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Model complexity and information in the data:
Could it be a house built on sand?
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Heisey et al. (2010), in an interesting paper, try to

address a very difficult problem of analyzing spatially

referenced, age specific prevalence data. The general

goal of the analysis is to understand how force of

infection changes as a function of age, time, and space.

To further complicate matters, all the data considered in

the paper are censored observations. Binary data are

notoriously difficult to analyze, especially when latent

processes are involved and prevalence is very low.

Frankly, I was surprised by the complexity of the

models they consider and the limited amount of

information available to fit these models. I would like

to congratulate them for trying to address such a

difficult problem and in the process bringing to the

attention of the ecologists some important statistical

models in survival analysis.

How does one generally deal with the conflicting

issues of lack of information and desire to conduct

inference about complex underlying processes? The

standard approach is to compensate for lack of

information by adding assumptions. This is done

routinely in most statistical analyses by assuming a

parametric model. For example, one can conduct

inference in ANOVA without assuming any specific

relationship between the treatment means if replicate

observations are available at each treatment level. If

such replicate data are not available, instead of giving

up, we assume that there is a linear (or, some

parametric) relationship between the covariates and

the response, the regression approach. This is a

smoothing assumption. Similarly, in one of the funda-

mental papers on statistical inference in the presence of

nuisance parameters, Kiefer and Wolfowitz (1956)

showed that simply assuming that the nuisance param-

eters arise from a distribution is enough of a smoothing

assumption to estimate not only the parameters of

interest but also the distribution function from which

nuisance parameters are assumed to have arisen. Heisey

et al. (2010) try to get away with the limited information

available in the prevalence data, where all observations

are censored, by imposing constraints on the log-hazard,

a smoothing assumption of another sort. This is the easy

part. The real questions are: (1) Given the limited

amount of information in the data, what assumptions do

we need until some inference is feasible? and (2) Are

these inferences primarily driven by the data or by the

assumptions? Technically, the answer to the first

question is straightforward: add assumptions until the

parameters in the model, at least the ones that are of

scientific interest, are estimable given the data. The

second question is qualitative. It is partially addressed

by studying the sensitivity of the inferences on the

parameters of interest (assuming they are identifiable) to

the violations of the assumptions. I will discuss these

issues in the remainder of the commentary. I assume

readers are familiar with the basic descriptions in Heisey

et al. (2010).

Perhaps the easiest way out of the limited information

in the prevalence data is to assume a specific parametric

model for the log-hazard function. This does not

guarantee that the parameters will be identifiable but it

has the best chance. Heisey et al. (2010) do not take this

easy way out. They aspire to assume less about the form

of the log-hazard function. As they point out, the

‘‘nonparametric’’ MLE of the log-hazard is very choppy

and unstable. It is generally not consistent, at least not at

the usual
ffiffiffi
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rate. One way out of this is to assume that

the log-hazard function is continuous or differentiable

of a certain order; thus imposing some form of

smoothness conditions. Another way out is to assume

that the log-hazard values are arising from a random

process, the ‘‘random effects’’ approach. These ap-

proaches are neither Bayesian nor non-Bayesian. These

are simply different models. A non-Bayesian approach

stops at this specification. Given these model assump-

tions, the likelihood approach computes the marginal

distribution of the data as a function of the underlying

parameters. The maximum-likelihood estimator finds

the value of the parameter that maximizes this likelihood

function. This task can be computationally challenging

but certainly not impossible, even when the random

effects approach is used (Lele et al. 2007).

The Bayesian approach goes one step further. It

assumes known distributions, ‘‘the priors,’’ on the

parameters. With this additional assumption, the
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marginal distribution of the data contains no unknown

parameters. The inferences are based on the conditional

distribution of the parameters given the data, the

posterior distribution. These inferences, by construction,

are affected by the choice of the prior distribution. One

may try to choose priors that are as weakly informative

as possible. However, the precise definition of ‘‘weakly

informative’’ is unavailable. It appears from the

literature that there are as many non-informative priors

as there are Bayesians. For a discussion of the issues of

informativeness of the priors, see, e.g., Press (2003), Lele

and Dennis (2009), or Wasserman (2006). These priors,

contrary to what is claimed in much of the ecological

literature, are not always innocuous. With this back-

ground, now I will get into the details of Heisey et al.

(2010) paper. Unfortunately not having the original data

and adequate time, I am forced only to raise questions

without attempting to answer them.

Discretization approach.—As described by Heisey et

al. (2010), working with the likelihood in terms of the

underlying continuous time, continuous space process

involves evaluating high dimensional integrals. To avoid

the integration, the authors use the mean value theorem

to approximate the integrals. They consider seven age

classes, eight time points, and approximately 200 spatial

locations. The full model has about 215 or so

parameters. The first question that arises is how does

the unit of discretization affect inferences? This is known

as modifiable areal unit problem (MAUP) in geograph-

ical literature. The authors have neither pointed out the

problem nor addressed it to any extent. It would have

been interesting to try different age classes, temporal

and spatial units and see how different the inferences

are.

Nonspatial models.—The authors start with the

simpler nonspatial model. This model, as far as I can

see, involves only 14 parameters. To me it was somewhat

surprising that the maximum-likelihood approach was

not even attempted in this simple situation. It would

have been instructive to compare the maximum-likeli-

hood estimates with the ones obtained using the flat

priors. Instead, the authors assume that these parame-

ters arise out of a random process, the random effects

approach. Is it really reasonable or necessary to assume

a random effects model for such a small number of

parameters? In the traditional mixed effects models

(Searle et al. 1992), the random effects approach is

usually deployed when the ratio of number of param-

eters to number of observations does not converge to

zero as the number of observations increases. I found

the authors’ reluctance to use the likelihood approach in

this simple situation somewhat puzzling. It may be that I

have computed the number of parameters incorrectly.

Prior specification.—To conduct inference, authors

further impose completely known prior distributions on

the parameters of the random effects distribution. These

priors, although euphemistically called non-informative,

are not always innocuous. A flat prior on one scale is

guaranteed to be non-flat on any other scale. Thus, they

are not parameterization invariant. This is widely

known in statistics and has been a major reason for

developing other ‘‘non-informative’’ priors such as the

Jeffrey’s priors or reference priors (Press 2003). Unfor-

tunately, computation of these priors is usually difficult

and involves knowing the likelihood function which

itself is nearly impossible to compute for hierarchical

models. How important is the parameterization invari-

ance? In an unpublished manuscript, we report ecolog-

ical consequences of using flat priors. One example we

consider is in the context of estimation of the probability

of occupancy in the presence of detection error. In this

situation, a uniform prior on the scale of probability

between 0 and 1 gave us somewhat reasonable answers.

On the other hand, for the same data, when we put

uniform prior on the odds, the answers were extremely

biased. Even for such a simple situation, under the

uniform prior on the odds scale, it took nearly 100 000

observations before we could obtain reasonable answers.

On the other hand, the likelihood estimators were

excellent with samples sizes of 100 or so. We found

common situations in population dynamics that also

show similar problems. There is no criterion that

suggests the ‘‘correct’’ scale on which such uniform or

flat priors should be used. I wonder how different

authors’ results would be if they put flat priors on

different transformations of the parameters. I would like

to note that likelihood inference is guaranteed to be

parameterization invariant.

Parameter identifiability.—Given a model, one can

suggest any number of methods of estimation. Such

estimation methods are nothing more than computa-

tional algorithms unless and until the estimators are

shown to have reasonable properties. One important,

nay essential, criterion is that the estimators are

consistent under the true model. Parameters have to be

identifiable for them to be consistently estimable. If the

parameters are non-identifiable, the likelihood function

is constant over a subset of the parameter space. Thus,

no amount of data can discriminate between the

parameters in such a subset. The spatial random effects

model considered in the paper consists of non-identifi-

able parameters, namely SD(bs) and SD(bh). It is

obvious that if these parameters are non-identifiable,

the parameter w¼ [SD(bs)]/[SD(bs)þ SD(bh)] cannot be
identifiable either. What exactly does it mean to make

scientific statements based on this non-identifiable

parameter? It is very disturbing to learn that Bayesians

do not care for identifiability. This could be true only if

they are willing to base their inference on belief alone.

As a scientist, I cannot agree with the sentiment. In my

opinion, scientifically valid inference can only be based

on identifiable features of the model.

Parameter estimability.—The method of data cloning

(Lele et al. 2010) can be used to study the estimability of

the parameters. It can be shown that as the number of
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clones increases, the posterior variance converges to zero

if and only if the parameters are estimable. On the other

hand, if the posterior distribution converges to a

nondegenerate distribution, it implies non-estimability

of the parameters. This nondegenerate distribution can

be, and usually is, different than the prior distribution;

there can be ‘‘Bayesian learning’’ without identifiability.

Consider a simple example. Let Yi j li ; N (li, r
2) and li

; N (l, s2). Then it is obvious that Yi ; N (l, r2 þ s2).
The parameters r2 and s2 are individually non-

identifiable. Suppose we put priors r2 ; Unif(0, 100)

and s2 ; Unif(0, 100). Suppose the truth is such that r2

þ s2¼ 10. Then the marginal posterior distributions for

r2 and s2 necessarily get concentrated on the interval (0,

10) as the sample size increases. Their joint distribution

will be concentrated along the diagonal of the square

defined by the coordinates (0, 0), (0, 10), (10, 10), and

(10, 0). This distribution is different than the prior

distribution. Thus, there is ‘‘Bayesian learning’’ but

clearly existence of Bayesian learning does not imply

that the parameters are identifiable or even that

legitimate inferences can be drawn about the parameters

for which Bayesian learning happens. If a part of the

model is non-identifiable, it can make estimators of

other parameters inconsistent. They converge to a single,

but wrong point. An example is given in Lele et al.

(2010). The only way we can be sure that we are learning

something sensible is by showing that the posterior

distribution becomes degenerate at the true value as the

sample size increases, namely the consistency of the

estimator. The consistency of the estimators of the

parameter of interest, especially in the presence of non-

identifiable components of the model, needs to be

established. Until such a result is proved, the spatial

model discussed in this paper and inferences thereof

should be considered suspect. I would have liked to see

at least some simulation results indicating that the

inferences are likely to be legitimate.

Maximum-likelihood analysis.—I would have liked to

try data cloning to obtain maximum-likelihood esti-

mates of the parameters for Heisey et al. (2010).

However, original data are not available publicly. Hence

I decided to use a somewhat different model and a data

set provided in Heisey’s training materials for survival

analysis using WinBUGS (available online).2 I consid-

ered an example in Chapter 3, Bugs3_1. The data are

about nest survival. They are interval censored and

hence far more informative than the fully censored data

in the Heisey et al. (2010) paper. This model is similar to

the models used in Heisey et al. (2010) and so I hoped to

learn something about the behavior of the models and

estimators in their paper. I did data cloning based

analysis of these data using ‘‘rjags’’ (Plummer 2009),

instead of WinBUGS. The original model, identical to

the nonspatial EX model in the Heisey et al. paper, gave

me substantial trouble with convergence. To get it to

converge, I had to use a specific parameterization and

also give fairly informative priors. I decided to use a

slightly different prior, the AR(1) prior where ftþ1¼ cftþ1
þ etþ1, jcj � 1, and et ; N (0, r2) are independent

random variables. This model was very stable in terms

of convergence. The results are presented in Table 1.

Here K denotes the number of clones used in data

cloning. Priors were gamma0 ; N (�3, 1), c ;

Uniform(�1, 1), and r ; Uniform(0, 4). Multivariate

Gelman-Rubin statistics were 1.28 (K¼ 1), 1.01 (K¼ 9),

and 1.08 (K ¼ 16) indicating convergence of MCMC.

Notice that as we increase the number of clones, the

posterior variances do not converge to zero. This

indicates non-estimability of the parameters (Lele et al.

2010). From these results, it appears that the parameters

in this model are non-estimable. Furthermore, to see the

effect of parameterization on the estimates, I put flat

priors on different parameterizations. The results in

Table 2 show that the estimates are quite different

depending on which parameterization is used. When I

tried to use r ; Lognormal(0, 10), MCMC failed to

converge. Surprisingly, initially for a shorter burn-in, it

looked like it may converge (Rhat ; 1.9) but further

burn-in made it worse (Rhat ; 6.8). Such behavior

usually suggests problems with identifiability. Both these

aspects make me wonder how much one should rely on

the estimates and inferences described in Heisey et al.

(2010). It is, of course, possible that I have misinter-

preted the example in Heisey’s notes and my results on

non-estimability are incorrect. I would prefer that to be

the case. At the same time, I would like to see some

evidence that the parameters in the models used in

Heisey et al. (2010) are, in fact, identifiable given the

meager amount of information available in the obser-

vations. Bayesian learning is only a necessary but

definitely not a sufficient condition for identifiability.

TABLE 1. Non-estimability of the parameters for the EX
model with interval censored data.

Parameter and statistics K ¼ 1 K ¼ 9 K ¼ 16

gamma0

Posterior mean �4.71 �6.69 �7.20
Posterior SD 0.26 0.44 0.40

c

Posterior mean 0.079 0.102 0.085
Posterior SD 0.52 0.22 0.22

r
Posterior mean 0.27 3.02 3.36
Posterior SD 0.22 0.47 0.38

Notes: K denotes the number of clones used in data cloning
The parameter gamma0 relates to the survival probability in an
interval, c corresponds to the auto-correlation between the
random effects that vary from interval to interval and
parameter, and r corresponds to the variation between random
effects.

2 hhttp://www.nwhc.usgs.gov/staff/dennis_heisey.jspi
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Ecologists know a great deal about the processes.

While constructing mathematical models, they have a
strong and admirable desire to include all the nuances.
Unfortunately the data are not always informative

enough to conduct inferences on all the complexities of
the model. As a consequence, either the model
parameters become non-identifiable or non-estimable.

If estimation is possible, estimates tend to be extremely
uncertain with large standard errors, thus precluding
their use in effective decision making. I would urge

ecologists to establish identifiability of the parameters in
their models before conducting any scientific inferences.
Data cloning automatically informs the user if the
parameters are estimable and if they are, it gives the

estimates and their standard errors. The Bayesian
inference procedure, used by Heisey et al. (2010), has a
potential to provide answers that are misleading without

any clear warning. As scientists, we need to learn to

balance the desire to incorporate all the complexity in

nature against the available information in the data. A

mismatch can only lead to a house built on sand.
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TABLE 2. Bayesian estimators depend on the parameterization.

Parameter and
statistics h ; Uniform(0, 4) log(h) ; N (0, 10)

gamma0

Mean �4.834 �4.69
SD 0.2682 0.2567

c

Mean 0.078 0.1927
SD 0.3696 0.4863

r
Mean 0.646 0.2716
SD 0.1353 0.1837

Notes: Let 1/r2 ¼ h be the precision parameter. Putting flat
priors on h or log(h) give different estimates. These are also
different from the estimates reported in Table 1, K ¼ 1 case,
where the prior was on the r scale.
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