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Abstract. Ground station temperature data are not commonly used simulta-
neously with the Advanced Very High Resolution Radiometer (AVHRR) to
model and predict air temperature or land surface temperature. Technology was
developed to acquire near-synchronous datasets over a 1 000 000 km2 region with
the goal of improving the measurement of air temperature at the surface. This
study compares several statistical approaches that combine a simple AVHRR
split window algorithm with ground meterological station observations in the
prediction of air temperature. Three spatially dependent (kriging) models were
examined, along with their non-spatial counterparts (multiple linear regressions).
Cross-validation showed that the kriging models predicted temperature better
(an average of 0.9‡C error) than the multiple regression models (an average of
1.4‡C error). The three different kriging strategies performed similarly when
compared to each other. Errors from kriging models were unbiased while
regression models tended to give biased predicted values. Modest improvements
seen after combining the data sources suggest that, in addition to air temperature
modelling, the approach may be useful in land surface temperature modelling.

1. Introduction
Accurate surface air temperature measurement is useful in climatological,

environmental, ecological and public health applications. Many public health

studies benefit from timely and accurate measurements of temperature. In vector-

borne disease studies, for example, Bertrand and Wilson (1996) demonstrated the

effect of ground-level temperature on the survival of disease vectors (Ixodes

scapularis ticks), and Mount and Haile (1989) simulated the effect of temperature

on the population dynamics of the dog tick. Similarly, the transmission of urban

dengue fever (Focks et al. 1995) is temperature-dependent, affected by the rate of

development of virus in Aedes aegypti mosquitoes. Other public health applications,

such as the effect of extreme temperatures on mortality, are also better studied with
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accurate temperature predictions over large areas because the effects are

individually small and are best demonstrated in aggregate (Ramlow and Kuller

1990, Whitman et al. 1997).

Satellite data, particularly that from the thermal infrared bands of Landsat and

Advanced Very High Resolution Radiometer (AVHRR), have been used

extensively in land surface temperature (LST) modelling (Qin and Karnieli

1999), however few procedures exist that use satellite observations for surface air

temperature estimation (Prince et al. 1998). Generally, satellite-based land surface

temperature algorithms apply physical principles, such as atmospheric phenomena

and surface properties, to model the relationship between the channel data and the

true land surface temperature. Qin and Karnieli (1999) summarize the class of split-

window algorithms that use AVHRR thermal channels 4 and 5. Less common,

models are also developed for surface air temperature using AVHRR thermal

infrared channels, such as Prihodko and Goward (1997), and Prince et al. (1998),

who use a land surface temperature algorithm with the Normalized Difference

Vegetation Index (NDVI) and assumptions about vegetation canopy temperature.

The proliferation of modelling approaches has necessitated methods to evaluate

and validate the various algorithms, often with surface observations. For land

surface temperature modelling, Vasquez et al. (1997) noted that the absence of

coincident field and satellite measurements of land temperature, particularly over a

wide range of atmospheric conditions, land surface temperatures, and emissivities,

rendered large-scale field assessments daunting. They note that the level of precision

generally accepted as ‘accurate’ for land surface temperature modelling from space

is 1–2‡C, and most models reported a performance level in this range. Prihodko and

Goward (1997) used five local ground monitors to assess the performance of the

LST/NDVI method for air temperature, in a study area that covered approximately

1‡ latitude by 1‡ longitude. They report mean errors of 2.92‡C for the LST/NDVI

method. Rather than limiting the use of surface observations to evaluating satellite

algorithms, our method takes advantage of both data sources in the modelling

itself. An example of combining satellite and surface measurements is Prata and

Platt (1991), who demonstrated the collection of simultaneous AVHRR and ground

observations and their immediate use in a regression model for LST.

The goal of the current study is to improve performance in surface air

temperature modelling by integrating satellite and surface information in the model,

incorporating covariates, and assuming patterns of spatial dependence. Hypothe-

tically speaking, in the absence of satellite measurements, one can use information

such as ground station measurements and covariates such as land cover, elevation

and others to model land surface temperature via regression or kriging models.

Given this, our study addresses whether combining such models and information

with satellite data improves the performance in surface air temperature prediction.

The methods presented in this study take advantage of (1) technology that allows

the acquisition of near-simultaneous AVHRR and ground observations over a large

area, and (2) statistical models that incorporate covariates and spatial dependence.

The study was conducted in two steps:

1. evaluate the predictive performance of the statistical approaches that use

only the ground level data and no satellite data, and,

2. introduce methods that utilize the satellite data along with ground level data

and evaluate their predictive performance.

2980 E. N. Florio et al.



Satellite data may be used in two ways. One can use the raw channel

measurements as covariates in the statistical models. These, however, do not correct

for the errors that can be addressed by a split window algorithm. Hence, it seems

more logical to use the Celsius-scale LST measurements predicted by one of the

AVHRR-based LST algorithms. For this study, we selected the earliest form of the

AVHRR-based Price (1984) split-window algorithm for its relatively simple form,

its previous use in comparative studies (Qin and Karnieli 1999, Vasquez et al. 1997),

its use in other air temperature measurement approaches (Prihodko and Goward

1997), and its past application in public health scenarios (Hay et al. 2000). Price’s

algorithm is based on the principle that the difference in top-of-atmosphere

brightness temperature is due to differential atmospheric absorption only. Hence,

he concluded that the coefficients obtained could be useful for predicting most

ground surfaces.

2. Description of the statistical models

A review of scatter plots between the Price algorithm and the ground

observations (table 1, column 2) suggested a strong enough association that there

was information to be gained about surface air temperature from the Price

algorithm in a combined statistical model. We further conducted exploratory simple

regressions (table 2) that indicated strong statistical association between the two,

particularly in the absence of heavy cloud cover.

To combine the data sources, we consider two sets of statistical models. The first

set consists of multiple linear regression models where spatial dependence in

temperature is not assumed. The second set of models, popularly known as kriging

models, explicitly utilizes spatial dependence.

2.1. Multiple linear regression models

Two multiple regression models are included in the analysis; they are the

simplest extension from previous work referenced in the use of simultaneous

datasets, by Prata and Platt (1991).

Model 1a: This multiple regression model assumes that no satellite data are

available, and attempts to predict surface air temperature using only the

measurements at weather stations as the response variable and latitude, longitude

and elevation as the covariates. This model can be written as:

Temp~b0zb1latzb2longzb3elevze ð1Þ
Model 1b: This multiple regression model contains all of the elements of the first,

but also assumes that satellite data, in the form of the Price algorithm values, are

available. As a result, it adds the satellite dataset to the covariates.

Temp~b0zb1latzb2longzb3elevzb4Priceze ð2Þ
In both regression models, the temperatures are assumed to be spatially

independent of each other. The parameters in these models were estimated using

the least squares method and were based on up to 82 weather station locations.

Details of the data used for estimation are provided in the appendix.

2.2. Kriging models

The three remaining models assumed spatial continuity in surface air

temperature, i.e. temperatures at locations on the ground closer to each other
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were assessed to be more similar based on variogram analysis of the ground

monitor data. Prihodko and Goward (1997) also report the decaying effect of

temperature dependence at increasing distance. This spatial dependence was

captured in a covariance function S that modelled spatial dependence at an

exponential rate of decay.

Model 2a: The first kriging model used the same datasets as model 1a; however, the

weather station dataset, as a response variable, used this spatial dependence

assumption. The ground-based covariates latitude, longitude and elevation were the

same as in model 1a.

Temp~b0zb1latzb2longzb3elevze, e*N 0, Sð Þ ð3Þ
Model 2b: This model contains all of the elements of model 2a, but with the Price

algorithm temperature added as a covariate.

Temp~b0zb1latzb2longzb3elevzb4Priceze, e*N 0, Sð Þ ð4Þ
The above two models are known in spatial statistics (Cressie 1991) as Universal

Kriging models.

Model 3: The third kriging model differed from the preceding models in that it used

an alternative approach to combine the ground and satellite-based datasets. It was

a two-stage kriging model with the satellite and ground measurements treated as

simultaneous responses. The satellite measurement was placed in the second stage

of the hierarchy as a response to the surface air temperature, which was built as

model 2a.

3. Description of the data and processing

3.1. Image and ground data acquisition

AVHRR High Resolution Picture Transmission (HRPT) images from the

National Oceanic and Atmospheric Administration (NOAA)-14 Polar Orbiter were

collected at the Applied Physics Laboratory (APL) of Johns Hopkins University

during six days from January – August 2000. Thermal infrared channels 4 and 5

were calibrated and output in terms of brightness temperature. For each day,

1 000 000 pixel images were extracted over a large portion of the south-central

United States (figure 1).
Channel 4 and 5 brightness temperatures, and ancillary data were processed and

imported into Idrisi for Windows, Version 2, image processing software (Clark

Laboratories, Clark University, Worcester, MA, USA). Ground brightness

temperature was then calculated using the split-window approach in the Price

(1984) formulation:

LST~BT Ch 4ð Þz3:33 BT Ch 4ð Þ{BT Ch 5ð Þð Þ ð5Þ
Where LST is land surface temperature, BT(Ch4) is channel 4 brightness

temperature, and BT(Ch5) is channel 5 brightness temperature.
Based on the overpass time of the AVHRR data, the NOAA on-line database of

hourly Local Unedited Climatological Data from the National Climate Data

Center (NCDC) was queried by robot. The dry bulb temperature was selected for

each point station in the study area. Ground data within one hour of satellite

overpass were collected. For the purposes of this model, data within two hours of

AVHRR scan were also assumed simultaneous, if closer data values were missing.

The latitude and longitude datasets are retrieved directly with the AVHRR
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dataset, and the elevation dataset, in metres, was based on the US Geological

Survey Digital Elevation Model (USGS DEM) data, pan-american tile #w100n40.

The point locations were then passed to Idrisi image processing, which extracted

covariates (latitude, longitude and elevation), land surface temperature algorithm

predictions, and coordinates of the pixels that corresponded to each day’s ground

observations. Splus statistical software (Insightful Corporation, Seattle, WA, USA)

automatically collected the results and was used to compute that particular day’s

maximum likelihood estimates of model parameters. Depending on the model and

extent of cloud cover, between 33 and 82 locations were available for a particular

day.

3.2. Cloud cover and data editing

Typically, LST modelling such as Price’s algorithm used in this paper relies on

cloud-free areas to use satellite information. However, the presence of at least some

clouds over large areas presented a challenge, because complete temperature

surfaces were required. Because cloud-covered pixels degrade, rather than improve,

a model, we discarded them from the estimation procedure for models that relied

on satellite data. Thus, pixels determined to be cloud-covered were removed from

models 1b, 2b, and 3, by a crude cut-off criterion. Given the bimodal distribution in

a temperature dataset for a partially clouded image, a k-means procedure (k~2)

was used. For each day’s Price algorithm dataset, a random sample of 500 pixels

was taken and divided into two clusters via k-means. The 5th percentile of the

upper (presumed clear) cluster was selected as the cut-off point, below which any

Figure 1. Study area. Typical day of Price algorithm data and ground station points.
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pixels and their corresponding ground readings and covariates were discarded from

the statistical models that used AVHRR (figure 2).

Three of the daily AVHRR images (20 January, 30 May and 24 July) were

predominantly cloud free, while the remaining dates had moderate (9 August) or

extensive (3 March, 15 June) cloud cover (figure 2; table 1). Consequently, 12, 49

and 32 ground stations were excluded from models 1b, 2b and 3 during the

respective cloudy days (table 2). Additionally, one (30 May) and five ground

stations (24 July) were excluded from two of the cloud free days because of the

absence of synchronous data from selected locations (table 2).

3.3. Data synopsis

Thumbnail images of the AVHRR datasets summarized the data ranges and

were used for some basic exploratory plots of the covariates (table 1). Generally,

there was good correspondence between the Price algorithm alone and the

temperatures measured at ground stations (tables 1 and 2). Cloud-covered stations

were notable by the marked underestimation of surface temperature associated with

the algorithm. Bivariate associations between measured temperatures and

covariates appeared strongest during the winter and weakened during the later

portion of the spring/early summer (table 1).

4. Cross-validation study and results

Cross-validations exploited the availability of ground truth as a means to

evaluate model performance. For each of the five models, the model parameters

were estimated with one ‘known’ (ground station-measured) point removed from

the dataset, and then the estimated parameters were used to predict the value of the

holdout point. The prediction error for each model was obtained by comparing the

predicted value with the ground station observation that had been removed. Results

are first shown for each model type and for each day, and then for model types

aggregated over all dates in the study. The total number of data points contributing

to the prediction error averages are also included in each table cell.

The unaggregated models showed substantial day-to-day variation in their

performance, measured as average squared prediction error (table 3). During two of

the six days the regression models were not sufficiently accurate, having average

errors at or above 2‡C. In contrast, the average daily errors of all the kriging

models indicated that they obtained generally accurate (less than 1.5‡C) predictions

during almost all days studied. Errors tended to be highest during cloudy days,

especially using standard regression models (1a and 1b). The distinctions among the

Figure 2. Output of k-means cloud editing. The geographic coverage is the same as in
figure 1. White points represent locations discarded from AVHRR-based models,
black points are those retained.
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kriging models over clear and cloudy days were more subtle and are discussed in

further detail below. Daily comparisons of the five models (table 3) indicated that

at least one of the kriging models outperformed both regression models on five of

the six days examined.
When prediction errors for the models were aggregated (table 4), the kriging

models uniformly outperformed the regression models in each of three measures of

prediction error: average squared error, average absolute error, and average error.

Table 1. Data summaries for six image dates. Solid circles represent clear data points,
hollow circles represent data points removed by cloud editor.

Date

x~monitor
y~satellite

solid~k clear
hollow~k cloud

x~elevation
y~monitor

solid~k clear
hollow~k cloud

x~latitude
y~monitor

solid~k clear
hollow~k cloud

x~longitude
y~monitor

solid~k clear
hollow~k cloud

20 January 2000

3 March 2000

30 May 2000

15 June 2000

24 July 2000

9 August 2000
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The regression models 1a and 1b both tended to underestimate ground surface

temperature. In addition, the distributions of errors for the regression models were

substantially broader than for any of the kriging models (figure 3).

The three kriging formulas performed similarly—with an average prediction

error within 0.034‡C of each other. In addition, the prediction errors were

symmetric around zero with approximately 90% of stations having errors less than

¡2‡C, and 84% of stations having errors less than ¡1.5‡C.

Table 2. Exploratory analysis of association between surface monitors and AVHRR Price
algorithm.

Date

x~monitor
y~satellite

solid~k clear
hollow~k cloud

Simple linear
regression results,

Priceymonitor

20 January 2000

3 March 2000

30 May 2000

15 June 2000

24 July 2000

9 August 2000

coefficient 1.05
p-value v0.0001
r2 0.68
No. points 82

coefficient 0.09
p-value 0.6088
r2 0.01
No. points 33

coefficient 0.77
p-value 0.0015
r2 0.12
No. points 81

coefficient 1.10
p-value v0.0001
r2 0.24
No. points 70

coefficient 1.27
p-value v0.0001
r2 0.52
No. points 77

coefficient 0.69
p-value 0.0001
r2 0.30
No. points 47
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After it was observed that kriging models were superior in performance to the

regression models, further comparisons were made among the kriging models only.

Overall, model 2a, which did not use satellite data, predicted more accurately than

model 2b, which incorporated satellite data into the mean function. This was

somewhat surprising because we expected the addition of satellite information to

improve predictions in any version of the model. We proposed an explanation that

model 2a used all ground stations to estimate ground surface temperature

regardless of the presence of clouds, whereas when the satellite data were used in

model 2b, only the ground points matching unclouded pixels were used. Therefore,

there was a possible advantage of increased sample size when kriging was

conducted ‘under the clouds’.

To study this question, we compared the performance of models 2a and 2b (as

well as model 2a and model 3) by analysing the clear day datasets separately from

the clouded day datasets (figure 4). As expected, using model 2b (incorporating

satellite data) showed an improvement of 0.06‡C in prediction errors from model 2a

on clear days (figure 4(a)). On the clouded days, however, incorporating the satellite

data in model 2b reduced the sample size and was associated with a worse (0.03‡C)

performance in prediction error. Similar behaviour was seen during clear and

cloudy days comparing model 2a to model 3 (figure 4(b)).

5. Discussion

The results provide an assessment of surface air temperature predictive

performance of various statistical models, with and without satellite data, over

different imaging conditions. It is clear that models assuming spatial continuity (i.e.

the kriging models), regardless of whether or not satellite data are included, are

Figure 3. Distribution of prediction errors. regression 1a, regression 1b,
Kriging 2a, Kriging 2b, Kriging 3.
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consistently superior to non-spatial models. Among the kriging models, it was

further determined that models incorporating satellite data can be expected to

perform slightly better under optimal (i.e. clear day) conditions. Somewhat

unexpectedly, kriging models without satellite data performed similarly to those

with satellite data under more general conditions.

The implication is that assumptions about spatial continuity are useful in

surface air temperature modelling regardless of whether an algorithm uses satellite

data.

Additionally, it appears that, depending on weather conditions, there may be

day-to-day differences in which kriging models can be expected to be most accurate,

suggesting that satellite data may not be needed on a daily basis or possibly not at

all for sub-optimal conditions.

Figure 4. Comparison of clear vs cloudy days from (a) model 2a to model 2b (b) model 2a
to model 3.
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This interpretation is based on using a simple split-window algorithm. The use

of more advanced AVHRR algorithms in concert with ground station data may

produce marked improvements in performance, if the improved satellite algorithms

are eliminating additional sources of error. If so, this improvement can be expected

to propagate through the combined models such as kriging model 2b and model 3.

For example, the Price algorithm does not include information on solar or viewing

geometry. These adjustments might upgrade the performance of the combined

Table 3. Cross-validation results; average squared prediction errors and number of ground
station observations used in each analysis.

Date

Multiple
regression

1a

Kriging
model

2a

Multiple
regression

1b

Kriging
model

2b

Kriging
model

3

20 January 2000 3.978
82 points

2.367
82 points

3.988
82 points

2.504
82 points

2.945
82 points

3 March 2000 5.890
82 points

1.709
82 points

6.363
33 points

2.298
33 points

2.223
33 points

30 May 2000 1.264
81 points

2.985
81 points

1.120
81 points

1.077
81 points

1.109
81 points

15 June 2000 2.690
79 points

0.767
79 points

2.142
47 points

1.140
47 points

0.851
47 points

24 July 2000 1.399
77 points

0.806
77 points

1.342
77 points

0.722
77 points

0.828
77 points

9 August 2000 1.129
82 points

0.843
82 points

0.677
70 points

0.914
70 points

0.993
70 points
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kriging models. In addition, there are additional covariate datasets relevant to

emissivity classification that are important to explore in future model comparisons.

These data could improve prediction and help draw further distinctions regarding

model performance. For example, Normalized Difference Vegetation Indices

(NDVI), used in the Prihodko and Howard (1997) model, and up-to-date Land

Use/Land Cover classifications, both of which are used in compiling emissivity

atlases, would be relevant in models which include the satellite measurements, but

may be less relevant in models which only krige surface points (such as model 2a).

The modest improvement that we observed in the kriging model predictions that

included satellite-derived land surface temperature suggest that a similar approach,

i.e. of including surface air temperature measurements, might be useful in

improving satellite algorithms for land surface temperature measurement. Despite

the less-commonly practised use of surface air monitors, we found that they are

more plentiful spatially and temporally than in-ground probes, and did show an

association with land surface temperature.
In conclusion, the integration of satellite and ground-based datasets into one

spatial statistical model shows promise as an approach for increasing the precision

of air temperature measurement at the surface. The advantage of such modelling is

that information from the more accurate direct measurements (the relatively sparse

ground data points) with the more spatially plentiful but less direct dataset (i.e. the

satellite algorithm’s land surface temperature) both have information that can be

applied to the overall predicted surface.

Such capability, particularly in real-time or repeated experiments, relies heavily

on the ability to acquire both datasets efficiently. For this particular study, an

automated search engine such as the IBM-developed servelet that recognizes the

satellite overpass time and instantly queries the NCDC database, was critical.
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Table 4. Cross-validation results by model; average prediction errors and number of ground
station observations involved in analysis.

Multiple
regression 1a

Kriging
model 2a

Multiple
regression 1b

Kriging
model 2b

Kriging
model 3

483 points 483 points 390 points 390 points 390 points

Average squared
prediction error

2.770 1.593 2.422 1.410 1.476

Average absolute
prediction error

1.199 0.867 1.556 0.898 0.901

Average prediction
error

20.035 20.307 20.066 0.018 0.020
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Data sources

1. Ground station temperature NCDC

Local Unedited Climatological Data

http://www.ncdc.noaa.gov/doc/lcducocumentation.txt
2. AVHRR raw data

Johns Hopkins University Applied Physics Laboratory, via ftp

3. Grid latitude and longitude data

Johns Hopkins University Applied Physics Laboratory, via ftp

4. Elevation

USGS Digital Elevation Model

http://edcwww.cr.usgs.gov/landdaac/gtop30/w100n40.html

Appendix. Kriging model formulae

Model 2a and Model 2b: Universal Kriging

The assumptions for the Universal Kriging model are as follows. Z is the surface

air temperature (of which the ground station observations are realizations),

assumed to be a spatially continuous phenomenon, arising from a Multivariate

Normal distribution with mean Xb, and variance S. X is a matrix of covariates,

b is a vector of regression coefficients, S is the variance-covariance matrix of

true temperature, where the covariance of temperatures at any two points is an

exponential function of distance between the points d(i, j ), that is

S~s2 � rd i, jð Þ, s > 0, 0vrv1 ðA1Þ
Thus, given n surface observations and (N-n) ground points without any surface

measurements, the predicted temperature Zi, i~1(N2n) at any unmeasured

point is given by:

E Zi Zn, X , d i, jð Þj½ �*N XibzS
i,n
S{1

n,n Zn{Xnb½ �,Si,i{Si,nS
{1
n,n Sn,i

� �
ðA2Þ

The distinction between the two versions of Universal Kriging is:

Model 2a: The full ground observation dataset was used and the mean vector

function included elevation, latitude and longitude (figure A1).

Model 2b: A smaller, cloud-edited dataset was used (because of the

incorporation of the Price algorithm information) and the mean vector function

included elevation, latitude, longitude and satellite data.

Figure A1. Illustration of kriging model (model 2a). The Zs represent known weather
station measurements, Xs represent covariates, and open circles represent unknown
locations whose temperatures are to be predicted.
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Model 3: Two-stage Universal Kriging

The second kriging model built upon model 2a, but placed the satellite observa-

tion as a response variable to the temperature surface rather than a covariate in

the mean function as in model 2b. The statistical framework for model 3 was

modelled on the method proposed by Lele and Das (2000) of using a hierarchy

to address the problem of combining simultaneous measurements on a

phenomenon. The hierarchy was built to mirror the satellite thermal channels

responding to the surface air temperature (figure A2).

Thus, in model 3, the following were assumed. The surface observations and the

AVHRR land surface temperature data values were treated as arising from a joint

distribution. Z is the surface air temperature (of which the ground station

observations are realizations), assumed to be a spatially continuous phenomenon,

arising from a Multivariate Normal distribution with mean Xb, and variance S,

where: X is a matrix of covariates, b is a vector of regression coefficients. S is the

variance-covariance matrix of true temperature, where the covariance of

temperatures at any two points is an exponential function of distance between

the points d(i, j ), that is

S~s2 � rd i, jð Þ, s > 0, 0vrv1 ðA3Þ
E/Z are the land surface temperature algorithm readings, given the surface air

temperatures, assumed independent and normally distributed, with mean gZ and

variance t2, where: Z is as above, and g is a vector of regression coefficients.

We may predict the surface temperature using the expected value of the

Figure A2. Illustration of two-stage kriging setup (model 3). The Zs represent known weather
station measurements, Xs represent covariates, and open circles represent unknown
locations whose temperatures are to be predicted. The land surface temperature
algorithm (E), was assumed dependent upon the ground temperature (Z).

2992 E. N. Florio et al.



marginal distribution, which is Multivariate Normal:

E E½ �~E E E Zjð Þð Þ

~E g0zg1Zð Þ

~g0zg1E Z½ �

~g0zg1Xb

ðA4Þ

and variance:

Var E½ �~E Var E Zjð Þð ÞzVar E E Zjð Þð Þ

~E t2
� �

zVar g0zg1Zð Þ

~t2z 0zg2
1Var Z½ �

� �

~t2zg2
1S

ðA5Þ

The joint distribution of the surface and satellite is thus:

Z,Eð Þ*N

z1 1 x1

� � � � � � � � �
zn 1 xn

e1 1 1 x1

� � � � � � � � � � � �
en 1 1 xn

2
666666664

3
777777775

,
S g1S

g1S t2zg2
1S

� �

0
BBBBBBBB@

1
CCCCCCCCA

ðA6Þ
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