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Maximum likelihood estimation for Generalized Linear Mixed Models (GLMM), an important class of statistical models with substantial
applications in epidemiology, medical statistics, and many other fields, poses significant computational difficulties. In this article, we use
data cloning, a simple computational method that exploits advances in Bayesian computation, in particular the Markov Chain Monte Carlo
method, to obtain maximum likelihood estimators of the parameters in these models. This method also leads to a simple estimator of the
asymptotic variance of the maximum likelihood estimators. Determining estimability of the parameters in a mixed model is, in general,
a very difficult problem. Data cloning provides a simple graphical test to not only check if the full set of parameters is estimable but
also, and perhaps more importantly, if a specified function of the parameters is estimable. One of the goals of mixed models is to predict
random effects. We suggest a frequentist method to obtain prediction intervals for random effects. We illustrate data cloning in the GLMM
context by analyzing the Logistic–Normal model for over-dispersed binary data, and the Poisson–Normal model for repeated and spatial
counts data. We consider Normal–Normal and Binary–Normal mixture models to show how data cloning can be used to study estimability
of various parameters. We contend that whenever hierarchical models are used, estimability of the parameters should be checked before
drawing scientific inferences or making management decisions. Data cloning facilitates such a check on hierarchical models.
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1. INTRODUCTION

Linear mixed models (LMM) (Searle, Casella, and McCul-
loch 1992) and their extension to generalized linear mixed mod-
els (GLMM) (McCulloch and Searle 2001) consist of some of
the most useful models in statistics. They are widely used in
various fields, for example, longitudinal data analysis (Diggle,
Liang, and Zeger 1994), epidemiology (Clayton and Kaldor
1987) and ecology and environmental sciences (Clark and
Gelfand 2006; Royle and Dorazio 2009). For theoretical discus-
sion of LMM and GLMM, see McCulloch and Searle (2001).
Most popular approaches to analyze these models are Bayesian,
based on the Markov Chain Monte Carlo (MCMC) algorithm
and noninformative priors. (Gilks, Richardson, and Spiegelhal-
ter 1996; Spigelhalter et al. 2004). However, likelihood analysis
for these models is difficult (McCulloch 1997; McCulloch and
Searle 2001). Likelihood analysis, if used, is usually conducted
using approximate likelihood (Breslow and Clayton 1993) or
Monte Carlo estimation of the likelihood function (e.g., Mc-
Culloch 1997; deValpine 2004).

Recently, Lele, Dennis, and Lutscher (2007) reviewed the
difficulties associated with Bayesian and likelihood based ap-
proaches and proposed an alternative approach, called data
cloning, to compute maximum likelihood estimates and their
standard errors for general hierarchical models. See also Dou-
cet, Godsill, and Robert (2002), Kuk (2003), and Jacquier, Jo-
hannes, and Polson (2007) for methods similar to data cloning.
This approach is based on Bayesian ideas, uses well-known
MCMC methodology and can be easily implemented in stan-
dard software such as WinBUGS. Data cloning is applicable
in most situations where the problem can be formulated as a
Bayesian problem and where MCMC can be used to obtain
random variates from the posterior distribution. Similar to the
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Bayesian methodology, data cloning avoids high-dimensional
numerical integration and requires neither maximization nor
differentiation of a function. It is based only on the computa-
tion of the means and the variances. Although data cloning uses
a Bayesian formulation and computational techniques, the in-
ferences are based on the classical frequentist paradigm. Unlike
the Bayesian inference, these inferences do not depend on the
choice of the prior distributions used in the implementation of
the MCMC algorithm. The goals of this article are: (1) to use
data cloning to analyze GLMM; (2) to provide a simple graphi-
cal procedure to determine an adequate number of clones; (3) to
provide an algorithm to obtain prediction intervals for random
effects; and, most importantly, (4) to provide a simple graphical
procedure to determine estimability of the parameters in hierar-
chical models.

2. NOTATION AND STATISTICAL SET–UP

Let y(n) = (y1, y2, . . . , yn) be the data vector where n denotes
the sample size. We consider the following general hierarchical
model set-up:

Hierarchy 1: y(n)|X = x ∼ h(y(n);X = x, θ1).
Hierarchy 2: X ∼ g(x; θ2).

We observe y(n) whereas x are unobserved. The parameters of
interest are θ = (θ1, θ2).

The goal of the analysis is to estimate the parameters θ and
predict the unobserved states x. The likelihood function for this
hierarchical model set-up is L(θ;y(n)) = ∫

h(y(n)|x; θ1)g(x;
θ2)dx. The difficulties associated with using this function for
statistical inference are mainly computational: (1) calculation
of the likelihood function generally involves high-dimensional
integration; (2) obtaining the location of the maximum using
numerical search procedures is difficult because of the stochas-
tic nature of the estimated likelihood; and (3) computing stan-
dard errors of the resultant estimators involves further difficul-
ties in numerical computation of the second derivatives of the
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log-likelihood function. Data cloning methodology described
below circumvents all these difficulties in a remarkably simple
fashion.

3. DESCRIPTION OF THE DATA–CLONING METHOD

Following is a brief description of the data-cloning method.
For details and pedagogical description, see Lele, Dennis, and
Lutscher (2007). Let us start with the standard Bayesian ap-
proach to inference for hierarchical models. Let the prior dis-
tribution on the parameter space be denoted by π(θ). Then, the
posterior distribution π(θ |y(n)) is

π
(
θ |y(n)

) = {∫ h(y(n)|x; θ1)g(x; θ2)dx}π(θ)

C(y(n))

= L(θ;y(n))π(θ)

C(y(n))
,

where C(y(n)) = ∫
L(θ;y(n))π(θ)dθ is the normalizing con-

stant. The MCMC algorithms (Gilks, Richardson, and Spiegel-
halter 1996; Spiegelhalter et al. 2004) are computational tools
that facilitate generation of random variates from the posterior
distribution π(θ |y(n)) without ever actually computing the inte-
grals in the numerator or the denominator.

To understand the idea behind the data-cloning algorithm,
imagine a hypothetical situation where the statistical experi-
ment underlying the observations y(n) is repeated independently
by K different individuals and by happenstance all these indi-
viduals obtain exactly the same set of observations y(n). Let us
denote these data by y(K) = (y(n),y(n), . . . ,y(n)). The likelihood
function based on the combination of the data from these K
independent experiments is given by [L(θ;y(n))]K . Notice two
important features of this likelihood function: (a) the location
of the maximum of this function is exactly equal to the location
of the maximum of L(θ;y(n)), and (b) the Fisher information
matrix based on this likelihood is K times the Fisher informa-
tion matrix based on L(θ;y(n)). In the following, we denote the
maximum likelihood estimator by θ̂ (n) and the Fisher informa-
tion matrix based on L(θ;y(n)) by I(θ̂ (n)). We assume that the
parameters are identifiable and that there is a unique mode (but
possibly multiple smaller peaks) to the likelihood function. It is
easy to see that the posterior distribution of θ conditional on the
data y(K) = (y(n),y(n), . . . ,y(n)) is given by

πK
(
θ |y(n)

) = [∫ h(y(n)|x; θ1)g(x; θ2)dx]Kπ(θ)

C(K;y(n))

= [L(θ;y(n))]Kπ(θ)

C(K;y(n))
,

where

C
(
K,y(n)

) =
∫ [∫

h
(
y(n)|x; θ1

)
g(x; θ2)dx

]K

π(θ)dθ

is the normalizing constant. Furthermore, it follows from the
standard result regarding the asymptotic behavior of the poste-
rior distributions (e.g., Walker 1969) that, under regularity con-
ditions, if K is large, then πK(θ |y(K)) is approximately Normal
with mean θ̂ (n) and variance equal to 1

K I−1(θ̂ (n)). Hence, when
K is large, this distribution is nearly degenerate at the MLE
θ̂ (n). Furthermore, the mean of this posterior distribution is the

MLE and K times the posterior variance is the corresponding
asymptotic variance of the MLE θ̂ (n).

Of course, in reality, we do not have data from K such in-
dependent experiments. But, suppose, instead of looking at
the distribution πK(θ |y(n)) as the posterior distribution of θ
given the observations from K independent experiments, we
look upon it as just another distribution, defined over the
parameter space �, with probability function πK(θ |y(n)) =
[L(θ;y(n))]Kπ(θ)/C(K,y(n)). This distribution is simply a
function of the single set of observations y(n) and the model
components h(·),g(·), and π(·). Because we do not have K
independent experiments, results on the asymptotic behavior
of the posterior distribution by Walker (1969) are not directly
applicable. In the Appendix, we prove directly that, under
regularity conditions, as K becomes large, this distribution is
nearly degenerate at the MLE θ̂ and the mean of the prob-
ability distribution πK(θ |y(n)) = [L(θ;y(n))]Kπ(θ)/C(K,y(n))

converges to θ̂ (n), and for continuous parameters, its variance
is approximately K−1I−1(θ̂ (n)). These are deterministic con-
vergences of a sequence of functions and not the probabilis-
tic convergences used in Walker (1969). It follows then that
if we can generate random variates θ1, θ2, . . . , θB from the
πK(θ |y(n)) = [L(θ;y(n))]Kπ(θ)/C(K,y(n)) distribution, then
we can use their mean and variance to obtain the MLE θ̂ (n)

and its asymptotic variance.
Fortunately, such generation of random variates from πK(θ |

y(n)) is quite easy using the MCMC technique. Essentially we
conduct the thought experiment described above using comput-
ers. We create the K-cloned dataset, y(K) = (y(n),y(n), . . . ,y(n)),
by repeating the observed data vector K times. We pretend that
these data were obtained from K independent experiments and
use the standard MCMC method to generate random variates
from the posterior distribution πK(θ |y(n)). If K is large, the
MLE of the parameter θ is simply the mean of these random
variates. Furthermore, if the parameter space is continuous, K
times the variance (or, variance–covariance matrix for the mul-
tiparameter case) of these random variates is the variance of
the MLE, the inverse of the Fisher information, based on the
original data.

Remarkably, this procedure avoids: (1) analytical or numeri-
cal evaluation of the high-dimensional integral which is a major
computational hurdle for maximum likelihood estimation for
GLMM; (2) numerical optimization of a function; and (3) nu-
merical computation of the curvature of the likelihood function.
The number of clones to be used in the procedure is completely
under the control of the analyst. It can be made as large as nec-
essary to achieve the desired accuracy of the resultant estimates.
Furthermore, as long as the prior distribution is not degenerate
and the model satisfies some regularity conditions, the results
do not depend on the choice of the prior distribution. Neverthe-
less, a prior that has large probability mass near the true MLE
requires fewer clones to achieve the desired accuracy.

Determining Adequate Number of Clones

Determination of an adequate number of clones is the same
as determining when the posterior distribution is nearly degen-
erate. A plot of the largest eigenvalue of the posterior variance
as a function of the number of clones K is a simple, graphi-
cal way to determine if the posterior distribution has become
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nearly degenerate. In fact, we also know that the largest eigen-
value of the posterior distribution converges to zero at the same
rate as 1/K. Hence, we divide the largest eigenvalue of the
posterior variance for K clones, λK , by the largest eigenvalue
of the posterior variance for a single clone, λ1. We call this
the standardized largest eigenvalue and denote it by λS

K . We
plot λS

K against K and compare it with the expected value plot
of 1/K. We choose the number of clones so that λS

K is be-
low a specified threshold. We know that as we increase the
clones, (θ − θ̄)T V−1(θ − θ̄) ∼ χ2

p , where V is the variance
of the posterior distribution, is approximately true. We com-
pute two different statistics: (a) ω = 1

B

∑B
q=1(Oq − Eq)

2, where

Oq = (θ − θ̄)TV−1(θ − θ̄) and Eq are the quantiles for χ2
p ran-

dom variable, and (b) r̃2 = 1 − corr2(Oq,Eq). If these statistics

are close to zero, it indicates that the (θ − θ̄)T V−1(θ − θ̄) ∼ χ2
p

approximation is reasonable (Johnson and Wichern 2007).
We want to emphasize here that data cloning is simply a com-

putational algorithm to compute the MLE and the inverse of the
Fisher information. Although the heuristic explanation alludes
to it, the mathematical proof of the algorithm does not depend
on and in no way assumes that the K clones are independent
of each other. The data-cloning idea is used only as a means to
coax MCMC into generating random variates from the distribu-
tion [L(θ;y(n))]Kπ(θ)/C(K,y(n)). Furthermore, as the number
of cloned copies increases, the algorithm provides a better and
better approximation of the true location of the MLE and true
inverse of the Fisher information for the observed data. The sta-
tistical accuracy of the estimator is a function of the sample size
and not of the number of cloned copies one uses. Data cloning
does not improve the statistical efficiency of the estimator by
artificially increasing the sample size.

Prediction of Random Effects

An important inferential component to many hierarchical
models is prediction of random effects. One can use MCMC
along with data cloning to obtain point prediction and predic-
tion intervals for the random effects. The method is based on
the results of Harris (1989) where it is shown that if one uses
the bootstrap distribution of the parameters as the ‘prior,’ the
posterior distribution of the random effects is the best approx-
imation, in Kullback–Leibler divergence, to the true distribu-
tion. We suggest replacing the bootstrap distribution by the Nor-
mal approximation obtained by data cloning. This may also be
looked upon as the prior invariant component of the posterior
distribution. Thus, prediction inference on random effects is ob-
tained by using

π
(
x|y(n)

) =
∫

h(y(n)|x, θ1)g(x|θ2)φ(θ; θ̂ (n), I−1(θ̂ (n)))dθ

C(y(n))
,

where φ(·,μ,σ 2) indicates the Normal density with mean μ

and variance σ 2. The MCMC algorithm can be used to obtain
the draws from this distribution without actually conducting the
integration. We simply obtain the random numbers from

π
(
x, θ |y(n)

) = h(y(n)|x, θ1)g(x|θ2)φ(θ; θ̂ (n), I−1(θ̂ (n)))

C(y(n))

and utilize only the x component.

4. ILLUSTRATIVE EXAMPLES

In the following we apply data cloning to obtain maximum
likelihood estimates and associated asymptotic standard errors
for three important subclasses of Generalized Linear Mixed
Models with wide applications in medical statistics and epi-
demiology. The detailed description of the scientific problems,
statistical models, and the data is available in Breslow and Clay-
ton (1993). The following descriptions are borrowed from Bres-
low and Clayton (1993, section 6).

(1) Logistic–Normal Mixed Model

Crowder (1978, table 3) presented data on the proportion of
seeds that germinated on each of 21 plates arranged according
to a 2 × 2 factorial layout by seed variety and type of root ex-
tract. He noted that the within-group variation exceeded that
predicted by binomial sampling theory. A natural way to ac-
count for extraneous plate-to-plate variability in this situation
is by means of the following GLMM:

Hierarchy 1: Yi|pi ∼ Binomial(ni,pi), where

log
pi

1 − pi
= α0 + αseedSEED + αextractEXTRACT

+ αinteractionSEED ∗ EXTRACT + bi.

Hierarchy 2: bi ∼ N(0, σ 2
b ).

Breslow and Clayton (1993) provide the exact ML estimates of
the parameters along with their standard errors based on numer-
ical integration. In Table 1, we provide the results based on the
data-cloning algorithm with two different priors, a noninforma-
tive prior and prior based on the GLM estimates and compare
them with those based on noninformative Bayes estimates. The
data cloning based MLEs and their SEs are nearly identical to
the exact ML estimators and are invariant to the choice of the
priors. Figure 1(a) gives the data cloning convergence diagnos-
tics and Figure 1(b) shows the data-cloning-based point predic-
tions and prediction intervals for the probability of germination
along with those based on noninformative priors. These match
reasonably well with the ones obtained by using noninformative
Bayes approach.

(2) Longitudinal Data

Thall and Vail (1990, table 2) presented data from a clini-
cal trial of 59 epileptics who were randomized to a new drug
(Trt = 1) or a placebo (Trt = 0) as an adjuvant to the standard
chemotherapy. Baseline data available at entry into the trial in-
cluded the number of epileptic seizures recorded in the preced-
ing eight-week period and age in years. The logarithm of the
fourth of the number of baseline seizures (Base) and the log-
arithm of age (AGE) were treated as covariates in the analy-
sis. A multivariate response variable consisted of the counts of
seizures during the two weeks before each of four clinic visits
(Visit, coded −3, −1, 1, and 3). Preliminary analysis indicated
that the counts were substantially lower during the fourth visit
and a binary variable (V4 = 1 for fourth visit, 0 otherwise) was
constructed to model such effects. Breslow and Clayton (1993)
use the following GLMM for modeling these data:
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Table 1. Maximum likelihood estimates and standard errors (SEs) using data cloning under two different priors and comparison with
the estimates and variances using the noninformative Bayesian analysis

Parameters Data Cloning 1 Data Cloning 2 Noninformative Bayes

Seeds data (Logistic α0 −0.5484 (0.1693) −0.5491 (0.1623) −0.5488 (0.2129)
Normal model) α1 0.0970 (0.2758) 0.0993 (0.2771) 0.0515 (0.3462)

α2 1.3372 (0.2403) 1.3378 (0.2357) 1.3583 (0.3076)

α12 −0.8113 (0.3837) −0.8133 (0.3879) −0.8181 (0.4762)
σ 0.2376 (0.1069) 0.2361 (0.1061) 0.3546 (0.1469)

Lip Cancer data α0 −0.4381 (0.1693) −0.4397 (0.1372) −0.5581 (0.1496)
(Spatial Poisson α1 0.6078 (0.0901) 0.6084 (0.1181) 0.6560 (0.0893)
Normal model) σ 1.2888 (0.2112) 1.2890 (0.1992) 1.4468 (0.2214)

γ 0.1770 (0.0111) 0.1770 (0.0101) 0.1429 (0.0388)

Epilepsy data (Poisson α0 −1.3934 (1.1965) −1.4070 (1.2343) −1.4165 (1.2537)
Normal model) αBase 0.8782 (0.1318) 0.8822 (0.1180) 0.8824 (0.1293)

αTrt −0.9493 (0.3827) −0.9448 (0.3959) −0.9739 (0.3889)
αBT 0.3501 (0.1913) 0.3473 (0.1975) 0.3632 (0.1980)
αAge 0.4852 (0.3519) 0.4872 (0.3715) 0.4883 (0.3700)

αV4 −0.1019 (0.0861) −0.1016 (0.0872) −0.1026 (0.0877)
σb 0.3590 (0.0430) 0.3593 (0.0412) 0.3622 (0.0428)
σb1 0.4623 (0.0622) 0.4621 (0.0635) 0.4934 (0.0697)

NOTE: For the Seeds data (Logistic Normal model), the exact MLEs and SEs are α0 = −0.546 (0.167), α1 = 0.097 (0.278), α2 = 1.337 (0.237), α12 = −0.811 (0.385), σ = 0.236
(0.110).

Hierarchy 1: Yijk|μjk ∼ Poisson(μjk), where

logμjk = α0 + αAGEAGE + αBASEBASE + αTrtTrt

+ αBT(BASE ∗ Trt) + αV4V4 + bj + bjk.

Hierarchy 2: bj ∼ N(0, σ 2
b ) and bjk ∼ N(0, σ 2

b1).

In Table 1, we present the MLEs obtained using data-cloning
procedure. The results again do not depend on the choice of the
priors. In Figure 1(c), we show the convergence diagnostic plots
and Figure 1(d) shows the data cloning based-point predictions
and prediction intervals for subject effects. These match reason-
ably well with the ones obtained using noninformative priors.

(3) Spatial Smoothing of Disease Maps

One of the most common applications of GLMM is in the
context of spatial smoothing of disease maps (Clayton and
Kaldor 1987; Diggle, Tawn, and Moyeed 1998). We consider
the data reported in Clayton and Kaldor (1987) on the num-
ber of lip cancer cases in the 56 counties of Scotland. Clayton
and Kaldor (1987) proposed an empirical Bayes estimation of
the county specific SMRs using several alternative assumptions
about the distribution of the random effects. These data subse-
quently were analyzed by Breslow and Clayton (1993) using
the PQL. In the following analysis, we use a proper, condition-
ally specified autoregression (CAR) model. A full discussion
of these different analyses along with the Bayesian implemen-
tation is available in WinBUGS (Spiegelhalter et al. 2004, maps
section). The model we use is as follows:

Hierarchy 1: Yi|μi ∼ Poisson(μi).
Hierarchy 2: logμi = log ei + α0 + α1

xi
10 + bi, where ei =

expected count and xi = % of workforce employed in
agriculture, fishing, and forestry.

Hierarchy 3: b ∼ MVN(0,V), where V = σ 2(I − γ C)−1M,

Mij = 1/ei, the inverse of the expected count in the ith
area, and Cij = (ei/ej)

1/2. The spatial association parame-
ter γ ∈ (γmin, γmax), where γ −1

min and γ −1
max are the smallest

and largest eigenvalues of M−1/2CM1/2.

This ensures that the distribution of the random effects is a
proper distribution. The maximum likelihood estimates and
standard errors of the parameters are provided in Table 1. Con-
vergence diagnostics are shown in Figure 1(e) and predicted
random effects and associated prediction intervals for counties
are shown in Figure 1(f). They again match well with the ones
based on noninformative priors.

5. ESTIMABILITY DIAGNOSTICS

Many hierarchical models have nonidentifiable parameters.
For example, in the standard measurement error model Yi|μi ∼
N(μi, σ

2) and μi ∼ N(μ, τ 2) where i = 1,2, . . . ,n, the para-
meters (μ,σ 2 + τ 2) are identifiable but parameters (μ,σ 2, τ 2)

are not identifiable. It is known that (McCulloch and Searle
2001) for the Logistic–Normal model (Example 1, Section 4),
if only one observation per stratum is available, the variance
parameter σ 2 is confounded with the intercept parameter β0.
The analytical proof of this result, however, is difficult. In most
practical applications, models are substantially more complex
(Royle and Dorazio 2009; Clark and Gelfand 2006), making
analytical proofs for identifiability of the parameters extremely
difficult and are rarely attempted. Analysis is usually carried
out as if the parameters are, in fact, identifiable (Lele 2010).

Data cloning provides a simple solution to this important
problem. We prove (the Appendix) that if the parameters are
nonestimable, as we increase the number of clones, the pos-
terior distribution converges to a truncated prior distribution,
truncated over the space of nonestimable parameter values.
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Figure 1. Data cloning convergence diagnostics and prediction of random effects for the three examples. The standardized eigenvalues
converge to zero at the expected rate for all three cases. Data-cloning-based prediction intervals for random effects are quite similar to the ones
obtained using noninformative priors.

Consequently, the largest eigenvalue of the posterior variance
matrix does not converge to zero. This result can be used to
study lack of identifiability of the parameters in the hierarchical
model as a whole.

In practice, one may be interested in finding out whether cer-
tain functions of parameters are estimable. For example, in lin-
ear regression if the covariate matrix is singular, the regression
parameters are nonestimable; however, the mean responses or
differences in the treatment effects are estimable. Similarly in
the applications of hierarchical models, a researcher might be
interested in knowing if a specific parameter or a function of
the parameters is estimable or not. The result in the Appendix
can be used to find out if a specific parameter or a function
of the parameters is estimable. If the variance of the posterior
distribution of the parameter of interest converges to zero, the
parameter is estimable. Thus, data cloning not only alerts the re-
searcher about nonestimability of the parameters in the model
but also helps him/her in deciding if certain parameter(s) of in-
terest are estimable or not. In the following, we illustrate the
use of this technique.

We start with a model where identifiabilty of various pa-
rameters is well established. Let Yi|μi ∼ N(μi, σ

2) and μi ∼
N(μ, τ 2) for i = 1,2, . . . ,n. We generated a single realization
from this model and used data cloning to estimate the parame-
ters. We plot the largest eigenvalue of the posterior variance,
λS

K , as a function of K. We also plot the posterior variance
for various parameters that are of interest. In Figure 2(a), it is
clear that λS

K does not converge to zero as the number of clones
is increased, indicating nonestimability for the full model. On
the other hand, the posterior variance for μ and γ = σ 2 + τ 2

converges to zero as the number of clones increases, indicat-
ing their estimability. This shows that in the Normal–Normal
model, μ and σ 2 + τ 2 are estimable whereas σ 2 and τ 2 in-
dividually are not. Now we consider the classic Kalman filter
model Yi|μi ∼ N(μi, σ

2) and μi|μi−1 ∼ N(a + cμi−1, τ
2) for

i = 1,2, . . . ,n. The Normal–Normal model above is a particular
case of this model. However, introduction of correlation makes
the parameters (a, c, σ 2, τ 2) identifiable as long as c �= 0. In
Figure 2(b), the plot of λS

K for the Kalman filter model clearly
shows that the parameters are estimable.

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm09757&iName=master.img-000.jpg&w=407&h=397
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Figure 2. Estimability diagnostics using data cloning. In part (a), we consider Normal–Normal mixture. It is clear that λS
K does not converge to

zero as K increases indicating nonestimability. However, the variance for μ does converge to zero indicating estimability. In part (b), we consider
Kalman filter model. All parameters are estimable because λS

K does converge to zero as K increases. In part (c), we consider Binary–Normal
mixture with complementary log–log link. It is clear that the model is nonestimable. Part (d) shows the posterior distribution is a truncated
version of the prior distribution on a nondegenerate set supporting the nonestimability result.

Next we consider mixed Binary regression model. The ana-
lytical proof for the identifiability of various parameters in this
model is difficult to establish (McCulloch and Searle 2001).
Let Yi|pi ∼ Bernoulli(pi),pi = 1 − exp(− exp(β0 + εi)) and
εi ∼ N(0, σ 2) for i = 1,2, . . . ,n. We considered n = 100 and
the number of clones 1,5,10, . . . ,50. In Figure 2(c), we plot
λS

K against K. It is obvious that the parameters in this model
are nonestimable. To check this result, we also plotted in Fig-
ure 2(d) the posterior distribution based on 5000 observations
and uniform priors. It is quite clear that the posterior distribu-
tion is nondegenerate even for such a large sample size and in-
formative priors of Uniform(−5,5) and Uniform(0.8,4). The
marginal posterior distribution plot of β0 as well as the data-
cloning plot for its variance as a function of the number of
clones indicates that this parameter may be estimable. How-
ever, the rate at which the variance for β0 converges to zero is
not close to the theoretical rate of 1/K as was the case when the
parameters are consistently estimable. Convergence may not
necessarily indicate that the estimator is consistent for the true
value. The posterior mean for β0 was −1.82 (true value = −2)
indicating possible inconsistency of this estimator.

The Bayesian perspective on identifiability is discussed in
various articles (see, e.g., Gelfand and Sahu 1999 or Eberly
and Carlin 2000). Both these articles note that sometimes the
identifiability problems are subtly apparent in the convergence
diagnostics for the MCMC or in the sensitivity of the poste-
rior to the choice of the prior. They also discuss the concept of
Bayesian learning when prior distribution is changed due to the
data. They seem to indicate that existence of Bayesian learn-
ing implies there are likely to be no problems with estimability.
In the Binary–Normal example discussed above, the posterior
distribution for the precision parameter τ = 1/σ 2 was different
than the prior distribution indicating some ‘Bayesian learning’
but clearly the parameter is nonestimable. Thus, some Bayesian
learning is feasible even when the parameter is nonestimable.
See also Lele (2010) for another example. This is concurrent
with our result in Theorem A.2 that the posterior distribution in
the nonestimable parameter case is a truncated version of the
prior distribution, not necessarily the prior distribution itself.
Similarly, we obtained good mixing and convergence (Gelman–
Rubin statistics of 1.06 and 1.12, respectively). These results
also indicate that good mixing and convergence of the MCMC

http://pubs.amstat.org/action/showImage?doi=10.1198/jasa.2010.tm09757&iName=master.img-001.jpg&w=371&h=364
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or evidence of Bayesian learning, although necessary, is not suf-
ficient for estimability of the parameters.

Convergence problems with MCMC and sensitivity to the
choice of the prior can arise for various reasons. Aside from
the possibility of nonestimability, they can also arise when the
likelihood is relatively, but not exactly, flat or has multiple but
unequal modes. These problems do not necessarily imply that
the parameters are nonestimable. In data cloning, the informa-
tion content of the sample is increased through cloning. By do-
ing so, we eliminate the possibility of small information con-
tent affecting the convergence of MCMC and sensitivity to the
choice of the prior. Thus, data-cloning-based test is clear and
unambiguous. Of course, we consider this test as an additional
tool to check for possible problems with the model and not a re-
placement of the checks proposed by Eberly and Carlin (2000)
and others. Furthermore, in practice, published articles based on
MCMC methodology seldom provide information on whether
such checks were, in fact, conducted. Data-cloning methodol-
ogy forces researchers to think about estimability issue care-
fully and to conduct such checks.

Hierarchical models are easy to construct and, thanks to
MCMC, are easy to analyze. As a general principle, complexity
of the model should not exceed the information content in the
data (Lele 2010). Data cloning alerts the researcher to the po-
tential pitfalls of the model such as nonestimability and points
out any mismatch between the desired complexity of the model
and what is feasible given the data.

6. DISCUSSION

In this article, we show the applicability of data cloning for
conducting likelihood inference for GLMM and for predicting
random effects. It is well known (e.g., Natarajan and Kass 2000)
that the choice of the noninformative prior is crucial when ap-
plying MCMC to conduct the noninformative Bayesian infer-
ence. Improper priors can lead to improper posteriors. The data-
cloning algorithm, because it is invariant to the choice of the
prior distribution, can utilize a prior distribution that is compu-
tationally convenient and proper. Thus avoiding the possibility
of improper posterior distributions. The inverse of the Fisher
information matrix is not always a good approximation to the
variance of the estimator, especially for smaller sample sizes.
One can always use bootstrapping as an alternative to the in-
verse of the Fisher information to estimate the variance and to
obtain confidence intervals. One of the appealing features of
data cloning is the test for estimability of parameters in hier-
archical models. Understanding estimability of the parameters
is extremely important in practice, where models are complex
and analytical results are sparse. Any valid scientific inference
can only be based on identifiable parameters. Thus, checking
for estimability is critical for good scientific practice. Although
not illustrated here, further inference procedures such as model
selection using information criteria, profile likelihood for infer-
ence in the presence of nuisance parameters etc. are also possi-
ble using data cloning (Ponciano et al. 2009).

APPENDIX

A.1 Proof of Convergence

Let � denote the parameter space. This is subset of a p-dimensional
Euclidean space.

Let f (y; θ) denote the joint probability density function of the data
vector Y = (Y1,Y2, . . . ,Yn). We assume that this is a bounded function
as a function of θ . Let π(θ) denote the prior distribution, a probability
density function, defined on the parameter space.

Let πK(θ |y) = f K(y|θ)π(θ)/c(K), where c(K) = ∫
f K(y|θ) ×

π(θ)dθ < ∞. We are suppressing the dependence of c(K) on y for
notational simplicity.

Assumption A.1. The function f (·), as a function of θ , has a local
maximum at θ∞ and f (θ∞) > 0 and π(θ∞) > 0. The maximum like-
lihood estimator is, by definition, denoted by θ∞.

Assumption A.2. The function π(·) is continuous at θ∞, the func-
tion f (·) has continuous second derivatives in a neighborhood of θ∞
and D2f (θ∞) is strictly negative definite.

Assumption A.3. For any δ > 0, we have γ (δ) := sup{f (θ) :‖θ −
θ∞‖ > δ} < f (θ∞).

Definition A.1 (Neighborhood). Let � = {−D2f (θ∞)}−1/2 and for
δ > 0 define N(δ) := {θ :‖�−1(θ − θ∞)‖ < δ}. Because � is positive
definite, this defines a system of neighborhoods of θ∞.

Definition A.2. Let �K be a random variable on �p with den-
sity function πK(·) and define the standardized variable �K =√

K�−1(�K −θ∞) that has density function gK(θ) = |�|
Kp/2 πK(θ∞ +

1√
K

�θ).

Without loss of generality, we can assume that f (θ∞) = 1. This
is simply a standardized likelihood function and the computation of
the posterior distribution πK(θ |y) is invariant to such standardiza-

tions. Thus, � = {−D2f (θ∞)}−1/2 corresponds to the square root
of the inverse of the Fisher information matrix because D2f (θ∞) =
D2 log f (θ∞).

Lemma A.1. Under Assumptions A.1 and A.2, f K(θ∞ + 1√
K

�θ)

converges to exp(−‖θ‖2/2) uniformly on bounded sets of θ as K →
∞.

Proof. Fix δ0 > 0 so small that D2f (θ) is continuous on the neigh-
borhood N(δ0). For every θ in this neighborhood, Taylor’s theorem
says that there is some θ+ on the line segment joining θ and θ∞ so
that

f (θ) = f (θ∞) + Df (θ∞)(θ − θ∞)

+ 1
2 (θ − θ∞)T (D2f (θ+))(θ − θ∞)

= 1 − 1
2 (θ − θ∞)T (−D2f (θ+))(θ − θ∞). (A.1)

For any θ ∈ �p, when K is large, the vector θ∞ + 1√
K

�θ is in N(δ0)

and we have

f

(
θ∞ + 1√

K
�θ

)
= 1 − θT�T {−D2f (θK)}�θ

2K
,

for some θK on the line segment joining θ∞ + 1√
K

�θ and θ∞.

For ε > 0, choose δ(ε) < δ0 so small that for θ ∈ N(δ(ε)), we have
D2f (θ) is negative definite and ‖�T (−D2f (θ))� − I‖ ≤ ε. Now, for
0 ≤ x, y ≤ K, we have

∣∣∣∣
(

1 − x

K

)K
−

(
1 − y

K

)K ∣∣∣∣ ≤ |x − y| and

(A.2)∣∣∣∣
(

1 − y

K

)K
− exp(−y)

∣∣∣∣ ≤ y2

K
.

Fix M > 1 and 0 < ε < 1 and let K ≥ max((M/δ(ε))2,M2). Then
for ‖θ‖ < M we have θK ∈ N(δ(ε)), so using (A.2) with x =
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1
2 θT�T (−D2f (θK))�θ and y = ‖θ‖2/2 we get

∣∣∣∣ f K
(

θ∞ + 1√
K

�θ

)
− exp

(
−‖θ‖2

2

)∣∣∣∣ ≤ εM2

2
+ M4

4K
.

Because ε is arbitrary, this gives the result.

Corollaries.

(1) By the continuity of π at θ∞ and Lemma A.1, π(θ∞ +
1√
K

�θ)f K(θ∞ + 1√
K

�θ) converges to π(θ∞) exp(−‖θ‖2/2) uni-

formly on bounded sets.
(2) Lemma A.1 and Fatou’s lemma give us π(θ∞)|�|(2π)p/2 ≤

lim infKc(K)Kp/2. In particular, there is a constant C > 0 so that
1

c(K)
≤ CKp/2.

Lemma A.2. Under Assumptions A.1 and A.2, the following three
are equivalent.

(a) �K ⇒ N(0, Ip) (convergence in distribution to a Normal ran-
dom variable).

(b) The density gk converges pointwise to a multivariate standard
normal density function. That is, c(K)Kp/2 → π(θ∞)|�|(2π)p/2.

(c) �K ⇒ δθ∞ where δθ∞ indicates a degenerate distribution at
θ∞.

Proof. To show (a) ⇒ (b). The density gK(·) can be written as

gK(θ) = |�|
Kp/2c(K)

π

(
θ∞ + 1√

K
�θ

)
f K

(
θ∞ + 1√

K
�θ

)
.

Let B be a bounded Borel set with positive Lebesgue measure. From
the convergence in (a), we have

1

(2π)p/2

∫
B

exp(−‖θ‖2/2)dθ

= lim
K

|�|
c(K)Kp/2

∫
B

π

(
θ∞ + 1√

K
�θ

)
f K

(
θ∞ + 1√

K
�θ

)
dθ .

On the other hand, the uniform convergence from Lemma A.1 gives

lim
K

∫
B

π

(
θ∞ + 1√

K
�θ

)
f K

(
θ∞ + 1√

K
�θ

)
dθ

= π(θ∞)

∫
B

exp(−‖θ‖2/2)dθ .

Hence we can conclude that c(K)Kp/2 → π(θ∞)|�|(2π)p/2 as K
converges to infinity. Combined with convergence in Lemma A.1, this
gives gK(θ) → 1

(2π)p/2 exp(−‖θ‖2/2).

(b) ⇒ (a) follows from Scheffe’s theorem.
(a) ⇒ (c) is obvious.
To show (c) ⇒ (b). Because D2f and π are continuous at θ∞ and

� is strictly positive definite, from (A.1) we see that for any ε > 0 we
can find δ > 0 so that θ ∈ N(δ) implies

f (θ) < 1 − 1
2 (1 − ε)(θ − θ∞)T�−2(θ − θ∞) and

(A.3)
π(θ) ≤ (1 + ε)π(θ∞).

Also, by assumption (c), we may assume that K is so large that 1 −
ε ≤ ∫

N(δ) πK(θ)dθ . Multiplying this inequality by c(K)Kp/2(1−ε)−1

and using (A.3) gives

c(K)Kp/2 ≤ (1 − ε)−1Kp/2
∫

N(δ)
π(θ)f K(θ)dθ

≤ (1 − ε)−1Kp/2(π(θ∞) + ε)

×
∫

N(δ)

[
1 − 1

2
(1 − ε)(θ − θ∞)T�−2(θ − θ∞)

]K
dθ

≤ (1 − ε)−1Kp/2(π(θ∞) + ε)

×
∫

N(δ)
exp

[
−K

2
(1 − ε)(θ − θ∞)T�−2(θ − θ∞)

]
dθ

= (1 − ε)−1(π(θ∞) + ε)|�|(2π)p/2.

By letting K → ∞ and then ε → 0, we get lim supK c(K)Kp/2 ≤
π(θ∞)|�|(2π)p/2. The other half comes from the inequality in Corol-
lary A.1.

Corollary to Lemma A.2. Under Assumptions A.1, A.2, and A.3,
�K ⇒ δθ∞ .

Proof. Using Assumption A.3 and the second corollary to Lem-
ma A.1, we see that for any δ > 0,

1

c(K)

∫
‖θ−θ∞‖>δ

π(x)f K(x)dx ≤ CKp/2γ (δ)K → 0.

This implies �K ⇒ δθ∞ .
The main result of the convergence of data-cloning algorithm, that

under Assumptions A.1, A.2, and A.3, �K ⇒ N(0, Ip), follows imme-
diately.

Comment. The proof given in Jacquire, Johannes, and Polson
(2007) assumes only Assumptions A.1 and A.2. The counter exam-
ple below shows that they are not sufficient for convergence; Assump-
tion A.3 is necessary. Let � = �,π(θ) = 1

2.5 min(1, 1
4θ2 ). Let the

likelihood function be f (θ) = 1 − θ2

2 when |θ | ≤ 1 and f (θ) = 1 − 1
|θ |3

when |θ | > 1. For this situation,
√

KC(K) → ∞ and we do not get the
convergence to a Normal distribution.

A.2 Determining Estimability

Theorem A.2. Consider the set N(θ) = {θ ∈ � : L(θ ,y(n)) = L(θ̂ (n),

y(n))}. Suppose this set is not a single point set, that is, the likeli-
hood function is identical over the set N(θ). As K → ∞, the posterior
distribution converges to a distribution with density π(θ)∫

N(θ) π(θ)dθ
for

θ ∈ N(θ). If the set N(θ) is not a single point set, σ 2
K,n, the largest

eigenvalue of the posterior variance matrix, does not converge to 0.

Proof. Consider

πK(θ |y(n))

πK(θ (n)|y(n))
= π(θ)

π(θ (n))

f K(y(n)|θ)

f K(y(n)|θ (n))
.

It is obvious that for θ /∈ N(θ),

πK(θ |y(n))

πK(θ (n)|y(n))
= π(θ)

π(θ (n))

f K(y(n)|θ)

f K(y(n)|θ (n))
→ 0.

It is also equally obvious that for θ1, θ2 ∈ N(θ),
πK(θ1|y(n))

πK(θ2|y(n))
=

π(θ1)
π(θ2)

f K(y(n)|θ1)

f K(y(n)|θ2)
= π(θ1)

π(θ2)
. Hence the result follows.

Corollary A.2. Let g(θ) be a function of θ such that it takes unique
value on the set N(θ). Then g(θ) is estimable.

An immediate consequence of the corollary, the posterior variance
of g(θ) converges to 0 as we increase the number of clones. Hence a
simple way to check for estimability of a specific function of θ is to
plot the posterior variance [or, the largest eigenvalue of the posterior
variance matrix if g(θ) is a vector valued function] as a function of the
number of clones. If this converges to 0 as we increase the clones, the
function is estimable.

Corollary A.2. Let π1(θ) and π2(θ) be two different prior distribu-
tions. Then, it follows that, as K → ∞, the posterior distributions con-
verge to π1(θ)∫

N(θ) π1(θ)dθ
and π2(θ)∫

N(θ) π2(θ)dθ
respectively. Hence the largest

eigenvalue of the limiting posterior distribution depends on the choice
of the prior distribution.

[Received December 2009. Revised July 2010.]
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