
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 85407417 11991 

Some Comments on Coordinate-Free and Scale-Invariant 
Methods in Morphometrics 

SUBHASH LELE 
Department of Biostatistics, The Johns Hopkins University School of 
Hygiene and Public Health, Baltimore, Maryland 21205 

KEY WORDS 
analysis, Superimposition, Shape change 

Euclidean distance matrix, Finite element scaling 

ABSTRACT The usual strategy for comparing biological shapes is to use 
some kind of superimposition of the two forms under study and then look at  the 
“residuals” as the shape change. In this paper, I take a careful look at this 
general strategy and point out some subtle but inherent and important 
pitfalls. Additionally an alternative approach based on Euclidean Distance 
Matrix representation is presented. It is applicable to  two- as well as three- 
dimensional objects. 

One obvious manifestation of biological 
processes such as growth, evolution, or ter- 
atogenesis is change in the form of an object. 
Form of an object involves both size and 
shape. In order to quantitatively com are 
forms and shapes we need a methoffor 
cataloguing the forms under consideration. 
Two types of data that are commonly used for 
this rocedure are landmark data and out- 

landmark data, alt ough many of the com- 
ments extend naturally to outline data. 

Several different methods have been de- 
velo ed for com aring shapes using land- 

and Benson, 1982; Goodall and Bose, 1987; 
Lewis et al., 1980). The purpose of this pa er 

and raise a few philosophical points with 
important practical implications. This paper 
also proposes a new method for com aring 
forms based on Euclidean Distance hatrix 
representation. The pro osed method works 
for three-dimensional o E jects and gives bio- 
lo ically interpretable quantities. 

?n this discussion, the form of the object 
refers to the eometric re resentation of the 

marks which may contain important infor- 
mation about the form of an object are lost in 
the anal sis of landmark data. The limita- 

accepted throughout this paper. 
For the sake of simplicity of exposition, I 

R line Ip ata. In this pa er I consider analysis of 

mar Yc data(e.g., 8 ookstein 1978,1986; Siege1 

is to take a careful look at these approac R es 

ob‘ect by the 5 andmarks. 5 he curvature and 
ot h er features of the surfaces between land- 

tions of P andmark data are recognized and 

consider only the case in which one is com- 
paring two objects for which landmark data 
are available. Comparing forms or shapes of 
two oups of objects is considered in Lele 
and Rchtsmeier (1991a,b). Throughout this 
paper, form of an object is defined to be that 
characteristic which remains invariant un- 
der translation, rotation, and reflection of 
the object. Sha e is defined to be that char- 

translation, rotation, reflection, and scaling. 
SUPERIMPOSITION METHODS 

With the exception of Finite Element Scal- 
ing Analysis (Lewis et al., 19801, almost all 
morphometric methods em loy superimpo- 

Let us look close1 at how su erimposition is 

be two (K  x 2) or (K x 3) matrices of land- 
mark coordinates where K is the number of 
landmarks. A general procedure for su er- 

acteristic whic R remains invariant under 

sition to calculate form or s R ape difference. 

implemented for P andmark CQ ata. LetXand Y 

im osition of these figures can be descri \ ed 
as F ollows: 

Step 1: Fix one of the figures, say X ,  as the reference 
figure. 

Step 2: Select positive real valued functions &(. ) 

called the loss functions, i = 1,2, . . . , K. Let 
d(ix,iy) be the distance between landmark i 
in figure X and figure Y ,  respectively. 
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Step 3: 

Step 4: 

Translate and rotate figure Y so that 
K 

+,[d(iX, iy)I is minimized. 
i = l  
If one wants only the shape difference, scale 

I? 

the figure Y so that 2 +,[d(Z, zy)l is mini- 
mized. c = l  

Followin are two examples of the loss func- 
tions +,(.7. 

1. Ordinary Procrustes Analysis (Goodall 
and Bose, 1987): In this procedure two fig- 
ures are superim osed in such a manner 
that the sum o f t  e s uared distances be- 

mized. Hence the corresponding loss func- 
tion is given by 

tween corresponding % andmarks is mini- 

c $ ~ ( x )  = x2 for all i 

2. Weighted Ordinary Procrustes Analysis 
(Goodall, 1991): In this procedure one mini- 
mizes the weighted sum of s uared distances 
between the corres onding P andmarks. The 
corresponding loss F unction is given by 

(b,(x) = Wix2 where W, are preselected 
weights 

There are infinitely many different func- 
tions that can be chosen as loss functions. As 
a result, by selectively choosing a loss func- 
tion one can support almost any hypothesis 
about how two forms differ. This is demon- 
strated by considering two triangles X and Y 
with the following landmark coordinates: 

x= [!El Y =  [!El 
Comparing these two triangles using super- 
imposition schemes with different loss func- 
tions yields quite different results. 

Edge matching method: In this method 
one fixes a particular edge, say (1,2) in object 
X (Fig. la)  and then translates, rotates, and 
scales Y such that the edge (l,2) in Y matches 
with the same edge in X exactly. Because 
there are three different edges (1,2), (2,3), 
and (1,3), three different conclusions about 
where and how the two shapes differ can be 
drawn (Fig. la-c). Although the particulars 
vary, all changes appear to occur at only one 
landmark when using this method. 

Ordinary Procrustes Analysis: Figure Id 
shows the direction and magnitude of the 
shape difference as depicted by this method. 

It concludes that changes have occurred lo- 
cal to all three landmarks. 

If one performs multiple weighted ordi- 
nary procrustes analyses with different 
weights, different shape changes can be pro- 
duced. 

Robust theta-rho fit (Siege1 and Benson, 
1982): Figure l e  shows the results of the 
robust fit algorithm. This method concludes 
that changes have occurred at two of the 
three landmarks. 

Even when the same two objects are being 
compared, vastly different conclusions about 
how the differ in shape seem possible. Sci- 

settling. 
In mathematical terms the problem with 

su erim osition methods can be stated as 
follbws. pl’ollowing Goodall (1991), suppose 
Y = b(X + JIB + lkt’  where b > 0 is a sca- 
lar, B is an orthogonal matrix, and t is a 
vector. Here t corresponds to translation, b 
corresponds to size difference, B corresponds 
to rotation, and, finally, J corresponds to the 
“sha e difference.” But (b,t,B,J) are noniden- 

tions of these four variables that can lead us 
fromX to Y ,  as illustrated in Figure 1. Which 
combination should we take as the true 
one? To make the problem identifiable, 
superimposition methods use the follow- 
ing constraint: Choose (b,t,B,J) such that 

C +i[d(iX,iY)l is minimized for arbitrarily 

chosen functions +i(.). It is obvious that the 
choice of i(.) affects inferences about J ,  the 

convincing argument or choosing any par- 
ticular loss function over others. 

A biologist is not interested in merely test- 
ing the null hypothesis of similarity of forms 
or shapes, but also in localizing fordshape 
differences. For example, in the study of 
human dysmorphology when planning for 
corrective plastic sur eries, it is critical for 

the forms are different. In evolutionary stud- 
ies it is important to know where morpholog- 
ical changes have occurred because the 
nature of such changes may impact on s s- 

tion +(-) affects J ,  the shape difference 
matrix, localization of the differences in form 
is roblematic when using superimposition 
to Find the shape differences. 

entifica P ly, these varying conclusions are un- 

tifia E le! That is, there are many combina- 

K 

i = l  

P shape dif P erence. In m opinion, there is no 

the surgeon to know w a ere and by how much 

tematic, functional, or paleontolo ‘cal i y- 
potheses. Because the choice of the P oss func- 
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b 

a 

e 
Fig. 1. Shape difference as shown by the dotted drawn by the ordinary procrustes analysis. This says 

vectors between the same two trian les using different that all three landmarks have chan ed (e) The conclu- 
loss functions: ( a 4  The conclusions%-awn by method of sion drawn b the robust theta-rho i t .  It says that only 
ed e matchin Changes are attributed to one landmark two landmarzs have changed. This example thus illus- 
on&, the lanimark however de ends on the matched trates the arbitrariness of the conclusions drawn by 
edge which is chosen arbitrarik. (d) The conclusion superimposition methods. 
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It should be noted that various methods 
for comparing shapes where only outline 
data are available can be looked upon as 
superimposition methods. All the above crit- 
icisms apply to them as well. 

Is the situation hopeless? I do not think so. 
There are at least two methods for compar- 
ing biological shapes that do not involve 
superimposition. 

AVOIDING SUPERIMPOSITION 
Finite element scaling analysis (FESA) 

proposed by Lew and Lewis (1977) com ares 
two forms without superimposition. 1 de- 
tailed discussion of this method is available 
in Cheverud and Richtsmeier (1986). Al- 
though the method does not re1 on superim- 

tures of this method are troublesome: 

1. Choice and effect of the homology func- 
tion: The homology function determines the 
plotting of the pseudohomologous points in 
the interior of the element. The choice of this 
function can alter the form difference. 

2. Choice of the element sha e and design: 

is discretised depend on the experimenter. 
Unfortunately both these choices affect the 
form difference (Richtsmeier et al., 1989). 

3. When a landmark is shared by different 
elements, there seems to be no unique way to 
calculate the form difference at such land- 
marks. 

position, in my opinion, the fy  ollowing fea- 

The type of elements used and R ow the object 

Thus results of the form comparisons us- 
ing superimposition methods are affected by 
the choice of the loss function whereas re- 
sults from FESA are affected by the choice of 
the homology function and the element de- 
sign. On the positive side, FESA can be used 
to represent the form difference gra hically 

one should remember that these raphics 

which may not represent the physical prop- 
erties of the interior. 

Some of these concerns re arding super- 

raised previously in the literature. For a 
recent review see Lestrel(1989). 

INVARIANCE PRINCIPLE, MAXIMAL 
INVARIANTS, AND COMPARISON OF FORMS 
In this section, I discuss a principle which 

can be used to evaluate different methods of 
form comparison. Mathematically oriented 

using Thompsonian-type grids. €f owever, 

very much depend on the homology B unction, 

imposition methods and FE 5 A have been 

readers may refer to Cox and Hinkely (1974) 
for more details on the invariance rinciple 
and maximal invariants. Here ? discuss 
these ideas at a mathematically less rigorous 
level. 

As defined earlier, the form of an object is 
that characteristic which remains invariant 
under translation, rotation, and reflection of 
the object. This definition suggests the fol- 
lowing principle. 

Invariance principle 

All the scientific inferences concerning the 
forms of objects should remain invariant 
under translation, rotation, and reflection of 
the ob'ects. 

sider a two-dimensional object with four 
landmarks. This object is represented by a 
(4 x 2) matrix of real numbers consistin of 
(X, Y) coordinates of four landmarks. {ow 
suppose we translate and rotate this object 
and measure the coordinates of the same 
four landmarks. The (4 X 2) matrix now ob- 
tained is different than the original (4 x 2) 
matrix. The following two matrices, al- 
though different, correspond to the same 
object: 

To i 1 lustrate the invariance principle, con- 

In fact, 

x* = X B  + 1 t 

where 

1.5 0 

and 
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1 =  

1 1  
1 1  
1 1  

I I  1- 

In general, any translation, rotation and 
reflection ofX can be expressed as 

X * = X B + l t  

where B is a (2 x 2) ortho onal matrix corre- 

2 x 2 diagonal matrix of real numbers corre- 
sponding to translation, and 1 is a matrix of 
1s. Similar operations can be defined for a 
three-dimensional object. 

Note that if one is interested only in the 
form of the object, given that form of an 
object is invariant under translation, rota- 
tion, and reflection, the representations X 
and X* are e uivalent. 

all matrices X*s that can be obtained by 
choosin different values of B and t. All of 

matrix in this collection is equivalent to  
every other matrix. Note also that X belon s 
to this collection when t = 0 and B = I .  8 e 
refer to such a collection of all matrices 
which are equivalent to each other (because 
they are translations, rotations, and/or re- 
flections of each other) as an “orbit.” 

Consider the space of all (K x 2) matrices. 

sponding to rotation an % reflection, t is a 

Let us fix sr and consider the collection of 

these X 8 s are equivalent to X .  In fact every 

the equithermals on a weather map or the 
contours on a to o aphical map. 

Now let X an Y e two different ob‘ects in 
the sense that they are not equivaent to 
each other, i.e., they lie on two different 
orbits in the landmark coordinate space. 
How should we quantify the “form differ- 
ence” between X and Y? 

Suppose we simp1 take a coordinatewise 
difference between $ and Y viz. X - Y and 
define it as the form difference between X 
and Y. Clearly this “form difference” is not 
invariant under rotation or translation of X. 
That is, letX* = X B  + 1 t, thenX - Yis not 
equal toX* - Y.  But the invariance principle 

!I 
dpf 

demands that the definition of form differ- 
ence be such that it is invariant under trans- 
lation, rotation, and reflection of X or Y or 
both. Hence this naive definition of form 
difference does not seem satisfactory. 

To uantify the form difference betweenX 
and 2 properly, we need to introduce the 
concept of maximal invariant. Let M(.)  be a 
function defined on the landmark coordinate 
s ace such that it assigns the same value to 

assi s different values for oints that are 

equivalent thenM(X) = M ( V ,  and ifX and Y 
are not e uivalent thenM(X) = M ( V .  Such a 

It is also important that this functionM(.) be 
such that given its value one can construct 
the configuration of K points representing 
the original object, thus retaining all the 
information about the form of an object as 
re resented by K landmarks. 

!!hppose such a function M ( . )  exists. Then 
the domain of this function is the landmark 
coordinate space and the range of this func- 
tion is called a maximal invariant space. 
Note that an orbit in the landmark coordi- 
nate space maps to a single point in the 
maximal invariant space (see Fig. 2). 

Suppose now we define form difference 
betweenX and Y in terms of M(X)  and M ( V ,  
then this form difference (whatever its defi- 
nition is!) is invariant to the rotation, reflec- 
tion, and translation of X or Y or both. This 
follows because M(X) and M ( V  are invariant 
to these operations, the form difference de- 
fined in their terms thus satisfies the invari- 
ance principle. This sug ests that form dif- 
ference should be define f and studied in the 
maximal invariant space. 

a P 1 the points which are on the same orbit but 

on r ifferent orbits. Thus, i P X and Y are 

function I 4  (.) is called a mmimal inuariant. 

EUCLIDEAN DISTANCE MATRIX ANALYSIS 

Since the form of an object is invariant 
under translation, rotation, and reflection, it 
follows from the previous section that an 
approach for comparing forms should start 
with a representation which is invariant 
under these operations. Such a representa- 
tion for landmark data is ‘ven by the Eu- 
clidean distance matrix ( E!% M). In the fol- 
lowing, this representation is described in 
detail and a method is introduced that uses 
the EDM to compare forms. 
Euclidean distance matrix representation 
Suppose that the object under study is two 

dimensional and has K landmarks. Consider 
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Fi 2 A ictorial representation of the action of a Maximal Invariant. Maximal invariant 
M( .?maps a t  the points on an orbit to a single point in the maximal invariant space. 

the following matrix of all possible distances 
between pairs of landmarks. 

0 d(1,2) d(1,3) . . .  
0 9 * * 

This is a K x K symmetric matrix whose 
(iJth element corresponds to the elucidean 
distance between landmarks i a n d j  on the 
object. Since this is a matrix of distances, it is 
clear that it is invariant under translation, 
rotation, and reflection of the object. The 
following theorem shows that this represen- 
tation retains all the information ertaining 
to the form of an object that is ava!able from 
landmark data. We call the Euclidean Dis- 
tance Matrix a Form Matrix. 

Theorem 1: Let X be a landmark coordi- 
nate matrix correspondin to a ven object 
with K landmarks in R(27. Let %cX, be the 
form matrix corres onding to the same ob- 

ven F R ~ ,  one can always con- 
ject. struct Then a con $ iguration ofKpoints inR(21, say 
X ,  such that X is some translation and 
rotationlreflection ofX.  

Proof: Follows from Theorem 14.1 of Mar- 
dia et al. (1979). 

This result holds also for three-dimen- 
sional objects. In fact, using this result one 

can characterize the form space of all objects 
in D-dimensional Euclidean space R(D) with 
K landmarks as follows: 

Theorem 2: The form space of all objects 
in R(D) with K landmarks is equivalent to 
the s ace of all K x K symmetric positive 
semi a efinite matrices of rank D. 

Proof: This again follows from Theorem 
14.1 of Mardia et al. (1979). 

The above theorem gives a characteriza- 
tion of the form space [or what Kendall 
(1989) calls a presize and shape space], pro- 
vided reflection is allowed. Note that this 
theorem also gives a very nice decom osition 
of the form space of all figures with !k verti- 
ces. All K vertex figures on the plane corre- 
spond to all K X K symmetric 
semidefinite matrices of rank 2. All vertex 
figures in three dimensions correspond to all 
K x K symmetric positive semidefinite ma- 
trices of rank 3. Moreover, since a matrix can 
never be of rank 2 and also of rank 3 these 
spaces are disjoint. Thus R[K(K - 11/21 
space is decomposed into K disjoint sub- 
sets-one corresponding to all fi res in the 
plane, one corresponding to a1 !? figures in 
three dimensions, etc. Of course there is one 
subs ace which corresponds to no figures at 

one wants to choose a statistical model for 
this set of linear distances, one has to make 
sure that the sample space has the appropri- 
ate rank, either two or three, in order for the 
samples to corres ond to two or three dimen- 

(1990) for further discussion. 

ZFositive 

all. rF his theorem also suggests that when 

sional objects. sp ee Lele and Richtsmeier 
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Theorem 3: The form matrix is a maximal 
invariant under translation, rotation, and 
reflection. 

Proof: Let X and Y be two landmark coor- 
dinate matrices corresponding to two ob- 
jects. 

a. It is straightforward to check that 

F ( X )  = F(XB + 1 t) 

for all orthogonal matrices B and (2 x 2) 
diagonal matrices t. This follows because 
distances between landmarks are invariant 
under these changes. Thus if X and X* are 
e uivalent, F(X) = F(X*). 8. To demonstrate maximal invariance, it 
is necessary to show that ifF(X) = F ( Y )  then 
Y = XB + 1 t for some B and t. This follows 
from Theorem 1. 

Based on this maximal invariant, the Eu- 
clidean distance matrix, it can be see that the 
form of an object with K landmarks can be 
represented as a oint in the L [= K(K - 1)/ 
21-dimensional 2 uclidean space. In fact it 
has to belon to (a subset of) the positive 

uadrant wit a the axes excluded. Let us call 
%is a “form space.” 

In order to compare two forms, one natu- 
rally needs to define a distance function on 
the form space. By the very nature of the 

roblem, there are several different choices. 8 cientific considerations dictate this choice. 
I suggest the following criteria for such a 
choice. 

Let D(. , .) denote the distance function. 

1. Given F ( X )  and the metric DCX, Y) ,  one 
should be able to construct F(Y) uniquely, 
i.e., given figure X and the form difference 
between X and Y,  one should be able to  
construct figure Y uni uely. 

b. The metric D(. , ! should be devoid of 
any subjective choices of quantities such as 
loss functions. As shown earlier these 
choices can be scientifically dangerous. 

c. The metric D(. , .) should be interpret- 
able biologically. 

Let F(A) and F(B)  be two form matrices 
corres onding to two objects A and B in R(D) 

trix D(B,A) is defined as follows: 
with I! landmarks. The form difference ma- 

where 0/0 = 0. Note that only the upper 
dia onal part of this matrix is necessary to 
stu % y the form difference. This is of size 
K(K - 1)/2. 

It is eas to  check that the form difference 

above intuitively reasonable requirements. 
The form difference matrix can also be used 
for the inter retation and explanation of the 
underlying Biological processes. Each entry 
in the form difference matrix tells us about 
the percentage change in the distances be- 
tween the landmarks involved. How to inter- 
pret these changes in terms of the biological 
processes depends on the problem at hand 
and the biologists’ in ut becomes important 

matrix.D( 3; , Y )  = [F,j.(X)/F,j.(Y)I satisfies the 

[see Richtsmeier an c r  Lele (1990) for an ap- 
plication]. 

Given this distance function one can now 
define equality of forms and equality of 
shapes in the following manner: 

Definition 1: Two objectsA and B are said to 
have the same form if all the off-diagonal 
entries of D(B,A) are equal to 1. 

Definition 2: Two objectsA andB are said to 
have the same shape if all the off-diagonal 
entries of D(B,A) are equal to c ,  for some 
c > 0. Or equivalent if max D,/min D,, = 1. 

J > l  J ” I  

Definition 3: If two forms are such that 
D(B,A) does not satisfy either of the condi- 
tions then they have different forms. The 
ratios smaller than 1 denote shrinking in B 
as compared to A, and the ratios larger than 
1 denote stretching in B as compared to A. 

The form matrix or the form difference 
matrix is fairly large. A natural question is: 
Can a subset of these landmarks be adequate 
for comparison of forms? Unfortunately, con- 
sideration of only a proper subset of these 
distances can lead one to erroneous conclu- 
sions, as shown in the following example. For 
the sake of simplicity, sup ose we are com- 

!uppose we consider only two distances, say 
d(1,2) and d(2,3). Based on this subset con- 
sisting of two distances only, all the objects 
in Figure 3 would be considered to have the 
same form! 

Mosimann (1970, 1975a,b) has sug ested 

However, he neither prescribes (necessarily) 
the distances between landmarks nor how 
many distances are needed in order to re- 

aring two objects with t R ree landmarks. 

use of linear distances for studying s fl apes. 

serve all the information on the form o H the 
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Fig. 3. Inadequacy of the proper subset of all possible 
distances to  represent the form of an object completely: 
All the trian les in the above figure have the same sides 
d(1,2) and 82,3), however they do not have the same 
form. If one considers only a subset of all possible dis- 

object as is available in the landmark data. 
Thus, he ends up with a subset of all possible 
distances, which could be inadequate as 
shown above. Strauss and Bookstein (1982) 
also can be criticized on the same ground. 

One cannot claim, however, that all 
K(K - 1)/2 distances are necessary to  con- 
struct the relative locations of K landmarks. 
For example, it is easy to show that for a 
two-dimensional object with K landmarks, 
properly chosen 3(K - 2) distances are suffi- 
cient to construct the relative locations of the 
landmarks. However, a particular subset 
may not be sensitive to  a gven form chan e. 

form change is, one cannot select a “good 
subset oftheseK(K ~ 1Y2 distances. Hence I 
suggest the use of all the distances. 

Shape comparisons 
Following the same logic, it is clear that 

the shape of an object corresponds to the 

Since one does not know a priori what t a e 

3 

2 1 
tances namely d(1,2) and d(2,3), one will declare these 
triangles to have the same form. The conclusion is that 
one has to  consider allK(K - 1)/2 distances to completely 
specify the form of an object with Klandmarks. 

maximal invariant under scaling operation 
on the form space. 

Let x = (xl, x2, . . . , xL) be a point in the 

form space. Let Ilk I = (c xi”) I’ denote the 

norm of this vector andE(x) = (c0s-l xi/llxl I ,  
i = 1,2, . . . , L )  be the euler angles. 

Theorem 4: E(x )  is a maximal invariant 
under the group of scaling. 

Proof: (i) It is easy to check that 
E(x) = E(cx)  for all scalar 
c > 0. 

(ii) E(x)  = E ( y )  implies that 
y = cx  for some scalar c > 0. 

The second assertion follows because if two 

L 

i =  1 

oints have the same 

different positions. 
the shape of an object. 

F ie on the same ray 
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A better wa to represent shape of a con- 

ossible angles between triplets of points. 
kowever, it is not known how many angles 
are needed to specify a shape com letely and 
what conditions on the values o f t  R ese angles 
would ascertain the existence of a figure in a 
given Euclidean space. Moreover, in general, 
angles are more difficult to interpret than 
are distances. I will not pursue this approach 
here. 

Arbitrariness of the size measures 

figuration of i- points would be through all 

The above geometr also helps us under- 

nition of the size measure. One could define 
shape umambiguously by the euler angles, 
because of a natural and universally agreed 
u on mathematical group structure under 

rotation, reflection, translocation, and scal- 
ing. However, there is no such natural 
and universally agreed upon mathematical 
grou structure under which size is invari- 
ant. t h i s  leads us to defining a roblem- 
based natural” grou under whiiR size is 

ora of size measures. For the sake of demon- 
stration, I will consider an unrealistic two- 
dimensional space and show how the 
maximal invariants for different size mea- 
sures look (Fig. 3a-d). The reader can use 
hisher ima ‘nation to draw corresponding 

Note that in Figure 4 b 4 ,  all forms that lie 
on a particular curve have equal size but 
different shapes, just as all the forms lyin 
on a given ra through the origin have equa 

trariness of the size measure makes the 
decomposition of form difference into sha e 

question is: should we formulate our re- 
search questions in terms of form rather 
than size and shape? 

In summary, note the following features of 
EDM analysis for the comparison of forms: 
(1) The method does not require superimpo- 
sition and thus there is no need to choose a 
loss function arbitrarily, (2) the method does 
not infer anything about how the interior of 
the object might have defomed. The only real 
information one has is the relative ositions 
of landmarks, or e uivalently the $stances 
between them. It isletter if one uses this and 
on1 this information to analyze the form 

sitions of the interior points which are unob- 

stand the inherent ar i: itrariness in the defi- 

w K ich shape is invariant, namely that of 

invariant and hence t !l e existence of a pleth- 

pictures in t a ree and higher dimensions. 

5 
shape but di P ferent sizes (Fig. 4a). The arbi- 

difference and size difference arbitrary. T K e 

di d erence. Postulating about the relative po- 

served is unsound and unnecessary, and (3) 
the form difference is defined in terms of a 
maximal invariant and hence it satisfies the 
Invariance Principle. 

However there are two shortcomings of the 
Euclidean Distance Matrix approach: 

1. The form matrix and the form difference 
matrix are very large, making interpretation 
difficult. However one can arrange this ma- 
trix in an increasing or decreasin order. The 

tremes, small and large ratios, are important 
biologically. See Richtsmeier and Lele (1990) 
for an illustration of such analysis. 

2. The form difference cannot be repre- 
sented gra hically. However, this seems to 

methods that can represent the form differ- 
ence pictorially seem to resort to some kind 
of sub’ective choice such as the nature of the 

landmarks corresponding to t a e two ex- 

be due to t R e nature of the problem. All the 

trans t‘ ormation or the loss function. 
CONCLUSIONS 

The conclusions of this discussion are as 
follows: 

1. The method of superimposition for com- 
paring shapes is subjective. Almost any the- 
ory can be sup orted b choosing convenient 
loss functions. % B  his is emonstrated through 
examples. I feel that this subjectivity is sci- 
entifically dangerous. Similar criticisms ap- 
ply to finite element scaling analysis and the 
use of homology functions. 

2. Consideration of the invariance princi- 
ple leads one to the Euclidean distance ma- 
trix representation of the object. The same 
consideration leads to certain definitions of 
form difference and shape difference. These 
are biologically interpretable. 

3. While the form difference matrix is 
large, the necessity of considering the com- 
plete matrix and not a subset of it is demon- 
strated. Methods to extract biologically rele- 
vant information from this matrix merit 
development. 
4. Statistical testing based on these invari- 

ant quantities merits further study. 

Lastly, I would like to mention that no 
approach is devoid of shortcomings and 
counterexamples. They do not necessaril 
make the approach obsolete or nonsensical 
However, a researcher should be aware of 
the merits and demerits of these approaches 
when drawing conclusions of scientific im- 
portance. 
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Fig. 4. Maximal invariants under different mathe- 

matical groups. (a) The maximal invariants under the 
group of scaling. All the forms on a ven curve have the 
same shape but different sizes. (b) @he maximal invari- different shapes. 
ant when size of the form (ry) is defined to bey. (c) The 

maximal invariant when size is max(r,y); (d) The maxi- 
mal invariant when size measure is Vx2 + y2. In (b), (c), 
and (d) the forms on the same curve have equal size but 
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