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Euclidean Distance Matrix Analysis (EDMA): 
Estimation of Mean Form and Mean Form 

Difference 1 

Subhash  Lele  2 

Euclidean Distance Matrix Analysis (EDMA) of  form is a coordinate free approach to the analysis 
o f  form using landmark data. In this paper, the problem of  estimation of  mean form, variance- 
covariance matrix, and mean form difference under the Gaussian perturbation model is considered 
using EDMA. The suggested estimators are based on the method of  moments. They are shown to 
be consistent, that is as the sample size increases these estimators approach the true parameters. 
They are also shown to be computationally very simple. A method to improve their efficiency is 
suggested. Estimation in the presence of  missing data is studied. In addition, it is shown that the 
superimposition method of  estimation leads to incorrect mean form and variance-covariance struc- 
ture. 

KEY WORDS: coordinate free approach, invariance principle, moment estimators, non-central 
chi-square, nuisance parameters, procrustes methods, superimposition, missing data. 

INTRODUCTION 

Morphometrics, or the quantitative analysis o f  biological forms is an important 
subject. Many different kinds of  data are utilized to analyze biological forms. 
Traditionally scientists have used various linear distances across the form. The 
technological advances in the last two decades have enabled the scientists to 
collect data on the complete outline o f  the object or coordinates of  certain 
biological loci called landmarks, This paper concerns itself with the statistical 
analysis of  landmark coordinate data. In particular, we suggest a method to 
estimate the mean form and variance-covariance parameters given a sample of  
n individuals from a population. These estimators are shown to be consistent, 
that is they approach the true population values as the sample size grows. In 
paleontology it is common to obtain fossils which are incomplete, that is all the 
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landmarks may not be present on all the individuals. It is shown that the method 
suggested in this paper handles such missing data problems easily and elegantly. 

The last two sections of the paper study the superimposition methods of 
estimation of form. It is proved that these methods in general lead to inconsistent 
and asymptotically inefficient estimators of form and shape. Variance-covari- 
ance parameter estimators are also in substantial error. Thus the testing proce- 
dures based on these methods can lead to incorrect results. 

SOME PRELIMINARIES 

This section develops notation and states the statistical assumptions and 
models used throughout the paper. Most biological objects contain specific points 
referred to as biological landmarks. Landmarks are structurally consistent loci 
which can have evolutionary, ontogenetic, and/or functional significance (see 
Van Valen, 1982; Roth, 1988; Lele and Richtsmeier, 1991 for more discussion 
and examples). We assume that the biological objects under study have K land- 
marks and have dimension D which is either 2 or 3. We also assume that K > 
D. 

Thus a biological object is represented by a K x D matrix of real variables 
with the j th  row corresponding to D coordinates of the j th  landmark. Let us 
call this matrix a "landmark coordinate matrix." 

Let X i be the landmark coordinate matrix for the ith individual in a sample 
of size n from a given population. Thus our data consists of n K x D matrices, 
namely X1, X2 . . . . .  Xn. 

Our statistical model is the perturbation model used by Goodall (1991) 
among others. Let M be a K x D matrix corresponding to the mean form. Let 

Xi = (M + Ei )r i  + ti 

Here, Ei is a (K × /9) matrix valued Gaussian random variable with mean 0 
and variance r,• ® ~D where ® denotes Kronecker product. ~ r  is a K x K 
positive definite matrix representing the variance-covariance of the columns of 
Ei and ED is a D x D positive definite matrix representing the variance-co- 
variance of the rows of E i. Thus, each column of Ei is a Gaussian (K x l) 
vector with mean 0 and variance-covariance r~ and each row a Gaussian (1 × 
D) vector with mean 0 and variance-covariance ~D- Fi is a (D x D) orthogonal 
matrix representing rotation and/or reflection of (M + El), and ti is a K x D 
matrix with identical rows representing translation. Under these assumptions, 

Xi ~ MNKxD(MFi  + ti, ~'K, F fS 'oFi )  

for i = 1, 2 . . . . .  n. Here " M N "  stands for "matrix normal." Parameters of 
interest are (M, ~;K, ~D) and (F/, t i )  i ---- 1 ,  2 ,  . . . , n are the nuisance param- 
eters. 
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In words the perturbation model may be explained as follows. To generate 
random "'geometrical objects" or K point configuration in a D dimensional 
Euclidean space, nature first chooses the mean form M (a K x D matrix whose 
columns sum to zero), perturbs each point according to a Gaussian distribution 
(not necessarily independently of the other points). The K point configuration 
so obtained is then rotated and/or reflected by an unknown angle and translated 
by an unknown amount. Such perturbed, translated, and rotated/reflected K point 
configurations constitute our data. Since form is considered invariant under 
rotation/reflection and translation, unknown rotation/reflection angles and trans- 
lation are not of interest (hence nuisance parameters) when studying " fo rm"  of 
an object. M, the mean form and the variance-covariance matrices t2 K and GD 
which dictate the amount of  the correlatedness of perturbations are scientifically 
interesting parameters. 

IDENTIFIABILITY AND ESTIMABILITY OF THE PARAMETERS 
OF INTEREST 

In the following, we study the identifiability and estimability aspects for 
the parameters M, EK, and Up. 

Identifiability 

Note that even if there were no nuisance parameters, r.~ (or symmetrically 
~D) is identifiable only up to a constant, that is, distributions corresponding to 
parameter combinations (M, ~K, ~D) and (M, cr~ x, 1/cS, D) are not distinguishable 
for any c > 0. This means that ~D or ~x can be estimated only up to a constant 
multiple. 

As a consequence, (in the case that ED has no zero element on the diagonal) 
without loss of generality, we assume that the first entry in ED is 1; that is 

P2 

L ~2 = o r  ~3 = ,01 a2 P3 
P 

02 P3 a3 

Here p's denote the covariances between the perturbations along the D axes, at 
a given landmark. 

Estimability 

From Neyman and Scott (1948), we know that if there is only one obser- 
vation per stratum, variance is non-estimable. Thus, typically Zx is not estimable 
in this problem (Lele, 1991b; Lele and Richtsmeier, 1990). 

Assume that (without affecting the biological problem) M is such that its 
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columns sum to zero, that is, it is a centered matrix. Now suppose we transform 
the Xi's so that their columns sum to zero, that is we also center X~'s. Let us 
denote these centered Xi's by X~. Then simple algebra shows that 

X 7  - MN(MFi ,  ~ * ,  rf or ) 
where ~,~ is a K x Knon-negative definite matrix of rank (K - 1) corresponding 
to the variance of the columns of X~. Note that even in the absence of the 
nuisance parameters F i corresponding to rotation Eg is non-estimable, but ~* is 
estimable. 

Results in the sections on consistent estimation of E~: and ~D show that 
these parameters are estimable. 

Invarianee and Nuisance Parameters 

Whenever there are nuisance parameters, the first order of  business is to 
eliminate them. For the Gaussian model considered previously, it turns out that 
a very simple transformation attains this goal. 

Let us begin with a simple model (M, ~x,  ID), that is, 

X i ~ MNK × D (Mri  + ti, Y~k, ID) 

and 

X~ - MNK×~(MF i, ~c ,  Io) 

It follows from standard theory (Arnold, 1981, Chap. 17, Sect. 3) that 

Bi = XiC (X ic)r ~ WishartK(D ' ~,~, M M  T) 

that is, the random variables Bis are (K × K) matrices and have a Wishart 
distribution independent of the nuisance parameters. Moreover, using B~, B2, 
. . . .  B n, it is possible to obtain consistent estimators of  E ~ and MM T. A natural 
question then is: Is it enough to estimate M M  T instead of M? Does MM y 
represent " f o r m "  of the object given by the landmark coordinate matrix M? 
These questions are treated in the next section. 

MAXIMAL INVARIANTS 

The form of an object is defined to be that characteristic which remains 
invariant under translation, rotation, and reflection. Thus if X is a K × D matrix 
of  landmark coordinates and X* = XF + t, where 17 is an orthogonal D × D 
matrix representing rotation/reflection and t is a K × D matrix (with identical 
rows) representing translation, then Form (X) = Form (X*). The concept of 
maximal invarimat comes to play an important role. 

Definition. Let S denote the space of all K × D matrices or equivalently 
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the space of all objects in dimension D represented by K landmarks. Let F ( . )  
be a function defined on this space such that for X and X* in S, F(X) = F(X*) 
if and only if X* = XF + t where F is a D × D orthogonal matrix and t is a 
K x D matrix with identical rows. In other words, F(X) = F(X*) if and only 
if X* is just a rotation, reflection, and/or translation of X. 

Then F( - )  is called a maximal &variant defined on the space S under the 
group of rotation, reflection, and translation transformations. 

It is obvious from the definition that any one-one function of a maximal 
invariant is also a maximal invariant. We consider the following maximal in- 
variant used in Lele (1991a, b) and Lele and Richtsmeier (1991, 1992). 

Euclidean Distance Matrix Representation 

Note that an object X is just some configuration of K points in a D dimen- 
sional space. Consider the following square symmetric matrix, known as Eu- 
clidean Distance Matrix in the multidimensional scaling literature (Mardia et 
al., 1979, Chap. 14): 

F ( X )  = 

R 

0 d (1 ,2 )  d (1 ,3 )  . . .  d(1, K) 

d(2, 1) 0 d(2, 3) . . .  d(2, K) 

d(3, 1) d(3, 2) 

0 
m 

where d(f, m) denotes the Euclidean distance between landmarks e and m. For 
the sake of brevity we write F(X) = [Fem] and call it a form matrix. 

Theorem 1 of Lele (1991a) proves that F ( . )  is a maximal invariant under 
the group of transformations consisting of translation, rotation, and reflection. 
Thus, F ( . )  retains all the relevant information about the form of an object. 

In this formulation, any configuration of K points is represented by a point 
in a K(K - 1)/2 dimensional Euclidean space. For example, a configuration of 
three points (a triangle) corresponds to a point in R 3 with coordinates corre- 
sponding to the lengths of three sides. We know from elementary geometry that 
these three lengths have to satisfy the constraint, that the sum of any two sides 
is at least as great as the third. Thus the form space of three point configurations 
is given by: 

M =  { ( x , y , z ) : x  >_ O,y >_ O,z  >- 0 and 

x + y > - - z , x + z  > _ y , y + z > _ x }  

Form space for K _> 4 is difficult to express. However, the following theorem 
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establishes the relationship between number of landmarks K, dimension of the 
object D and symmetric positive semi-definite matrices. 

Theorem 1. Let Eu(X) = [Fe2m], 

1 1 r 
A(X)  = - ~  Eu(X), n = n - ~ (1 1) 

where 1 = (1, 1, . . .  , 1) a 1 x Kvector ,  and 

B(X) = HA(X)H = Xc(X¢) T 

where X c is the mean centered X. B(X) is known as centered inner product 
matrix. 

If  the configuration of K points lies in a D dimensional Euclidean space 
and F is its form matrix, then B is a symmetric positive semi-definite matrix B 
of rank D. Conversely given any K × K symmetric positive semidefinite matrix 
of rank D, there necessarily exists a configuration of K points in R D such that 
its centered inner product matrix is exactly B. 

In other words, the space of K landmark objects in D dimensions corre- 
sponds exactly to the space of K x K symmetric positive semi-definite matrices 
of rank D. 

Proof Follows from Theorem 14.1 of Mardia et al. (1979; see also 
Gower, 1966). 

Note that MM r in the previous section is the centered inner product matrix 
corresponding to the mean form M. The above theorem thus establishes that 
estimation of MM r or F(M) or Eu(M) are equivalent to estimating the mean 
form. In other words, given MM r one can construct M (up to translation, ro- 
tation, and reflection) and vice versa. 

Lele and Richtsmeier (1991, 1992) developed methodology for studying 
form difference based on Euclidean distance matrix representation of form. In 
this paper some estimation procedures are developed and asymptotic properties 
of these estimators are studied. 

CONSISTENT E S T I M A T I O N  UNDER T H E  MODEL (M, ]~/~, I o) 

We will first consider a model where the perturbation of landmarks along 
the D axes are independent and identical to each other (i.e., ~D is an identity 
matrix) but correlations between landmarks are allowed (i.e., EK is not an iden- 
tity matrix), 

The main feature of this model is that there exists a non-iterative, closed 
form, consistent estimator for M and E*.  To be precise, one estimates F(M) 
consistently, from which M can be obtained up to a similarity transform that is, 
up to differences attributable only to translation, rotation, and reflection. 

We use the following notation: 
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(i) F ( X )  = [Fem]e-1,2 ..... iv where Frm is the Euclidean distance be- 
r e = l , 2  . . . .  , K  

tween landmarks e and m. 

(ii) Eu (X)  = [F~m] = [eem] denotes the matrix of squared distances. 

(iii) B ( X )  = Xc(XC) r denotes the centered inner product matrix. 

(iv) Let Zx = [ O ' e r n ] , ° = l , 2  . . . . .  K be the variance-covariance matrix and, 
m = ! , 2  . . . .  K 

Eu (M)  = [re,,]e= ~,2 . . . . .  K be the square Euclidean distance matrix for 
m = l , 2 , . . . , K  

the mean form M. 

Following theorems lead to the moment estimator for ¢~em'S  and prove its 
consistency. 

Theorem 2. ee. m - -  dPemX2 (rem/Oem) that is, squared Euclidean distances 
between pairs of landmarks have a non-central X 2 distribution with D degrees 
of freedom, noncentrality parameter 6era and scaling parameter 4)em, where q~em 
=aee + o.,m - 2%.. 

P r o o f  Follows from the following result regarding a sum of independent 
non-central X 2 random variables. 

If  IV/ - r2x2(rl j /r  2) i = 1, 2 . . . . .  k are mutually independent, then 

k r / i  

J 'V i ~ T 2 X  2 \ - - - ~ - - - /  
i = !  

See Johnson and Kotz (1970, Chap. 28). That is, sum of independent noncentral 
X 2 random variables with the same scale parameter, is again a noncentral X*" 
random variable. 

The following theorem gives the moments of the random variables eem. 
Theorem 3. For a two-dimensional object, 

E(ee, m) = 26e, m + 6~, m = Od I 

and 

Var (ee, m) = 4d)~,., + 4t3e, mOe, m = 0?.2 

2 
Od 1 - -  O~ 2 : ( (~f ,m)  2 ( 1 )  

P r o o f  See Johnson and Kotz (1970, Chap. 28) for moment formulae and 
then simple algebra proves the theorem. 

We equate the sample moments to the population moments to obtain a 
moment estimator for 6em. Note that (2) is the sample version of (1). The 
following theorem proves the consistency of the moment estimator for 6era. 

Theorem 4. Let eemi denote the squared Euclidean distance between land- 
marks e and m in the ith object. 
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Let 

ee. m = -- eem 
H i = l  

tt 

S 2 ( e g ,  m ) 1 ~ a  (e~, m - .  ~2 = - _ eo.m , 
n i = l  

and 

Then as n --+ oo, 

~e.m = [(eg, m) 2 --  S 2 ( e g ,  m)] 1/2 (2) 

~e, rn "-+ ~f ,m in  probability 

Proof  This follows from the consistency of the sample moments and the 
continuity of the function 6e, m (Chung, 1974). 

Corollary. 

(a) Eu (M) = [6e, m] --+ Eu (M) in probability 

(b) B(M) --+ B(M) in probability 

(c) F(M)  ~ F ( M )  in probability 

Following two theorems generalize the moment estimator of ~em for two 
dimensional objects to three-dimensional objects. 

Theorem 5. For a three-dimensional object, 

and 

E ( e g ,  m) = 3dPe, m + ?ge, m = [Jl 

Var (ee, m) = 6dpe2,m + 4~e.mdPe.m = 5 2  

~32g, m = 132 - 3f32 

Proof  Similar to Theorem 3. 
Theorem 6. Using the same notation as in Theorem 4, and 

~ g m  = [ (egm)  2 3 0 2 .  . .1/2 (3)  , . - -  ~ 3  (ee, m) l 

It follows that 

~e,m --+ 6e, m in probability 

Proof  Similar to Theorem 4. 
Corollary after Theorem 4 also holds. Next two theorems utilize the esti- 

mators of 6era to obtain a consistent estimator of the variance-covariance param- 
eter E*.  

Theorem Z B(Xi)  - WishartK(D, ~ ,  B(M)) .  
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Proof Let X~ denote the mean centered observations. Then under the 
model and results of the section on estimability 

X~ ~ MN K × D (Mrs,  ~*, z) 

and B(Xi) = (X~)(X~) v. The result now follows from Section 17.3 of Arnold 
(1981). 

Theorem 8. E(B(X))  = D~,~- + B(M) and 

i = ,  

Proof Follows from Arnold (1981, Theorem 17.6); consistency of mo- 
ments and the corollary after Theorem 4. 

Note. The following algorithm (Principal Coordinate Analysis, Gower, 
1966) explains in detail how one can obtain M, the estimated coordinates of the 
mean form (up to translation, rotation, and reflection transformations) using the 
estimators given in (2) and (3). A modified estimator for ~*,  which may behave 
slightly better than the above estimator, is suggested. Although for medium to 
large sample sizes, they are almost identical. 

Eu(m)  = [Sem]e=l,2 ... . .  x 
r e = l , 2  . . . . .  K 

be the symmetric k x k matrix of squared Euclidean distances where ~em are 
the estimates obtained by Eqs. (2) or (3). 

Step 1. Calculate B(M) = H { E u ( M ) } H  where H = I - 1/K(1T1) is a 
K × K symmetric matrix (also used in Theorem 1) such that its diagonal entrees 
are 1 - 1/K and off diagonal entrees are -1 /K .  

Step 2. Calculate the eigenvalues and eigenvectors of B(M). Let the ei- 
genvalues be ),1 > Xz > • • . > XK and the corresponding eigenvectors be hi, 
h2 . . . . .  hx. 

Step 3. M, the estimator of  the coordinates of the mean form M (up to 
translation, rotation and reflection transformations) is given by: 

For a two-dimensional object: 

Note that this is a K × 2 matrix. For a three-dimensional object: 

This is a K × 3 matrix. 
One may plot these coordinates to visualize the mean form pictorially. 
Given ~Q, the modified estimator of  E~- is given by: 
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! 
n i = l  

Again note that for large samples, B(M)  and a4A} T are almost identical. Hence 
the two estimators of g *  are equivalent as n -+ ¢~. 

In summary, the above results imply the following: (1) Under the Gaussian 
perturbation model (M, E,v, I), it is possible to estimate the mean form M and 
variance-covariance matrix ~ ~ consistently. (2) The estimators are extremely 
easy to calculate. 

CONSISTENT ESTIMATION WHEN £o  IS A GENERAL POSITIVE 
DEFINITE SYMMETRIC-MATRIX 

In this section, we consider estimation of M, £K, and ED when correlation 
between perturbations along the D axes is allowed, i.e., E D is not an identity 
matrix. 

When YD is a general positive definite symmetric matrix, the problem is 
substantially more difficult. The number of parameters is larger, thus needing 
the higher order moments. In this section, we use the representation for quadratic 
forms involving Gaussian random variables (Dik and de Gunst, 1985) for cal- 
culating these moments. Given these moments, one can derive the moment 
equations and solve them numerically to get the moment estimators. 

The following is a description of Dik and de Gunst's result (specialized to 
a particular case; see also de Gunst, 1987). 

Notation. Let X be a Gaussian (D × 1) random vector with mean # and 
variance r,. Let E be positive definite. 

Let 3`1, 3,2 . . . . .  3`0 be the eigenvalues of £. Let S be a square root of E, 
i.e., if the Jordan decomposition of E -= PApP r, then S --- PA~J2P r. Let 

oo = A p I p T s T #  = ApI/2pTI~ 

= t, rg -- corApoo 

A simple calculation shows that ~ = 0. 
Theorem 9 (Dik and de Gunst, 1985): 

D 

x T x  ~ ~ 3`i(bli + co/) 2 
i = 1  

where Ul, u2, • • • , up are independent identically distributed standard normal 
random variables and wi, denotes the ith component of vector w. V = W denotes 
that V and W have the same distribution. 

For the situation we are interested in, namely the distribution of the squared 
distances between any two landmarks, D is either 2 or 3. Using the above 
representation, moments for ee,~ with various ~os can be calculated as follows: 
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Let us consider any two landmarks on a two dimensional object. Without 
loss o f  generality, we label them 1 and 2 and assume that they have the following 
distribution: 

:), (;,: ;5, 
Hence, 

where 

Thus: 

~- f i l l  q- 0"22 - -  20-12  

e|2 = (X2 - Xt) 2 + (}72 - y~)2 

2 

.~ G Xi(u i + ~,i)2 
i = l  

where X~s are the eigenvalues of  the matrix [o+~ p~ , j ,  P is the matrix of eigen- 
vectors, 

&t  P21 

and 

P~I + P ~ , - =  1 

Thus for a two-dimensional object, the moments for the squared distance be- 
tween any two landmarks are given by: 

2 

E(e~)  = E ~ Xi(ui + ~oi) 2x 
i ~ l  

= ,,I ',2 ~t , , l  + ~ol)2eE(u2 + w2) 2(k-e) 
¢=0 

For a three-dimensional object, the corresponding expression is: 

K! J 
E ( e } )  = ~,, _ _  xze~2e,_~,ze3 H E(ui  + wi) ze~ 

o ~ e , ~  fl!gz!g3! ,,i ,,2 ,,3 i=) 
a 

with obvious notation. Also it is easy to show that 
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2 (7 ) E(u + ¢o) 2m = E ~,, u J w  2 m - j  
j = l  (2;) 

= ~ E(uJ)o) 2m-j 
j = l  

But E(u j) = 0 for all odd values o f j .  Hence 

and 

= 

For a two-dimensional object, since there are at most four parameters (#, 
4~, p, a), one needs to solve four moment equations. Correspondingly, for a 
three-dimensional object, one needs to solve seven moment equations. Note that 
there is a one-one relationship between (X, ~0) and (/~, ED, ~) parametefizations. 
The above information is sufficient to produce explicit equations. Obviously 
numerical methods are required to solve them. From the theory of  estimating 
equations, we also know that, under typical conditions these estimators are 
consistent and asymptotically Gaussian. 

There are some difficulties associated with these estimators: 
1. It is not obvious that the given system of equations has a unique solution. 
2. The estimators depend on moments of  fairly high order. Thus although 

consistent, they conceivably are not very efficient. 
Now if we behave as if E D = I (when estimation is easy) when in fact E D 

=~ I, then we obviously will get inconsistent estimators and related confidence 
intervals. A question of  interest would be: How far off are these estimators? 
This will be explored in the next section. 

ORDER OF INCONSISTENCY FOR THE ESTIMATORS OF M 
When ~D ~= It) 

Let us consider a two dimensional object. Suppose we use the estimator 
(2) or (3) for estimating M. It is consistent when YD = I. However, it is 
inconsistent when ED ~ I. We will calculate the order of  inconsistency when 
ED is a correlation matrix. Similar calculations can be conducted for other EDS. 

Let ED = (~ ~)" Then the eigenvalues of  E D are given by Xl = 1 -- p and 
X2 = 1 + p. Let P denote the matrix of  eigenvectors. Using the results of  the 
previous section, it is easy to show that: 
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E(eem) = 

Var (eem) = 

But note that for 

Thus: 

585 

(~fm -~ 20era 

E(eZm) - [E(eem)] 2 

2 2 

2 Z X/~ + 4 Z X ~ c o ~  
i = 1  [ 

20~m[(1 - p)2 + (1 + p)2] + 40em6em(X,p~l + X2p22) 

4~)2m + 40202era + 44~em6e,.(-2Op~l + (1 + p)) 

40~m + 40e6em + 4p20~m + 4POem6em(1 -- 2p~,) 

this ZD, l -- 2p21 = 0. Hence 

Var (ee,~) = 40 ~m + 4•em Oem + 4p 2 ~ ~., 

6zem[E(eem)]2 - Var (eel) 

= 62m - 4020~m 

Since in practice, 4p 202 m are fairly small compared to 6 ~m, estimators given by 
(2) are very good even when Ez) =~ 1. Model misspecification has very little 
effect. 

ESTIMATION OF THE FORM DIFFERENCE 

In practical situations, the quantity of  interest is either form or shape dif- 
ference between two populations. 

Let Xl, X2 . . . . .  Xn be n independent observations from population I and 
Y1, 172 . . . . .  Ym be m independent observations from population II. Let the mean 
form of  population I be M x with the corresponding form matrix F ( M  x) and 
corresponding quantities for population II be M y and F(MY). There are several 
different ways to define the difference between mean forms M x and M r. Goodall 
and Bose (1987, Eq. 3), Rohlf  and Slice (1990) among others define it as the 
coordinatewise difference between M x and M r taken after a proper superim- 
position. In Lele (1991a), this approach is critically evaluated on the scientific 
basis and it is argued that one should use form difference defined in terms of 
F ( M  x) and F(Mr).  Following is a definition of  form difference which considers 
relative changes in the forms. It is a vector of  ratios of  like distances in two 
forms. This is a scientifically interesting way of studying form difference. 

Definition. Form difference between populations I and II is defined as: 

FDM(M X, M r) _ F(Mx) 
F ( M  Y) 
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where the division is conducted elementwise, with the convention that 0/0 = 
0. 

We will now explore the consistent estimation of  FDM(M x, Mr).  The 
following result is an immediate consequence of  Theorem 4. 

Theorem 10. Let the parameters for the two populations be (M x, E ~¢x, 
•DX) and (M r, E~y, EOV). 

I f  ~DX = ~DY = I, then 

F(M x) 
FDM(M x, M Y) _ p ( M  y) " FDM(M x, M Y) 

in probability. 
This theorem shows that the form difference between two populations can 

be estimated consistently when landmarks are perturbed dependently along each 
axis but independently between the axes. 

We will now explore the situations where Eox --/: I and ~DY -~= I, i .e. ,  
when between axes correlation is present. As in the previous section, we will 
calculate the rate of  inconsistency. For further exploration, we will assume that 
E*x = E~:y and ~;~'DX : ~DY, i.e., the two populations have the same variance- 
covariance but possibly different means. As usual we will consider the squared 
Euclidean distances matrices Eu(M x) and Eu(Mr). Define 

¢( Mx, MY) - Eu(M Y) = / ~ r  |e=l,2 . . . . .  K 
LOernAm = 1,2 . . . .  K 

Thus, ¢ is an elementwise squared matrix FDM(M x, MY). Let eem denote the 
(g, m)th element of  ¢. It is just the ratio of  squared Euclidean distance between 
landmarks e and m in population I and II. 

Let 

¢ I =  = 

^2 
We are interested in calculating the order of  the difference (¢e= - ¢I=) when 
Y]D :i~ I. Let I D = (~ ~). From the previous section, it follows that 

(6eXm) 2 - 402~m 
¢ 2  m - -  (~t2m)2 - -  402qSe2= 

in probability, Consider, 

- - - - -  

2 4 ( p  £m) [(~Xm)2 --  (~Yrn) 2] 

4 2 ~ 2  • 

The following results are now obvious: 

(4) 
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Resul t  1. Note that when M x = M r, 6xem : 6[m" Hence, ream -- ~b~ m 
0 in probability. That is, when the usual null hypothesis of no form difference 
holds, one can estimate the form difference consistently, provided the two pop- 
ulations have the same variance-covariance structure. 

Resul t  2. If the two mean forms M x and M r are not identical, then the 
form difference F D M ( M  x, M r) can be estimated consistently when the land- 
marks are perturbed independently between the axes, although correlation be- 
tween landmarks along the axes is allowed. 

Resul t  3. In the most general case where correlation along and between 
axes is allowed, simple estimators of F D M ( M  x, M r) obtained from (2) or (3) 
viz. Wem,~,emj are very accurate. The amount of error can be ealculated from 
Equation (4). These estimators are thus fairly robust against model misspecifi- 
cations. 

ESTIMATION IN THE PRESENCE OF MISSING LANDMARKS 

It is common in paleontological and anthropological studies to have indi- 
viduals in the sample on which some of the landmarks are missing. For example, 
see Leakey et al. (1991) where form and shape differences between two extinct 
primate species are studied. Missing landmarks were constructed by anatomical 
knowledge, scientific experience, and intuition. In Lele (1992) a more quanti- 
tative approach is suggested to construct such missing landmarks when a few 
individuals in the sample have all the landmarks present. However consider the 
following situation where none of the individuals in the sample have all the 
landmarks present. Even in such an extreme situation it is shown that the meth- 
odology discussed in the previous section can be applied successfully in order 
to obtain complete  geometrical information about the biological structure from 
such a part ia l  set of observations. 

Consider the biological structure defined by the landmarks Frontal Zygo- 
matic Intersection (FZI), Nasion (NAS), and Zygomaxillare Superior (ZMS). 
Figure 1 illustrates this structure. It is not unusual to find fossils with one of 
these landmarks missing because the bony structure on which they lie tend to 
break easily (Leakey et al., 1991). Suppose now that we have n I individuals 
with only FZI and NAS present, n2 individuals with only NAS and ZMS present, 
and n 3 individuals with only FZI and ZMS present. All of these individuals are 
from the same species and are of the same age group. Note that to estimate the 
form of the biological structure defined by the three landmarks FZI, NAS, and 
ZMS, one only needs to estimate the three distances FZI-NAS, NAS-ZMS, and 
ZMS-FZI. These are estimated consistently by the following estimators. 

Let FZI = landmark 1, NAS = landmark 2, and ZMS = landmark 3. 
From the previous sections, it is clear that it is enough to estimate ~2, 613, and 
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Fig. 1. Frontal view of Afropithecus turkanensis cranium 
showing the positions of landmarks Frontal Zygomatic 
Intersection (FZI), Nasion (NAS) and Zygomaxillare Su- 
perior (ZMS) (adapted from Leakey et al., 1991, figure 
1). 

623. Given these three squared distances, one can construct the mean triangle 
defined by them uniquely. From (2), it follows that 

~12 = [~12 - s 2 ( e 1 2 ) ]  " 2  

~13 = [el3 -- $2(e13)] I/2 

623 = [e23 -- s2(e23)] |/2 

are consistent estimators of  612, 6~3, 623, respectively. One gets el2 and s2(ej2) 
from the nl individuals on which FZI and NAS are present and so on. Hence 
estimation of  the complete geometrical structure using only partial observations 
is possible. 

Some algebraic manipulations lead to a consistent estimator of  the variance- 
covariance structure. Being able to handle such missing data is extremely im- 
portant from the practical point of  view. Note that the superimposition estimators 
that will be discussed later fail to handle this important practical situation, 

R O B U S T N E S S  A G A I N S T  M O D E L  S P E C I F I C A T I O N  

Referees of  this paper have pointed out quite correctly that the nice prop- 
erties of  the estimators discussed in the earlier sections are derived under a 
Gaussian perturbation model. It is important to study robustness of  these esti- 
mators under model misspecification. 

First of  all, we would like to point out that the variance-covariance struc- 
ture considered previously is fairly general. The assumption of  the Gaussianity 
of  perturbations is difficult to test precisely. However note that our estimators 
depend only on the first two moments of  the distribution of  the squared distances 
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between landmarks. If  the perturbations are not extremely skewed, these squared 
distances have approximately a X 2 distribution. Particularly the relationship be- 
tween the first two moments is satisfied reasonably well. Thus the estimators 
should be reasonably robust. 

Referees' querries also led us to the following tantalizing results. We will 
describe them briefly and only heuristically here. Suppose one does not want to 
assume Gaussian or any other particular perturbation distribution. However it 
might be reasonable to assume that two populations have identical variance 
covariance structure. Let us define difference between two forms as: 

AFD(M X, M") = F(Yl~:) - F(MY) 

where the differences are taken elementwise. 
The definition used previously gives relative form difference whereas the 

above definition gives absolute form difference. It turns out that this form dif- 
ference can be estimated consistently without any model assumptions other than 
the equality of variances as follows: 

Note that E(ee,,, ) = Gem + 2~em irrespective of  the Gaussianity assumption. 
Since sample moments converge to the population moments as n ~ oo  

~Xrn ---r ~X m q- 2~em 

When the two variance-covariance structures are identical, 

~ x  _ -tee m ~ rex _ 6e~ in probability 

Thus one can estimate AFD(M x, M r) consistently without any model assump- 
tions. 

Moreover by applying Central Limit Theorem (Serfling, 1980), it follows 
that this estimator is also asymptotically Gaussian and hence can be used to 
obtain a model robust test procedure for form difference as well as model robust 
confidence intervals for the absolute form difference in the following fashion. 

Consider the following quadratic form: 

( ~ e x  - Y  ~ + - x  - r  - -  eem ) S (eem - eem) 

where S + is a generalized inverse of the variance-covariance matrix of (~x m - 
~rm). We need a generalization inverse because the variance-covariance matrix 
could be singular (Rao, 1973, Chap. 1). With proper standardization, this qua- 
dratic form has a X 2 distribution, which can be used to obtain a testing procedure 
as well as confidence intervals for AFD(M x, Mr). 

Generalization to comparing shapes instead of forms is also possible in 
principle. We will not discuss the details here. 

In conclusion, using the Euclidean Distance Methodology one can possibly 
obtain model robust testing procedures for form/shape differences. 
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SUPERIMPOSITION APPROACH FOR ESTIMATION OF 
(M, ~K, 72O) 

Goodall (1991) and Bookstein (1986) suggest using superimposition meth- 
ods to estimate mean form and shape as well as variance-covariance parameters 
Es and E D. Goodall (1991) also claims generalized procrustes estimators to be 
consistent, asymptotically efficient and maximum likelihood estimators. These 
claims are not supported by any mathematical proofs, neither is the likelihood 
function produced. In the following, it is shown that the superimposition ap- 
proaches yield inconsistent estimators of mean form as well as shape. It is also 
shown that variance-covariance parameters are nonidentifiable under this scheme. 

Following is a brief discussion of superimposition approach. 
Given Xl, X2 . . . .  , X~, one translates and rotates these matrices in such a 

manner that E i , j 6 ( X i ,  Xj)  is minimized for some preselected, non-negative, 
real valued loss function 6 (-). The examples of 6 (.) are: 

(a) Ordinary procrustes analysis (Goodall, 1991), 

6(Xi, Xj) = tr{(X, - ~) (X,  - Xy) r} 

(b) Weighted procrustes analysis (Goodall, 1991), 

~ ( X , ,  X;) -= t r { ( X  i - X j )W(Xz  - Xj) r} 

for some weight matrix IV. 
(c) Edge superimposition (Bookstein, 1986; Bookstein and Sampson, 1990); 

Fix an edge, (without loss of generality) say (1, 2), i.e., the line joining land- 
marks 1 and 2. 

4 ~ ( X / ' X J ) = I O  otherwiseiftheedge(l'2) i n X i i s a l i g n e d w i t h e d g e ( l ' 2 ) i n X j  

Let J~, J?2 . . . . .  Jr,, be the transformed variables obtained after using one 
of the superimposition metrics. Then under all superimposition schemes, mean 
form estimator corresponds to the coordinatewise average of the transformed 
variables. 

n i = l  

Under Goodall's procrustes scheme (Goodall, 1991, Eq. 10.2, 10.3), the vari- 
ance-covariance parameters are estimated by: 

n 

n i = l  

n i=l 
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Inconsistency of Edge Superimposition Estimator of the Mean Form M 

For the sake of  simplicity, consider an object with only three landmarks. 
Let the parameters be 

~3 = 02[3 and ~2 = I2 where I~ denotes k x k identity matrix. Thus, each 
Xs ~ MN3 × 2 (M, o213,/2). Suppose that edge (1, 2) is used for superimposition. 
Then each X/is  transformed in such a manner its first row is (0, 0) and second 
row is (a, 0) for some a > 0. 

Let 

Lz~A 

where Zj denotes t h e j t h  row and Z; = (Zjj, Z2j) j = l,  2, 3, 

Icos  Oi --sin Oi l . . . 
I'(Oi) = I s in  Oi cos 0iJ = (c~'I' c~) where c~'1 is the first column 

i is the second column of  the matrix I '(0i),  and and c% 

/ /1 1 Oi : sin - t  ~Z22 - -  _Z2, [Z',2_-- f ] ,  
k tlzil[ c°s-'L [Izilt 

Then, with this notation, the transformed X i 's viz. J~i's are: I°:l 2/-- [Iz~ll 
i i i i lZ3o~ I Z3c~2 

Hence, the coordinatewise average of  these Xi ' s  yields, 

X =  

n n 

0 0 
t/ 

1 E IIz~[I o 
n 1 

tt n 
l ~  i i l 

Z 3 0 L  1 ~ i i - -  - -  Z 3 o / 2  
n 1 n i 
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Since 

[ ( Z { 2  - -  Z i l l )  2 q- (Z~. 2 - -  Z ~ , ) 2 ]  112 > [ (Z~2  - Zill)2] 112 

it follows, by taking expectations on both sides, that 

El[z211 > = 1 

Thus X -/' M in probability as n --+ oo. X is an inconsistent estimator of M. 
This also implies that the sample variance-covariance matrix does not estimate 
the true variance-covariance matrix consistently (Campbell, 1986 notes a similar 
result hut does not realize its full implications). 

Generalized Procrustes Analysis (GPA) 

This section proves the following results. 
(a) GPA estimator of mean form is inconsistent and hence asymptotically 

inefficient. 
(b) The orbits defined on the parameter space (M, E* ,  Eo) by the Procrustes 

analysis are such that YD is non-identifiable. This will be explained in the 
following. However we would like to note that this parameter is important 
biologically as it tells us the perturbation covariance along the different axes. 
Inability of  the superimposition schemes to estimate this biologically important 
parameter is unsatisfactory from the scientific point of view. 

Inconsistency of the GPA Estimator of M 

Consider the model where EK = a2I, ~o = I. This is the simplest pertur- 
bation model also considered by Langron and Collins (1985). Let Xi, X2 . . . . .  
Xn be n random K × D matrices generated under the above model. Let G denote 
the procrustes sum of squares, viz. 

i = 1  

where X,. are translated and rotated (without scaling) figures such that G is 
minimized. The following results are well known. 

Result 1. (Gower, 1975, Eq. 15) 

G = tr ~ X i X f -  ntrffX T 
i = 1  

Result 2. (Langron and Collins, 1985, Theorem 6.1) 

G ~ ~r2x~ 

where L = (n - 1)(KD - ½D(D + 1)). 
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Resul t3 .  (Arnold, 1981, Chap. 17) 

(a) ~.~/r _ Wishart~(D, M M  ~, ~ )  for all i = 1, 2, . . .  , n 

rt 
1 

(b) - ~ f~iX T ~ M M  T + D E *  in probability as n ~ co 
n i = l  

(c) tr XiJ~ --" tr M M  r + D tr E*  = tr M M  r + D ( K  - 1)e;  
i =  

in probability as n --~ co, since tr ~ *  = (K - 1)~ 2. 
Result 4. It follows trivially from Result 2 that 

1 G - ~ c r 2 I K D -  1 1 n ~ D ( D  + 1) in probability a s n  ~ co 

Let us now suppose that the GPA estimator of  mean form is consistent. 
We show that one reaches a contradiction and thus prove the result by the method 
of  reductio ad absurdum. 

Suppose ~7 ~ M in probability as n ~ co. (Note that this convergence is 
up to a similarity transform.) Then it implies, by Slutsky's theorem (Chung, 
1974) that 

tr 8 ~ T  ~ tr M M  T in probability 

Combining Result 1 and Result 3 with this result, it follows that 

1 
- G ~ D ( K  - 1)o "2 in probability 
n 

But Result 4 shows that (1/n)G converges to cr2(KD - ½D(D + 1)) which is 
not equal to D ( K  - 1)o 2. We reach a contradiction, thus proving inconsistency 
of  the GPA estimators o f  mean form even under the simplest model. This also 
implies that these estimators are not asymptotically efficient. 

Non-Identifiability o f  ZD Under Superimposition Schemes Let us consider 
the model (M, E* ,  Eo). Goodall (1991) suggests the following as an estimator 
o f  E D 

n i = l  

where Xis are the translated and rotated figures. 
Now consider the following practical situation. Let person A get the sample 

X 1 , X 2 . . . . .  X~ and let ~ denote his estimate of  E D. Suppose person B received 
the same sample except that each of  Xis is now rotated by multiplying by an 
orthogonal matrix C, i.e., person B receives the sample Yi = XgC, i = 1, 2, 
. . . .  n. Let his estimate of  E D be denoted by E~. These two estimates are not 
equal to each other, in fact ~ = CTE~C.  So should we take ~fi or ~ as the 
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estimator of Eo? This situation is not an academic one. Two scientists in two 
different laboratories may collect same landmarks off of the same fossil speci- 
mens but set them on the digitizer in different orientations, thus getting rotated 
versions of each other's data as described above. 

This is not just a mathematical artifact either. What is going on here is the 
following. 

Let 0 = {(M, ~* ,  ~D): M in K × D matrix, ~*  is symmetric, positive 
semidefinite matrix of rank K - 1, ~o is symmetric, positive semidefinite matrix 
of rank D} be the parameter space. Then under the procrustes scheme (in fact, 
with minor modifications under any superimposition scheme) the orbits of equiv- 
alent parameters are given by: 

{(MC, E~:, cTEDc): (M, E~, ED) E O, C is a D × D orthogonal matrix}. 

These are the wrong orbits since clearly 

p l a is not equivalent to )k 2 0 

P2 P3 0 ~3 / 

in a biological sense. Biologically sensible orbits are given by 

{(MC, ~*, ~D): (M, ~ ,  ~D) ~ 0 and C is an orthogonal D × D matrix} 

It is the " f o r m "  of an object which is invariant under rotation, not the 
variance-covariance structure. Biologically important parameters are non-iden- 
tifiable under the superimposition schemes. 

NUMERICAL EXAMPLES AND DISCUSSION 

In this section, we provide numerical examples which clearly illustrate the 
inappropriateness of the procrustes estimators. This is especially glaring for the 
estimation of the variance-covariance parameter. We also discuss the intuitive 
reasoning behind its failure. To make these features most obvious ("an intm- 
ocular traumatic experience" to borrow a phrase due to Professor Berkson), we 
consider a situation which is somewhat extreme and hence magnifies the effects. 
Although as illustrated in Example 2, even under ideal conditions the procrustes 
estimators fail. 

Example 1. In this example, we show that the variance-covariance struc- 
ture obtained by using the procrustes estimators is wrong. 

We generated 130 random geometrical objects as described previously us- 
ing the following parameters. The number 130 was based on the maximum 
number of objects allowed by the software used for procrustes analysis. Each 
object has four landmarks and is two-dimensional. 
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M = I°il 40 ~- 1 
~ Y]D ~ 

0 - 0 

-40  

and 

~k I 
O.O1 0 0 0 1 

0 10 0 -9.999 

0 0 0.01 0 

0 -9 .999  0 10 

Note that landmarks 2 and 4 are perturbed substantially and in a correlated 
fashion, whereas landmarks 1 and 3 are almost left unperturbed. These data are 
shown in Fig. 2a, depicting the true variance-covariance structure. These data 
were then subjected to the least squares procrustes analysis (without affine com- 
ponents) using the GRF program supplied with the edited volume by Rohlf and 
Bookstein (1990). Figure 2b shows the coordinates of the scaled, rotated and 
translated figures such that they minimize the procrustes distance. It is obvious 
that the variance-covariance structure after these operations is vastly different 
than the original one from which the data were created. In fact the E* is given 
by: 

I 
0.0064 0 0 0 1 

0 10 0 -9.98 

0 0 0.0064 0 

0 -9.98 0 10 

showing large variability around landmarks 2 and 4 and no variability around 
landmarks 1 and 3. Note that this is slightly different than Zk because this is the 
singular version (described previously) which is estimable. For numerical com- 
parison, the procrustes estimate of ~* (Goodall, 1991, Eq. 10.2) is given by: 

I 0.4935 -0.0068 -0.4795 -0.0069-] 

-0.0068 0.0124 -0.0022 -0.0034 / 

-0.4795 -0.0022 0.4825 - 0 . 0 0 1 2 [  

-0.0069 -0.0034 -0.0012 0.0115_A 
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Fig. 2. The left-hand column of these graphs depict the true variance covariance structure 
in the data whereas the right-hand column depicts the variance-covariance structure esti- 
mated by the procrustes estimators using the data in the left-hand column. It is clear that 
procrustes estimators tend to reduce the variability around those landmarks that are far from 
the centroid and increase the variability around those landmarks that are closer to the cen- 
troid. The pair (e) and (f) shows that To is also incorrectly estimated by these estimators. 
Note that procrustes figures are scaled figures and hence the scales in two columns are 
different, 
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Since this is obtained after scaling this should have been a scaled version of the 
true E* (or being an estimate, at least be close to it in its pattern). This clearly 
is not the case. Any testing procedures based on this estimator thus would lead 
to incorrect decisions. 

The same data were analyzed using the distance based estimators described 
previously. The estimate of E~ is given by: 

I 0.0038 -0 .0327 -0 .0035 -0 .0325 1 

1~ = -0 .0327 9.2459 -0 .0200 -11.4899 

-0 .0035 -0 .0200 0.0095 0 . 2 5 9 0 [  
/ 

-0 .0325 -11.4899 0.0259 8.7586__1 

This obviously is closer to the true E~. 
Example 2. This example illustrates the same effect in the situation where 

~ = a21. This is perhaps the most ideal situation for procrustes analysis. We 
used the same mean form and 2D as in Example 1 and 130 objects were created. 
Figures 2c and d illustrate the true variance covariance structure and the one 
obtained by the procrustes analysis. Clearly the variability around the landmarks 
that are away from the centroid is reduced whereas the variability around the 
landmarks closer to the centroid is increased. Numerical estimate supports this 
observation. 

Example 3. This example illustrates the point that ED may also be esti- 
mated incorrectly by these estimators. For this situation, we used the same 
values of M and ~k as in Example 1 but changed Z D to: 

 o E0; 01 
Figures 2e and f illustrate the true variation and the procrustes estimate of it. 
The estimate not only decrease the variability around landmarks 2 and 4 and 
increases the variability around landmarks 1 and 3 but also claims that most of 
the variability around landmarks 1 and 3 is in the horizontal direction. This is 
completely different than the truth. 

The above examples clearly show that almost any kind of statistical infer- 
ence which uses the estimates of variance structure is going to go astray if 
procrustes estimators are used. This also casts doubt on the iteratively weighted 
least squares algorithm suggested in Goodall (1991, Section 10). 

The intuitive reasoning behind the failure of procrustes estimators is the 
following. The procrustes fitting criterion which minimizes the sum of squared 
distances between the corresponding landmarks is such that the gain by fitting 
those landmarks that are farther away from the centroid tends to be much larger 
than the cost this type of rotation incurs by not fitting those landmarks which 
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lie closer to the centroid. It thus tends to match outlying landmarks much more 
than the landmarks that are closer to the centroid. This is why the variability 
around the outlying landmarks is reduced drastically and the variability around 
the landmarks closer to the centroid is increased as illustrated in Fig. 2, irre- 
spective of  the true variability. 

The inconsistency in the est imator of  shape is difficult to illustrate numer- 
ically. Goodall  (1991) claims consistency and efficiency of  the procrustes shape 
est imator without any formal proof. Fol lowing intuitive example suggests that 
this claim may be unjustifiable. Considering the same mean form as in Example 
1, let us assume that landmarks 1 and 3 are not perturbed at all and landmarks 
2 and 4 are perturbed only in the vertical direction and in a perfectly correlated 
fashion such that if  landmark 2 has a positive y-coordinate,  landmark 4 has 

exactly the same negative y-coordinate.  By doing this we make sure that the 
centroid for all the random figures is the origin. Fol lowing the intuitive reasoning 
given above, it is clear that procrustes rotations would rotate these figures such 
that landmarks 2 and 4 are closer to the x-axis at the cost of  rotating landmarks 
1 and 3 along an arc (see Fig. 3). Now if one takes the coordinatewise average 
of  these rotated figures, the average for landmark 2 is necessarily larger than 
40 whereas for landmark 4 it is smaller  than - 4 0 .  Similarly landmarks 1 and 

h' 

U > 

x 

Fig. 3. An example showing the reasoning behind the failure of procrustes and edge superimposition 
estimators. This figure shows two random 4 landmark objects, one denoted by solid line and the 
other by line with solid dots. Note that after rotation all the points corresponding to landmarks 2 
and 4 fall beyond 40 and -40 on the horizontal axis. Thus the coordinatewise average of these 
points falls beyond 40 and -40. Similarly points corresponding to landmarks 1 and 3 fall on an 
arc average of which falls within - 5  and 5. Thus edge (2, 4) is estimated to have larger length 
than 80 whereas edge (1, 3) is estimated to have length smaller than 10. This thus estimates the 
shape of the quadrangle incorrectly. Note that the x and y scales are not equal for the sake of fitting 
the figure on the page. 
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3 have the average smaller than 1 and larger than - 1. Thus the shape estimate 
so obtained would be incorrect. 

The same example also shows why the edge superimposition estimator 
gives a wrong estimate of shape. Suppose one matches edge joining landmarks 
2 and 4. Since for each random object generated under this model this edge 
necessarily has length larger than 80 (hypotaneous of a right angle triangle is 
longer than the base), the coordinatewise average or equivalently the average 
of these lengths is larger than 80 and similarly average of the edge joining 
landmarks 1 and 3 is smaller than 10. Hence the proportions of the edges (i.e., 
shape of the object) are not the same as in the true mean shape. The result in 
the section on inconsistency of these estimators is a formalization of this logic 
for a general perturbation model. 

In summary, the conclusions of this paper can be described as follows: 

(a) Distance based methods provide statistically correct, computationally 
simple estimators of mean form and the variance covariance structure. 
The mean form estimators are robust against model specification as 
shown theolmically in previous sections. These methods can also deal 
with the practically important problem of missing data very easily (sec- 
tion on missing landmarks). 

(b) Statistical properties such as consistency are easily derivable for these 
estimators. Small to medium sample behavior needs to be studied. Our 
own philosophy, however, is that: If the sample size is small, one 
should perhaps only do exploratory analysis because precision of most 
statistical procedures is not good enough to warrant precise scientific 
inferences. One may possibly rely on unrealistic statistical models (Lete 
and Richtsmeier, 1990) to gain a (mostly) false sense of security. If 
the sample size is medium to large, one can use distance based esti- 
mators. However for testing or generating confidence intervals for var- 
ious quantities of scientific interest one is perhaps better off using non- 
parametric bootstrapping (e.g., Lele and Richtsmeier, 1991). 

(c) The maximum likelihood estimators based on exact shape densities 
(e.g., Mardia and Dryden, t989) are usually difficult to obtain com- 
putationally and are possibly not very robust against model specifica- 
tion. However, if one truly believes in the model, one can use the 
distance based estimators suggested in this paper as the starting values 
in the numerical maximization routines to obtain maximum likelihood 
estimators. 

(d) If one truly believes in the Gaussian model described herein, one can 
improve the efficiency of the distance based estimators by finding the 
maximum likelihood estimators of M M  r and E~ under the Wishart 
density with distance based estimators as the starting values in the 
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maximization routine. Of course, the Wishart distribution given is sin- 
gular and hence does not possess a density. However, if the sample 
size n is such that it exceeds KID, the number of landmarks divided 
by the dimension of the object, then E"i=l B(Xi)  has a nonsingular 
Wishart distribution with parameters (nD, n M M  r, * k)- Hence in prin- 
ciple, consistent, asymptotically efficient maximum likelihood estima- 
tion is feasible. 

(e) One can also consider the following modification of the model given 
previously for generating random objects. 

X i = bi(M -k Ei)Fi + t~ fbr b i > 0 

That is, each object is also scaled randomly before being translated and 
rotated/reflected. Then, if b; > O, the distribution of the centered inner 
product matrices is given by: 

B(X/) = X/XT - Wishartk(D ' b~MM T, bi2 ~k)* 

Thus we still retain the nuisance parameters b;. One probably can 
estimate the parameters of interest by utilizing the methodology de- 
scribed in Kiefer and Wolfowitz (1956) or Lindsay (1983). Although 
the mathematics and computations are difficult. 

(f) The superimposition methods for analysis of form or shape are in gen- 
eral scientifically unsatisfhctory (Lele, 1991a). This paper shows that 
they are also statistically unsatisfactory. These are also highly com- 
putationally intensive as against the methods suggested in this paper. 
The estimation of the variance-covariance structure is particularly un- 
satisfactory. In our opinion, superimposition methods should not be 
used for any statistical analysis. 
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