
L E T T E R
Data cloning: easy maximum likelihood estimation

for complex ecological models using Bayesian

Markov chain Monte Carlo methods

Subhash R. Lele,1 Brian Dennis2

and Frithjof Lutscher3

1Department of Mathematical

and Statistical Sciences,

University of Alberta,

Edmonton, AB T6G2G1, Canada
2Department of Fish and

Wildlife Resources and

Department of Statistics,

University of Idaho, Moscow, ID

83844-1136, USA
3Department of Mathematics

and Statistics, University of

Ottawa, Ottawa, ON K1N6N5,

Canada

*Correspondence: E-mail:

brian@uidaho.edu

Abstract

We introduce a new statistical computing method, called data cloning, to calculate

maximum likelihood estimates and their standard errors for complex ecological models.

Although the method uses the Bayesian framework and exploits the computational

simplicity of the Markov chain Monte Carlo (MCMC) algorithms, it provides valid

frequentist inferences such as the maximum likelihood estimates and their standard

errors. The inferences are completely invariant to the choice of the prior distributions

and therefore avoid the inherent subjectivity of the Bayesian approach. The data cloning

method is easily implemented using standard MCMC software. Data cloning is

particularly useful for analysing ecological situations in which hierarchical statistical

models, such as state-space models and mixed effects models, are appropriate. We

illustrate the method by fitting two nonlinear population dynamics models to data in the

presence of process and observation noise.
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I N T R O D U C T I O N

A sea-change in the scale and complexity of ecological data

analysis occurred with the development in statistics of

practical inference methods for hierarchical models. Hier-

archical models are statistical models containing random

components in addition to or instead of the usual fixed

parameter values, and take such varied forms as generalized

linear models with mixed random and fixed effects,

structured population state-space models with observational

and process variability and capture-recapture models with

randomly varying capture probabilities. Applications of

hierarchical models in ecology are expanding rapidly, due to

the wealth of realistic model structures for describing

ecological processes (Table 1).

The most commonly used approach for fitting hierarchi-

cal models to data is based on the Bayesian paradigm (Link

et al. 2002; Clark 2005; Clark & Gelfand 2006). The prior

distributions are chosen to be informative, if appropriate;

otherwise non-informative priors are commonly used.

Computing the Bayesian posterior distribution for hierar-

chical models became feasible with the advent of the

Markov chain Monte Carlo (MCMC) algorithms. These

algorithms are a collection of probabilistic simulation

methods for generating observations from designated

statistical distributions (Gelfand & Smith 1990; Casella &

George 1992; Gilks et al. 1996; Robert & Casella 2004). Free

software programs such as WINBUGS (Spiegelhalter et al.

2004) have made their application in ecology reasonably easy

and straightforward. MCMC algorithms are especially useful

when the target statistical distribution, such as the posterior

distribution in the Bayesian formulation, contains a high-

dimensional integral that cannot be simplified.

Although the Bayesian inferences are computationally

feasible, their interpretation is problematic. First, the

inferences depend on the choice of the prior distributions.

Second, even among statisticians, there is a debate as to how

one defines a non-informative or an objective prior (Press

2003, Chapter 5; Barnett 1999, Chapter 10). Third, the

credible intervals produced in Bayesian inference have no

meaning in terms of the replication of inferences by other

studies, but rather represent the beliefs the analyst attaches
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to different values of the parameters. Finally, interpretation

of the credible intervals when non-informative or objective

priors are used is still controversial in statistics (Barnett

1999). Indeed, in ecology, the increased use of Bayesian

inference has been partly pragmatic, because the Bayesian/

MCMC approach to date has provided the only practical

solution for fitting various complex hierarchical models.

In comparison with Bayesian analysis, likelihood-based

statistical inference for hierarchical models can be extremely

difficult. Computing the likelihood function involves high-

dimensional integration over the unobserved variables

(McCulloch & Searle 2001; De Valpine & Hastings 2002;

Dennis et al. 2006; Lele 2006). Likelihood-based approaches

to inference for hierarchical models have involved either

approximations or computer-intensive simulation algo-

rithms. McCulloch (1997) reviewed various likelihood

approaches for generalized linear models with mixed effects,

and Robert & Casella (2004) provided an excellent review of

simulation approaches to statistical inference for hierarchical

models. Under the Bayesian setup with uninformative

priors, the mode or mean of the posterior distribution can

be a reasonable large-sample approximation to the

maximum likelihood (ML) estimator (Karim & Zeger

1992). Approximation methods such as penalized quasi-

likelihood (Breslow & Clayton 1993) and composite

likelihood (Heagerty & Lele 1998; Lele 2006) can produce

useful, approximate estimates for limited classes of models.

More recently, Laplace approximation (Breslow & Lin 1995)

has been combined with automatic differentiation to

produce approximate ML estimates for hierarchical models

(Skaug & Fournier 2006), but statistical investigators have

warned that the approximation can be poor for some

nonlinear models (Breslow & Lin 1995; McCulloch 1997;

Carlin & Louis 2000). Kitagawa (1987) introduced a

discretization approach to simulating the likelihood in

non-Gaussian state-space models. Geyer & Thompson

(1992, 1995) showed how MCMC simulations could be

used directly for estimating likelihood ratios, from which

ML estimates can be obtained. George & Thompson (2003),

following Bennett (1976), suggested using a prior in

Bayesian MCMC calculations and then dividing the poster-

ior by the prior, yielding the likelihood function up to an

unknown constant. De Valpine (2003, 2004) used priors in

Bayesian MCMC calculations, approximating the likelihood

surface up to an unknown constant with weighted kernel

density estimation of the posteriors. The methods of path

sampling and bridge sampling can also be used in

conjunction with MCMC simulations to estimate likelihood

ratios (Gelman & Meng 1998). Computer-intensive like-

lihood simulations have been featured in some ecological

studies (De Valpine & Hastings 2002; Ponciano et al. 2007).

When the likelihood function must be simulated, com-

putational approaches to ML estimation are difficult to

implement. The ML calculations involve the computation-

ally challenging task of maximizing a noisy function, which

requires proper use of stochastic optimization routines

(Spall 2003). The ratios of random variables in the likelihood

ratios tend to amplify the noisiness of the function making

the task of locating the maxima of the random functions

tricky. The estimates are slow to converge and can require

considerable hands-on attention, restarts and patience.

Finally, most existing methods are not convenient to

implement using current statistical software packages.

In this study, we introduce a simple method for

calculating ML estimates for hierarchical models using the

MCMC algorithms. The method is an adaptation, for

hierarchical models, of a computational ML approach

developed by Robert (1993) and is related to simulated

annealing (Brooks & Morgan 1995). The method adopts the

full Bayesian setup for MCMC statistical calculations, but

uses the framework only as a device for likelihood

calculations. In contrast to the Bayesian inferences, these

inferences are completely invariant to the choice of the prior

distributions. Standard software packages for Bayesian

MCMC calculations, such as the WINBUGS software

(Spiegelhalter et al. 2004), can be used to produce ML

estimates after a simple adjustment of the inputs. The

calculations require merely computing sample mean values

and variances and not numerical maximization or differen-

tiation of a noisy function. Theoretically, the method will

provide the location of the global maximum and not just a

local maximum, although the asymptotic conditions of

theory cannot always be approximated in practice. The

global maximization property is especially important in that

Table 1 Sample of recent ecological publications featuring hierar-

chical statistical models

Capture-recapture: George & Robert (1992); Feinberg et al.

(1999); Brooks et al. (2000); Basu & Ebrahimi (2001);

Rivot & Prévost (2002)

Fisheries stock assessment: Meyer & Millar (1999a,b); Millar &

Meyer (2000a,b)

Reaction-diffusion models of spatial spread: Clark et al. (2003);

Wikle (2003)

Geospatial models of species and habitats: Gelfand et al. (2005)

Estimating trends in spatially distributed populations: Wikle et al.

(1998); Link & Sauer (2002); Sauer & Link (2002); Thogmartin

et al. (2004); Link et al. (2006)

Forest growth and yield modelling: Green et al. (1999); Radtke

et al. (2002)

Modelling structured, density-dependent populations: Clark

(2003); Buckland et al. (2004); Clark et al. (2005); Newman

et al. (2006)

Estimating different sources of variability in population time series: Clark &

Bjørnstad (2004)

Analysing species abundance distributions in biodiversity: Etienne & Olff

(2005)

552 S. R. Lele, B. Dennis and F. Lutscher Letter

� 2007 Blackwell Publishing Ltd/CNRS



hierarchical models can have multimodal likelihood func-

tions (Dennis et al. 2006). We provide for ecologists an

accessible explanation of the data cloning method with the

goal of making it immediately available for ecological

applications. A proof of why the method works, based on

the concept of iterative maps, appears in the Appendix. We

illustrate the technique by analysing two ecological examples

for which ML estimation has been problematic.

T H E D A T A C L O N I N G M E T H O D

The method we propose is based on an idea we call data

cloning. The idea is simple: construct a full Bayesian model

of the problem, complete with fully specified, proper prior

distributions for unknown parameters, but instead of using

the likelihood for the observed data, use the likelihood

corresponding to k copies (clones) of the data, where k is

large and the copies are assumed to be independent of each

other. The posterior is then calculated with the usual

MCMC approach. The mean of the resulting posterior

distribution equals the ML estimate, and k times the

variance of the posterior equals the asymptotic variance of

the ML estimate.

In the following description, we assume some familiarity

with the use of likelihood functions (Dennis & Taper 1994;

Dennis et al. 1995; Hilborn & Mangel 1997) and Bayesian

MCMC methods (Casella & George 1992; Chib & Green-

berg 1995; Meyer & Millar 1999b; Clark & Bjørnstad 2004)

in ecological applications.

Suppose observations Y ¼ (Y1,Y2, … ,Yn) arise from the

following hierarchical statistical model:

Y � f ðyjX ;uÞ;

X � gðxjhÞ;
where f and g are joint probability density functions (pdfs), X

is a vector of random quantities or processes affecting the

observations, u ¼ (u1,u2, … , uq) is a vector of unknown

fixed parameters affecting the observations, and h ¼
(h1, h2, … , hp) is a vector of unknown fixed parameters

related to the process X.

For example, in a state-space model of population

abundance, X is a vector containing a time series of

unobserved population abundances governed by a stochas-

tic growth model with joint pdf g, and Y is a vector

containing the observed or estimated population abun-

dances, with the joint pdf f being a model of how Y arises

as a measurement-error-corrupted version of X. As another

example, in a mixed effects analysis of variance model, Y is

the vector of response variables, and X is a vector of

random mean values. A third example is a closed population

capture-recapture model, in which Y is a matrix of capture

histories (rows of 0s and 1s), and X is a vector of random

catch probabilities. In the hierarchical models literature, the

random quantities in X are variously called random effects,

latent variables or system states.

The likelihood function for the general hierarchical model

described above is given by

Lðh;u; yÞ ¼
Z

f ð yjX ;uÞgðX jhÞdX ;

where y is the observed data (the realized outcome of

the random variable Y). The ML estimates of the parame-

ters, which we denote by ðĥ; ûÞ ¼ ðĥ1; ĥ2; . . . ; ĥp;
û1; û2; . . . ; ûqÞ, are the values of (h,u) ¼ (h1,h2, … , hp;

u1,u2, … , uq) that jointly maximize the likelihood func-

tion. Clearly, the calculation of the likelihood function and

ML estimates involves the computationally daunting task of

high-dimensional integration.

The Bayesian approach completely circumvents the

problem of high-dimensional integration. The Bayesian

approach begins by assuming that, instead of being fixed but

unknown quantities, the parameters (h,u) are random

variables. The joint statistical distribution corresponding to

these random variables is called a prior distribution. The

prior distribution quantifies the investigator’s pre-data

beliefs about the different values of the parameters. The

prior distribution is then mixed with the likelihood function,

by using Bayes� rule, to form the joint posterior distribution

representing the investigator’s post-data beliefs about the

parameters. Notice that, in the hierarchical model setup, the

variables X are also unknown and random. Let us denote

the joint prior distribution on the parameters (h,u) by

p(h,u). According to Bayes� rule, the joint posterior

distribution on the unknown quantities (h,u, X) conditional

on the observed data y is given by

hðh;u;X jyÞ ¼
f ð yjX ;uÞgðX jhÞpðh;uÞR

f ð yjX ;uÞgðX jhÞpðh;uÞdX dhdu
:

The marginal posterior distribution for the parameters,

denoted p(h, u|y), is simply obtained by integrating the

posterior h(h, u, X|y) over X. It may appear that we are

replacing a problem of high-dimensional integration for

likelihood calculations by an even higher dimensional integ-

ration problem in the denominator of the posterior distri-

bution h(h, u, X|y) and another high-dimensional integral to

obtain the marginal posterior distribution p(h, u|y). How-

ever, that is not the case as we explain below.

Markov chain Monte Carlo algorithms are computational

tools that allow generation of random numbers from the

posterior distribution h(h, u, X|y) using only the numerator

of the expression without ever calculating the integral in the

denominator. We refer the reader to standard sources

(Casella & George 1992; Chib & Greenberg 1995; Gilks

et al. 1996; Robert & Casella 2004) for details of

implementation. Notice that the numerator involves no

Letter Data cloning 553

� 2007 Blackwell Publishing Ltd/CNRS



integration. Let us denote the MCMC-generated random

numbers by (h, u, X)j, j ¼ 1, 2, … , B. Here B, the number

of observations generated from h(h, u, X|y), is large

enough (say, at least 10 000) to provide a good estimate

of h(h, u, X|y). With h(h, u, X|y) obtained, computing the

posterior distribution p(h, u|y) might seem to require

integration over the variables X in h(h, u, X|y). Fortunately,

such integration is unnecessary. The marginal posterior

distribution of (h, u) is found by simply discarding the X

component of the random numbers (h, u, X)j, leaving

(h, u)j, j ¼ 1, 2, … , B. Similarly, the mean values and

variances of p(h, u|y) are simply the sample mean values

and sample variances of the random numbers (h, u)j, j ¼
1, 2, … , B. The process of simulating the marginal poster-

ior distribution thus involves no integration.

Now we explain the data cloning algorithm heuristically.

Imagine that an individual performs the statistical experi-

ment underlying the observations y not just once but rather

k times simultaneously and independently. Suppose in

addition that each of the k experimental replicates

produces, by happenstance, exactly the same result y. The

new likelihood function for the k data �clones� is the

original likelihood, L(h, u; y), raised to the kth power:

[L(h, u; y)]k. Note that the cloned data likelihood has the

same location of the maximum, namely the ML estimates

ðĥ; ûÞ, as that of the original likelihood. Now suppose

the investigator obtains a Bayesian posterior, say

h(k)(h, u, X|y), along with a marginal posterior p(k)(h, u|y),

using a prior distribution p(h, u) and the cloned data

likelihood. It turns out that if k is large, the marginal

posterior p(k)(h, u|y) will be concentrated around the ML

estimates ðĥ; ûÞ (proof in Appendix).

In fact, such a cloned data posterior provides not only

ML estimates, but also their asymptotic standard errors as

well. A well-known result from statistical theory states that

as the sample size in a likelihood function increases, the

posterior distribution converges to a multivariate normal

distribution centred at the ML estimates (Walker 1969).

Walker’s theorems are the basis of the often-mentioned

assertion that frequentist and Bayesian inferences become

similar for large sample sizes. By modifying Walker’s

theorems to cover the �deterministic� nature of cloned data

likelihoods, S.R. Lele (unpublished work) proved the

following result: as k becomes large, p(k)(h, u|y) converges

to a multivariate normal distribution with mean equal to the

ML estimate ðĥ; ûÞ and variance equal to 1
k

I�1ðĥ; ûÞ,
where I ðĥ; ûÞ is the Fisher information matrix correspond-

ing to the original likelihood function. The Fisher informa-

tion matrix is related to the Hessian of the log-likelihood

function and represents the average curvature of the log-

likelihood near its maximum. The inverse of the Fisher

information matrix contains the asymptotic variances and

covariances of the ML estimates (see Stuart & Ord 1987).

Thus, the scaled variances and covariances of the posterior

distribution p(k)(h, u|y) can be used as estimates of the

asymptotic variances and covariances.

Of course, in reality we do not have k-independent

replications of the same experiment yielding exactly the same

data. However, the thought experiment can be mimicked

using computers as described in the algorithm below.

Step 1

Create a k-cloned data set y(k) ¼ ( y, y, … , y) where the

observed data vector is repeated k times.

Step 2

Using an MCMC algorithm, generate random numbers from

the posterior distribution that is based on a prior p(h, u),

the appropriate hierarchical model structure, and the cloned

data vector y(k) ¼ (y, y, …, y) where the k copies of y are

assumed to be independent of each other. Virtually any

proper prior distribution can be used. The calculations can

be performed with WINBUGS (Spiegelhalter et al. 2004).

Specifically, a simple Metropolis-Hastings scheme

(Hastings 1970; McCulloch 1997; Robert & Casella 2004)

to accomplish the MCMC calculations is as follows (proof in

Appendix). (a) Generate (h, u)* from p(h, u), and set these

as the initial parameter values: (h, u)1 ¼ (h, u)*. (b)

Generate k values of X, say X(1), X(2), … , X(k), from

g(X|h*). (c) Calculate the product

q� ¼ f yjX ð1Þ;u�
� �

f yjX ð2Þ;u�
� �

. . . f yjX ðkÞ;u�
� �

;

and set this as the initial q value: q1 ¼ q*. (d) Repeat the

simulations of steps (a) and (b), obtaining new values

(h, u)# and q#. (e) Generate a uniform(0,1) random variable

U, and calculate p ¼ min[1, (q#/qj)], where the initial value

of j will be 1. If U > p, set (h, u)j+1 ¼ (h, u)j; otherwise set

(h, u)j+1 ¼ (h, u)#. (f) Repeat (d) and (e), many times.

According to theory (Hastings 1970), the resulting values

(h, u)j, j ¼ 1, 2, … , B, commencing after a �burn-in� per-

iod (typically 1000 or more), have been generated from the

marginal posterior distribution p(h, u|y). The k sets of la-

tent variables generated each step from g(X|h) are just

discarded. We chose the Metropolis-Hastings algorithm to

describe in detail here for its simplicity; other Bayesian

MCMC algorithms besides the Metropolis-Hastings are

known to give faster convergence to the posterior distri-

bution and are available in WINBUGS.

Step 3

Compute the sample mean values and sample variances of

the values (h, u)j, j ¼ 1,2, … , B generated from the mar-
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ginal posterior. The ML estimates of (h, u) correspond to

the posterior mean values and the approximate variances of

the ML estimates correspond to k times the posterior

variances.

In the algorithm, the key facts are that the cloned data

likelihood (a high-dimensional integral) does not have to be

evaluated, and that no numerical maximization is required.

The main function to be evaluated is just the conditional pdf

given by f( y|X,u). The ML estimates are just averages of

large numbers of computer-generated random variables.

For implementing the algorithm, number of clones k can

be taken as large as necessary for good approximation of the

ML estimates. While data cloning in theory produces the

global maximum as k becomes infinite, in practice k is finite,

and one should take measures to reduce the possibility that

the algorithm becomes �stuck� in a persistent local maxi-

mum. As a strategy, we suggest rerunning the algorithm with

several different starting prior distributions, and with

increasing values of k, until the results from the different

starting priors are in agreement. The posterior mean values

should converge to stable, common values for different

priors when k is large enough. We note that the free R

language for statistical computing (R Core Development

Team 2006) has a shell (R2WINBUGS: Sturtz et al. 2005) for

running WINBUGS, which might serve to automate the

increasing k values via looping. Also, we find that using

fairly informative or even disinformative prior distributions,

instead of flat ones, helps speed convergence of the

posterior mean values (Examples, below).

We emphasize that the estimates resulting from data

cloning are full ML estimates, resulting from maximizing the

full likelihood function in which the random effects have

been �integrated out�. Recall that Bayesian MCMC methods

integrate out the random effects by simulating random

variates from the joint distribution of the parameters and

the random effects, and then just discarding the random

effects. Data cloning is just a Bayesian MCMC method,

using a different (cloned) likelihood. Note that in each step

of the above-described Metropolis-Hastings algorithm, k

sets of the latent variables (X(1), X(2), … , X(k)) are

generated. The resulting posterior is the joint distribution

of the parameters as well as k sets of latent variables, and of

course the generated latent variables are just thrown out.

The random effects are integrated out, just as in Bayesian

MCMC methods.

Note that increasing the number of clones only improves

the numerical accuracy of the approximation to the ML

estimates and not the statistical accuracy. As well, the length

of the MCMC run only improves the numerical accuracy.

Statistical accuracy of the estimator is a function of the

amount of information in the data vector y and depends on

factors such as sample size and model quality. Also, the

standard errors and confidence intervals provided by data

cloning are large-sample approximations, and whether they

have correct nominal coverage properties depends on the

sample size and not on the number of clones. Data cloning

does not make up for lack of data. Yet, there is nothing

irregular or unscientific about cloning the data in this

algorithm. It is simply a calculation trick for obtaining ML

estimates.

E X A M P L E S

The two examples we develop are state-space population

models, in which the time series observations are influenced

by both environmental process noise and observation or

estimation error. The first example is an initial test case with

a known likelihood function; the second example, featuring

an intractable likelihood function and missing data, would

pose a tough challenge to earlier numerical ML methods.

Gompertz state-space model

The Gompertz state-space (GSS) model is a stochastic,

density-dependent model for time series observations of

population abundances (Dennis et al. 2006). Let Nt denote

the true population abundance at time t and let Xt ¼log (Nt)

be the logarithm of the unobserved population abundance

at time t (t ¼ 0, 1, …, q). In practice, the true population

abundances are usually not available, but estimates of these

true population abundances, based on some sampling

scheme, are available. Let Yt denote an estimate of Xt

obtained by the investigator. A stochastic Gompertz model

for the underlying true population abundance is represented

by

Xt ¼ a þ cXt�1 þ Et ;

where a and c are constants, Et has a normal(0,r2) distri-

bution. The parameter a is the intrinsic growth rate and the

parameter c is the density dependence parameter. The

variance parameter r2 measures the intensity of environ-

mental variability (process noise) in the system. The

observations Yt are related to the true population abun-

dances Xt by the model

Yt ¼ Xt þ Ft ;

where Ft has a normal(0,s2) distribution. The variance

parameter s2 quantifies the amount of measurement error or

observation error. The unknown parameters in the model

are a, c, r and s. The likelihood function is a multivariate

normal distribution, and is identical to that of a mixed ef-

fects analysis of variance model with repeated measures on

one subject (Dennis et al. 2006).

The GSS model serves as an excellent initial test case for

the data cloning method. Although the likelihood function

for this model can be written analytically, ML estimation
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nonetheless has problematic aspects, the main one being

that the likelihood function routinely has multiple peaks. In

the following, we employ the GSS model in a reanalysis of a

population data set studied by Dennis et al. (2006: the data

values appear in the legend of their Table 1). The data

consist of time series abundances of American Redstart

(Setophaga ruticilla) at a particular location, from the North

American Breeding Bird Survey (BBS).

The GSS likelihood function for the BBS data set

provides a graphical image of how the data cloning method

works. The likelihood in question is multimodal and ridge-

shaped; a profile likelihood calculated as a function of r
appears in Fig. 1 (k ¼ 1). The shape reflects the weak

identifiability of model parameters; the lesser mode corres-

ponds to a model with no observation error (s ¼ 0). The

data-cloned GSS likelihood is just a multivariate normal pdf

raised to the kth power; additional profile likelihoods for

increasing k appear in Fig. 1. Note that the data-cloned

likelihoods have the same peak locations as the original.

Through the multiplications, data cloning stretches the

likelihood and magnifies the highest peak. When used in a

Bayesian analysis, such a data-cloned likelihood completely

swamps the prior and concentrates the posterior around the

location of the highest peak of the likelihood. The data

cloning method thus represents a global maximization

method.

For the BBS data we calculated the exact (to four digits)

ML estimates using numerical maximization of the analytical

likelihood function. For comparison, we used the data

cloning method to calculate three sets of ML estimates with

three widely different sets of priors. With just 240 clones of

the original data, the data cloning results are nearly equal to

the exact ML results (Table 2). The standard errors reported

with the exact ML estimates in the first column of Table 2

are based on the inverse of the Fisher information matrix

(Stuart & Ord 1987). The (observed) Fisher information

matrix was obtained by numerically computing the matrix of

second derivatives of the log-likelihood function at the ML

values. The data-cloned ML estimates and their standard

errors in the next three columns were obtained as the mean

and scaled variance of the posterior distribution. The

posterior distributions were obtained with the WINBUGS

software (Spiegelhalter et al. 2004). Among the three

different sets of prior distributions used, some were non-

informative and some were quite disinformative (highly

informative but wrong; Table 2). For each set of prior

distributions, a burn-in period of 1000 MCMC steps was

used to equilibrate the Markov chain, and then 10 000

values were generated from the posterior distribution. Each

run required c. 20 min on a 2.4 Ghz Pentium 4 processor.

All three sets of priors yielded ML estimates close to the

exact values. The ML estimates were similar among the
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Figure 1 Profile likelihood, divided by its maximum value, for the Gompertz state-space model as a function of the process noise parameter

r, plotted for increasing number k of data clones. Data are yearly American Redstart (Setophaga ruticilla) counts at a location in the North

American Breeding Bird Survey. Data and likelihood function formula are listed by Dennis et al. (2006).
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three different sets of priors. The priors with smaller

variances produced posteriors that were closer to the actual

ML estimates, even if such priors were substantially biased.

As well, the standard errors obtained with the data cloning

method were quite close to the estimates of the ML

standard errors arising from the Fisher information matrix

(Table 2).

Stochastic Ricker model with Poisson errors

Gause’s (1934) laboratory experiments on the population

growth of two Paramecium species (P. aurelia, P. caudatum) are

the iconic illustrations of sigmoidal growth curves in ecology

textbooks. Although Gause and textbooks alike plotted

mean abundance across replicate cultures, the individual

replicate cultures display considerable stochastic variability

(Fig. 2). The variability is a combination of stochasticity in

the process itself as well as observation error in the data.

Earlier analyses have used either process noise or observa-

tion error, but not both (Pascual & Kareiva 1996). Gause

sampled the microbe populations by counting the number

of cells in a small volume (0.5 cm3) of growth media

removed from well-mixed cultures. The sampling mechan-

ism can be reasonably modelled with a Poisson distribution,

with mean equal to the concentration of cells per volume

sampled in the culture.

We analysed Gause’s experimental data (species growing

separately) with a Ricker-Poisson state-space model. The

underlying population growth process in the Ricker-Poisson

is a stochastic version of the Ricker model (Dennis & Taper

1994), and the sampling error model is Poisson. The Ricker-

Poisson state-space model is given by

Nt ¼ Nt�1 expða þ bNt�1 þ EtÞ;

Ot � PoissonðNtÞ:
Here, Nt is population abundance (cells per volume) of a

culture at time t (days), Ot is the cells per volume in the

sample at time t, and the process noise Et has a nor-

mal(0,r2) distribution. For this model, the parameter a (not

the coefficient parameter b) measures the strength of density

dependence, because it is related to the eigenvalue of the

deterministic one-dimensional map near equilibrium (May &

Oster 1976). The parameter b serves to scale the level of the

equilibrium population size. We define one unit of volume

to be the volume of a sample, 0.5 cm3. The initial cell

concentration in the cultures was set experimentally and is

therefore treated as a known parameter in the model. All

cultures were started with exactly two cells per unit volume.

The likelihood function for time series observations

arising from this stochastic Ricker-Poisson model cannot be

written down in an analytical form. To complicate matters,

Gause did not record data for any of the cultures at time

Table 2 Maximum likelihood estimates (and standard errors) calculated for the parameters a, c, r and s in the Gompertz state-space model,

using numerical maximization (first column) and data cloning with three different sets of prior distributions (second, third, fourth columns)

Parameters ML estimates Data cloning 1 Data cloning 2 Data cloning 3

a 0.3929 (0.5696) 0.3956 (0.5509) 0.4136 (0.4640) 0.4103 (0.5876)

c 0.7934 (0.3099) 0.792 (0.2999) 0.7821 (0.2524) 0.7839 (0.3202)

r 0.3119 (0.2784) 0.3132 (0.2751) 0.3217 (0.2262) 0.3207 (0.2934)

s 0.4811 (0.1667) 0.4802 (0.1562) 0.4768 (0.1492) 0.4764 (0.1816)

All data cloning estimates used k ¼ 240 clones. Data cloning 1: priors were normal(0,1), uniform()1,1), lognormal()0.5,10), lognormal(0,1)

[notation is normal(mean,variance), uniform(lower bound, upper bound), lognormal(normal mean, normal variance)]. Data cloning 2: priors

were normal(0,10 000), uniform()1,1), lognormal(0,10 000), lognormal(0,10 000). Data cloning 3: priors were normal(3,1), uniform()1,1),

normal()2,100), lognormal(0,10). Data were time series abundances of American Redstart (Setophaga ruticilla), from a survey location in the

North American Breeding Bird Survey; numerical values appear in Table 1 of Dennis et al. (2006).

Figure 2 Population abundances of two Paramecium species, three

replicate cultures each (solid lines), from Gause (1934: Appendix I,

Table 3), plotted with solution trajectories from deterministic

Ricker population growth model (dashed lines). Upper three time

series: P. aurelia. Lower three time series: P. caudatum. Ricker

solution trajectories use maximum likelihood parameter estimates

from the Ricker-Poisson state-space model, computed with data

cloning for the combined replicates (Table 3).
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t ¼ 1. However, with the data cloning method, fitting the

Ricker-Poisson model to Gause’s data by ML estimation

becomes straightforward. We used k ¼ 10 clones. The

missing data were treated as latent variables (as in Clark &

Bjørnstad 2004). For each model fitting, two parallel MCMC

chains were generated, each for total of 5000 iterates. The

two parallel runs help insure that the Markov chain does not

get �stuck� in a long-term transient state. The burn-in period

to equilibrate each Markov chain was 2000, and the next

3000 iterates were used to generate parameter values from

the posterior distribution. The 3000 parameter values from

each chain were combined to calculate the ML estimates.

The sample mean values and standard deviations of the

6000 generated parameter values formed the data-cloned

ML estimates and their standard errors. Analyses were rerun

with different prior distributions and k values in order to

insure that the results were invariant to the choice of priors

and that the number of clones was sufficiently large.

We fitted the model separately to each species. Within

each species, we analysed separately the three replicate

populations that were cultured for 19 days, omitting from

the analysis a fourth replicate of P. caudatum that was not

maintained for as long a period. For each species, we also

fitted the model based on the three replicates together. For

this, the three replicates were assumed to be independent of

each other. Although the likelihood cannot be written down

in closed form, it turned out to be well behaved and the

calculations converged quickly. The combined replicates

estimation required c. 22 s running time (10 clones, 2.4 Ghz

Pentium 4 processor). For comparison, we fitted the

stochastic Ricker model without observation error starting

at time t ¼ 2 using conditional least squares (Dennis &

Taper 1994).

Within each species, the ML parameter estimates for the

state-space model among the replicates are quite similar

(Table 3). However, substantial differences between the

state-space model estimates and the process-error-only

model estimates can be discerned. The estimates of the

parameter a are consistently larger under the state-space

model, and the estimates of r are consistently smaller. The

state-space model estimates stronger density dependence

and lower process variability than the model with only

process error. A plot of the data for the individual replicates

together with the Ricker map trajectory estimated from the

pooled replicates forms a more contemporary image of the

contrasts between deterministic and stochastic forces in

population growth (Fig. 2).

D I S C U S S I O N

We have shown how the Bayesian formulation and MCMC

algorithms can be redirected by the data cloning method to

produce ML parameter estimates, their standard errors and

confidence intervals for complex ecological models. With

data cloning, analysis of hierarchical models is no longer

Bayesian by default. The choice of the Bayesian or

Table 3 Maximum likelihood estimates (and standard errors) for the parameters a, b and r in the stochastic Ricker-Poisson state-space model

and in the stochastic Ricker model with no observation error

Replicate 1 Replicate 2 Replicate 3

Ricker Ricker-Poisson Ricker Ricker-Poisson Ricker Ricker-Poisson

Paramecium aurelia

a 0.595 0.735 (0.053) 0.667 0.771 (0.059) 0.822 0.830 (0.051)

b )0.0010 )0.0013 (0.0001) )0.0013 )0.0015 (0.0002) )0.0015 )0.0015 (0.00012)

r 0.193 0.136 (0.035) 0.158 0.145 (0.034) 0.167 0.121 (0.025)

Paramecium caudatum

a 0.585 0.607 (0.0534) 0.450 0.579 (0.066) 0.576 0.562 (0.068)

b )0.0030 )0.0030 (0.0004) )0.0021 )0.0027 (0.0004) )0.0029 )0.0030 (0.0005)

r 0.283 0.131 (0.0411) 0.406 0.171 (0.0475) 0.346 0.172 (0.044)

P. aurelia P. caudatum

Combined replicates Ricker Ricker-Poisson Ricker Ricker-Poisson

a 0.686 0.771 (0.057) 0.529 0.581 (0.064)

b )0.0013 )0.0014 (0.0001) )0.0026 )0.0029 (0.0004)

r 0.174 0.139 (0.031) 0.339 0.162 (0.044)

Models were fitted to data on two species of Paramecium (Appendix I, Table 3 of Gause 1934) using data cloning. Data are plotted in Fig. 2.

Priors on the parameters were normal(1,1), normal()1,1) and uniform(0,1), respectively.
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frequentist inference for hierarchical models now boils

down to whether or not prior distributions are relevant for

the scientific inferences. The main difference between the

Bayesian and the likelihood-based inferences resulting from

data cloning is that the Bayesian inferences depend on the

specification and choice of the prior distribution, whereas

the likelihood-based inferences are completely invariant to

the choice of the prior distributions.

Of course, if the data fundamentally do not contain

information about the parameters in question, the likelihood

as well as the Bayesian inferences could be ill-behaved. For

instance, it is all too easy to build complex statistical models

with non-identifiable or nearly non-identifiable parameters,

i.e. models in which a wide range of parameter values and

combinations could give rise to the same data with equal

probability. A simple example of non-identifiable parame-

ters is when independent, identically distributed observa-

tions are drawn from a normal distribution with a mean of l
and variance of r2 + s2: such data cannot inform about the

separate values of r2 and s2, but only about their sum. The

data cloning technique will not remedy over- or ill-

parameterized models. Incidentally, the Bayesian approach,

by assigning prior distributions, assumes the parameters are

identifiable, and thereby risks providing �answers� when

none are justified by the data. Such results could be

misleading for scientific inferences and resultant policy

decisions. The problem of how to assess identifiability in

complex models remains a difficult challenge for the

Bayesian and frequentist approaches alike.

The data cloning algorithm bears some similarity to the

simulated annealing algorithm for optimization (Kirkpatrick

et al. 1983; Brooks & Morgan 1995; Geyer & Thompson

1995; Brooks et al. 2003). Applying simulated annealing to

hierarchical models, however, requires evaluating or calcu-

lating a likelihood; data cloning avoids the need for such

evaluation. A simulated annealing algorithm applied to ML

estimation uses an MCMC method to generate observations

from an equilibrium distribution with pdf bT(h) proportional

to [L(h; y)]1/T, where L(h; y) is a likelihood function (Brooks

et al. 2003). In simulated annealing the �temperature� T is

slowly reduced until bT(h) becomes concentrated at the

global maximum of L(h; y). Although 1/T in simulated

annealing has ostensibly the same role as the number of

clones k in data cloning, the simulated annealing algorithm

does not accommodate latent variables or random effects,

nor does it automatically provide standard errors.

Data cloning is closely related to the �prior feedback�
method developed by Robert (1993) for ML estimation in a

particular class of statistical distributions for which the

likelihood could be evaluated. Like data cloning, prior

feedback combines simulated annealing and Bayesian

MCMC simulations, with the likelihood raised to a power

to concentrate the posterior around the ML estimates.

Robert & Titterington (1998) adapted the prior feedback

method for estimation in hidden Markov models, which are

a special type of latent variable model. Data cloning as we

have described here extends ML estimation, along with the

calculation of standard errors, to a wide variety of

hierarchical models in general.

The approximate standard errors obtained for the ML

estimates under data cloning are those arising from the

Fisher information matrix under large-sample ML theory.

The standard errors can be used for approximate confidence

intervals based on the asymptotic normal distribution of the

ML estimates. The standard errors and confidence intervals

should be treated with the same cautions as with any

conclusions based on asymptotic ML theory. Improved

confidence intervals could presumably be obtained with

bootstrapping (for instance, Manly 2006). Although the

required refitting of the model via data cloning to thousands

of simulated data sets is technically feasible, current software

packages for Bayesian MCMC calculations do not yet

contain such �looping� facility. Additional research is needed

towards improving the estimates of the variance/covariance

structure of ML estimates for hierarchical models.

The data cloning method at present does not provide the

subsidiary information necessary for model selection with

the Akaike Information Criterion (AIC; see Burnham &

Anderson 2002) and its relatives. The method yields only the

location of the ML estimate but not the actual value of the

likelihood function at its maximum. Additional calculations,

of the types cited earlier for simulating likelihoods, are

required to obtain the value of the likelihood function. One

technique, direct Monte Carlo integration, is to repeatedly

simulate values of X from gðX jĥÞ, until the mean of the

values f ðyjX ð1Þ; ûÞ; f ðyjX ð2Þ; ûÞ; . . . stabilizes. We cau-

tion that the problem of model selection for hierarchical

models is not well understood. Some modification to the

AIC is needed because it is unclear how the likelihood

penalty term should reflect the number of unobserved state

variables or the number of random effects.

Bayesian methods for fitting complex ecological models

have often been advocated because the methods can

provide reasonable solutions to difficult problems, problems

in which ML estimation has previously been impracticable.

We believe the data cloning algorithm partly removes the

relevance of such a justification. Data cloning is a potentially

important and useful tool for those scientists who prefer to

use the frequentist approach for conducting statistical

inferences with hierarchical models.
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A P P E N D I X

In this appendix, we prove that the estimates obtained with

the data cloning algorithm (i.e. as the mean values of the data-

cloned posterior distribution of the parameters) converge to

the ML estimates as the number of clones k increases. The

derivation interprets Bayes� rule as an iterated map on the

space of probability distributions. First, for simplicity of

description we suppress the latent variables and write the

proof instead using a somewhat simpler model form. Second,

we provide the proof that explicitly includes latent variables

in the model. Finally, we show that the Metropolis-Hastings

algorithm generates random variables from the data-cloned

posterior distribution of the parameters.

A complete proof of the convergence of the scaled

variances and covariances of the data-cloned posterior

distribution to the inverse of the Fisher information is

provided by S. R. Lele (unpublished work).
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Fixed effects case

Let y � f(y|h) be the statistical model for the data. Let Q
denote the parameter space, the set of values the parameter

h can possibly take. Let p(h) be the prior distribution on the

parameter space Q. We assume that the prior distribution is

positive over the entire parameter space Q, i.e. it does not

preclude a priori any values of the parameter space Q. Then,

the posterior distribution is given by

pð1ÞðhjyÞ ¼
f ðyjhÞpðhÞR
f ðyjhÞpðhÞdh

:

Now suppose we substitute this distribution as prior back

again then we obtain

pð2ÞðhjyÞ ¼
f ðyjhÞpðhjyÞR
f ðyjhÞpðhjyÞdh

¼
½f ðyjhÞ�2pðhÞR
½f ðyjhÞ�2pðhÞdh

:

By induction, it follows that

pðkÞðhjyÞ ¼
½f ðyjhÞ�kpðhÞR
½f ðyjhÞ�kpðhÞdh

:

Note that p(k)(h|y) is the posterior distribution resulting

from a cloned data likelihood, [f (y|h)]k. The posterior can

therefore be looked upon as an iterated map, p(1) ¼
F(p, f ), p(2) ¼ F[p(1), f ], …, p(k) ¼ F[p(k)1), f ]. We can

now study if this iterated map has a fixed point (a distri-

bution, in this case) and if it is independent of the initial

distribution. To establish the existence of such a fixed

point, recall that

pðkÞðhjyÞ ¼
½f ðyjhÞ�kpðhÞR
½f ðyjhÞ�kpðhÞdh

:

Let ĥ be a point in Q such that f ð yjĥÞ > f ð yjhÞ for all

h 2 Q. By definition, this is the MLE of h. As p is positive

everywhere on the parameter space Q, it follows that

pðkÞðhjyÞ
pðkÞðĥjyÞ

¼
½f ðyjhÞ�kpðhÞ
½f ðyjĥÞ�kpðĥÞ

! 0 if h 6¼ ĥ

and

pðkÞðhjyÞ
pðkÞðĥjyÞ

¼
½f ðyjhÞ�kpðhÞ
½f ðyjĥÞ�kpðĥÞ

! 1 if h ¼ ĥ:

In other words, the fixed point for the iterated map is a

degenerate distribution, degenerate at ĥ. The degenerate

distribution is also independent of the initial distribution p.

Because the mean of a degenerate distribution is the point at

which it is degenerate, the mean of the posterior distribution

for large enough k approaches the MLE of h.

Latent variables case

Let us now explicitly include latent variables in the model.

Following the notation in the paper, suppose observations

Y ¼ (Y1, Y2, … , Yn) arise from the following hierarchical

statistical model:

Y � f ðyjX ;uÞ;

X � gðxjhÞ;

where f and g are joint pdfs, X is a vector of random

quantities or processes affecting the observations, u ¼
(u1, u2, … , uq) is a vector of unknown fixed parameters

affecting the observations, and h ¼ (h1, h2, … , hp) is a

vector of unknown fixed parameters related to the process

X. Let p(h, u) be the prior distribution on the parameter

space Q. We assume that the prior distribution is positive

over the entire parameter space Q, i.e. it does not preclude a

priori any values of the parameter space Q. The posterior

distribution of (h, u) is given by

pð1Þðh;ujyÞ ¼

R
f ðyjX ; uÞgðX jhÞdX

n o
pðh; uÞ

hðyÞ ;

where h(y) ¼ �f(y|X, u)g(X|h)p(h, u)dXdhdu. As before,

we now substitute this posterior distribution back again as

the prior distribution to obtain

pð2Þðh;ujyÞ ¼

R
f ðyjX ;uÞgðX jhÞdX

n o
pð1Þðh;uÞ

hð2ÞðyÞ

¼

R
f ðyjX ;uÞgðX jhÞdX

n o2

pðh;uÞ
hð2ÞðyÞ

¼
Lðh;u; yÞ
n o2

pðh;uÞ
hð2ÞðyÞ

Continuing in this fashion, we obtain

pðkÞðh;uj yÞ ¼
Lðh;u; yÞ
n ok

pðh;uÞ
hðkÞðyÞ :

We point out that adding more �layers� of random effects in

the original hierarchical model still produces a posterior that

is proportional to the kth power of the (integrated) likeli-

hood. Let ðĥ; ûÞ be such that Lðĥ; û; yÞ > Lðh; u; yÞ for

all (h, u). By definition, this is the MLE of (h, u). As

p(h, u) is positive everywhere on the parameter space, it

follows that
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pðkÞðh;ujyÞ
pðkÞðĥ; û jyÞ

¼
½Lðh;u; yÞ�k

½Lðĥ; û; yÞ�k
! 0 if ðh;uÞ 6¼ ðĥ; ûÞ

and

pðkÞðh;ujyÞ
pðkÞðĥ; û jyÞ

¼
½Lðh;u; yÞ�k

½Lðĥ; û; yÞ�k
! 1 if ðh;uÞ ¼ ðĥ; ûÞ:

In other words, the fixed point for the iterated map is a

degenerate distribution, degenerate at ðĥ; ûÞ. The degener-

ate distribution is also independent of the initial distribution

p. Because the mean of a degenerate distribution is the point

at which it is degenerate, the mean of the posterior

distribution for large enough k approaches the MLE of

(h, u).

Metropolis-Hastings algorithm

Further, we show that the Metropolis-Hastings algorithm

described below generates random variables from the

posterior distribution p(k)(h, u|y).

(a) Generate (h*,u*) from p(h, u).

(b) Generate k values of X, say X*(1), X*(2), … , X*(k), from

g(X|h*).

(c) Calculate the product

q� ¼ f yjX �ð1Þ;u�
� �

f yjX �ð2Þ;u�
� �

. . . f yjX �ðkÞ;u�
� �

:

(d) Repeat (a) and (b), obtaining new values

(h#, u#, X#(j), j ¼ 1, 2, … , k) and q#.

(e) Generate a uniform(0,1) random variable U, and

calculate p = min[1,(q#/q*)]. If U > p, set h,u,X ðjÞ;
j ¼ 1; 2; :: ; kl ¼ h�;u�;X �ð jÞ; j ¼ 1; 2; :: ; k½ �; other-

wise set [h, u, X ( j ), j¼1, 2, … , k]l ¼ [h#, u#, X#(j),

j ¼1, 2, …, k].

(f) Repeat (d) and (e), many times.

Hastings (1970) proves that this algorithm defines a

Markov chain with stationary distribution

p(k)[h, u, X (j), j ¼ 1,2, …, k|y] that is proportional to

f( y|X(1),u)f( y|X(2),u) … f(y|X(k), u)g(X (1)|h)g(X(2)|h) … g

(X(k)|h)p(h, u). Thus, after sufficient number of steps in

the Markov chain, the above algorithm generates random

variates, albeit dependent, from this stationary distribution.

To obtain random variates from the marginal posterior

distribution of (h, u), we simply pick the (h, u) component

of the random variates generated from the Markov chain

defined above. This needs no integration over the X space.

We now prove that the marginal distribution of (h, u) for

the above stationary distribution is equal to pk(h, u|y).

Consider, with the understanding that the integrals in the

equation are multiple integrals (although only a single

integral sign is used for notational simplicity), the steps listed

below for integrating out the latent variables:
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Z
pðkÞðh;u;X ð1Þ;X ð2Þ;X ð3Þ; . . . ;X ðkÞjyÞdX ð1ÞdX ð2Þ . . . dX ðkÞ

¼

R
f ðyjX ð1Þ;uÞf ðyjX ð2Þ;uÞ . . . f ðyjX ðkÞ;uÞgðX ð1ÞjhÞgðX ð2ÞjhÞ . . . gðX ðkÞjhÞdX ð1ÞdX ð2Þ . . . dX ðkÞ

n o
pðh;uÞ

hðkÞðyÞ

¼

R
f ðyjX ;uÞgðX jhÞdX

n ok

pðh;uÞ
hðkÞðyÞ

¼
Lðh;u; yÞ
n ok

pðh;uÞ
hðkÞðyÞ

¼ pðkÞðh;ujyÞ:
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