential designs
perform much better than ordinary SRSWOR. Moreover, the use of informative
expert opinion produces a better sample; even for a moderately informative expert
(transformedη = ±0.5) prediction error is reduced by more than 54%, with better
coverage as compared to ordinary sequential design corresponding toη = 0 (92%
vs. 84.7% for a 90% nominal level).

Results discussed in this section show that augmentation of observed data
with even expert opinion, even in the imprecise form of binary data, can improve
substantially both estimation and prediction, as well as construct sequential sample
designs that perform better than ordinary sequential designs.
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Figure 6. Simulation results for sample design for normal binary mixture: A, ratio of observed
prediction error from sequentially designed samples using elicited data, to that from SRSWOR;
B, 90% prediction interval width; (a dotted line indicates the value 1, where sequential samples
with elicited data and SRSWOR are similar); C, 90% prediction interval coverage. Both in terms
of prediction error and coverage, sequential designs are better than SRSWOR. Within sequential
designs, prediction error for elicited data scenario gets smaller as correlation between real and expert
data differs from zero in either direction.

DISCUSSION

The availability of expert opinion in most environmental studies is a poten-
tially useful resource that can augment the observed data, which frequently is
sparse. To incorporate expert opinion, we present an approach that is based on
“elicited data.” There are some key advantages to this approach:

(a) Scientists generally think in terms of the data generation process. Hence,
eliciting data is, in our experience, more natural than eliciting a prior
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distribution on the parameters of a statistical model, which is purely a
modeler’s construct.

(b) Both intentionally misleading expert and a genuinely honest expert provide
information about the underlying process. Elicited prior from an inten-
tionally misleading expert can badly influence inferences in the Bayesian
paradigm, whereas elicited data from such an expert proves equally useful
in our approach.

A crucial issue, of course, is, Is it possible to elicit data in practice? We refer
the reader to Journel (1986) and Kulkarni (1984), two geologists, not statisticians,
for the practicality of such a proposal. We ourselves have been able to elicit data
from the experts regarding presence/absence of mammal species in Montana. A
detailed ecological analysis of these data is to be provided elsewhere.

When elicited data are obtained, we have illustrated, both theoretically and
using simulations, that incorporating expert opinion via elicited data substantially
improves estimation, prediction, and design aspects of statistical inference for
spatial data. Incorporation of model selection procedures should reduce the sensi-
tivity of this approach to model misspecification. More research is needed in this
direction.

The modeling approach presented here for combining observed data with
expert opinion is very general. We are not restricted to the particular scenarios
considered in this paper. For instance, in many ecological studies the question
centers on presence/absence of a species and its relation to habitat characteristics.
Responses are then binary instead of continuous. Methods presented here should
also be useful for this type of situation.
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