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Abstract. Predicting disease risk by identifying environmental factors responsible
for the geographical distribution of disease vectors can help target control strat-
egies and optimize preventive measures. In this study we present a hierarchical
approach to model the distribution of Lyme disease ticks as a function of environ-
mental factors. We use the Poisson framework natural for count data while
allowing for spatial correlations. To help identify environmental factors that best
explain tick abundance, we develop an intuitive procedure for covariate selection
in the spatial context. These methods could be useful in analysing eŒects of
environmental and climatological changes on the distribution of disease vectors,
and the spatial extrapolation of vector abundance under such scenarios.

1. Introduction
Estimating the distribution and abundance of biological populations remains a

critical, but di� cult, task. This is especially true when we attempt to account for the
eŒects of environmental heterogeneity on population sizes, within a portion of a
species range. Methods allowing researchers to assess population sizes from sampling
done in diverse environmental conditions are rare. However, such attempts are
important in assessing, for example, the disease risk from infectious agents. They are
also pertinent to climate change and disease analysis, as altered geographic distribu-
tion of disease vectors is anticipated under future climate scenarios. As an illustration,
consider the emergence and transmission of vector-borne diseases such as Lyme
disease, which is of considerable public health concern. Projections of climate change
are expected to cause an upward geographic shift in both altitude and latitude for
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many vector-borne diseases (Patz et al. 1996). It is thus important that we have the
methods to quantify the future risk of such diseases. While the future risk of a disease
is not directly observable, it is known that vector abundance can serve as a surrogate
for disease risk (Wallis et al. 1978). The modelling of vector abundance can thus be
an essential tool for enhancing the accuracy of disease risk predictions.

In this study, we focus on Lyme disease, the most prevalent vector-borne disease
in the USA. The black-legged deer tick, Ixodes scapularis, is the main vector for
Borrelia burgdorferi, the causative agent for Lyme disease in eastern USA (Steere
1989). It has been shown that the emergence of Lyme disease follows deer tick
introduction (Lastavica et al. 1989). There is also evidence that tick abundance,
de� ned as the number of I. scapularis ticks present per deer, is directly related to
disease risk (Wallis et al. 1978). Further, note that though these ticks most often use
the white-tailed deer as a host (Apperson et al. 1990), they do not require such a
host per se, and prevalence of B. burgdorferi has been documented in ticks collected
from other sources (Solberg et al. 1995). Therefore, the abundance of ticks on deer,
which is an indicator of the vector’s population size, rather than deer abundance in
itself, can be considered a proxy for the risk of Lyme disease.

Identifying environmental factors responsible for the distribution of tick abund-
ance and using them to predict the risk of Lyme disease is a particularly useful
approach for targeting control strategies and optimizing preventive measures. In this
paper we present an approach to modelling tick abundance as a function of environ-
mental factors, such as land use categories, soil characteristics, vegetation and slope
of land.

Consider a study of the Lyme disease tick population reported in Glass et al.
(1994). The ticks were collected from hunter-killed deer in November 1990 at three
deer check stations in Kent County, Maryland. For each of 18 locations spread
across the county, that were identi� ed by the hunters, the data consisted of the
number of male and female ticks recovered from each deer killed at that location.
In addition, environmental data on land-use/land-cover patterns (urban, agricultural,
forest, etc.), watershed distributions, soil types, land ownership (private and public)
and steepness of land (� at to hilly) for each of the locations was derived from 1985
digital maps of Maryland using Geographical Information System (GIS) techniques.
In order to use such data to predict the risk of Lyme disease properly, we should
take into account that the response (number of ticks recovered from deer) is in the
form of counts that are spatially spread over the study area. The covariate informa-
tion on environmental characteristics is also location speci� c and thus spatial in
nature.

The traditional technique for prediction in spatial statistics is kriging (Cressie
1993, Ribeiro et al. 1996). This procedure produces a smooth interpolated map of
the response (such as vector abundance) over the area of interest, which can help
policy makers make decisions. Unfortunately, in the context of predicting vector
abundance, the kriging formulation has some problems. First, it is ideally suited for
spatial processes that are implicitly assumed to be continuous. However, in vector
abundance, the response is usually in the form of counts. Second, kriging is not a
very useful tool for extrapolation, i.e. for predicting the response in areas outside the
current study area. This is because it involves using information from neighbouring
sites where the response is known, to interpolate values for sites within the study
area. Thus, for instance, if we wish to use tick data from Kent County, Maryland
to predict Lyme disease risk in another area, kriging would not be an appropriate
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approach. Regression models, however, allow for spatial extrapolations, so that we
can predict tick abundance in a new area for which the relevant environmental
features are known, but no data on ticks at neighbouring sites are available. Since
this study is motivated by the need to develop methods for disease risk extrapolation
under climate change scenarios, in this paper we adopt a regression modelling
approach that is suitable for spatial extrapolation of count responses.

The standard Poisson regression framework used to model count data
(McCullagh and Nelder 1989) assumes equality between the mean and the variance
of the response and does not allow for the presence of spatial correlations. These
implicit assumptions are restrictive and may not be supported by the data, since
spatial dependence may be present in the observed tick abundance rates. This may
be due to environmental factors such as land-use features and forest cover that have
spatial structure (Cressie and Chan 1989, Breslow and Clayton 1993, Yasui and Lele
1997). If such information is available, identifying and including these factors as
covariates in the regression model may account for spatial dependence to some
extent. However, even in the absence of a spatial structure, variances frequently
exceed the mean (over-dispersion) among outcomes that nominally have a Poisson
distribution (Breslow 1984). Ignoring such over-dispersion and correlation produces
falsely high precision for the regression coe� cients and con� dence intervals that are
too narrow, leading to inaccurate and biased risk projections.

There are several ways to deal with spatial auto-correlation and over-dispersion.
Besag’s (1974) approach, based on the auto-Poisson model implies severe restrictions
on the parameter space. In fact, the auto-Poisson framework allows for only negative
spatial correlations, whereas most geographically distributed data exhibit some
degree of clustering (i.e. positive correlation) . To allow for positive as well as negative
spatial dependence, Cressie and Chan (1989) transformed the count data so that it
was approximately normally distributed. Incorporation of a � exible covariance struc-
ture into the modelling framework of count data can also be attained using mixed
models, which introduce an additional level of variability over standard generalized
linear models (e.g. Clayton and Kaldor 1987, Breslow and Clayton 1993).

The central purpose of the spatial modelling exercise undertaken in this study is
twofold: (i ) to identify risk factors for vector abundance, which is a proxy for disease
risk, and (ii) to enable extrapolation of disease risk. In this study we do this by using
a hierarchical Poisson regression model (Breslow and Clayton 1993, McCulloch
1997, Yasui and Lele 1997). This method uses the Poisson framework, which is
natural for count data, while the hierarchical aspect allows for the likely presence of
(positive) spatial correlation and over-dispersion. Although we need to account for
this spatial correlation, it is not the focus of our attention, and is essentially a
nuisance parameter that hinders extrapolation of vector abundance to new areas.
The regression formulation we adopt here enables us to reduce this spatial correlation
by the inclusion of relevant environmental covariates in the model. This approach
achieves the twin objectives of identifying risk factors (i.e. environmental covariates)
for vector abundance as well as enabling extrapolation through the � tted regression
model. In addition, we utilize this framework to devise a novel and intuitively
appealing procedure for model selection, which identi� es the environmental factors
that best explain tick abundance.

2. Methods
2.1. Model development

Let n be the number of sampled locations and Y
i

be the number of female ticks
found at the ith location (i 5 1, . . . , n ). Let D

i
be the number of deer hunted at the
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ith location. For each location i, we denote the true, but unknown, tick abundance,
by h

i
. These h

i
s are in� uenced by environmental covariates, denoted by x

i
, such as

land-use characteristics, vegetation, forest cover and soil type. This relationship is of
scienti� c interest. Unfortunately the h

i
s themselves are unobservable, but Y

i
s, the

observed tick counts on deer, can serve as their surrogates.
We model the Y

i
s using the following two-step hierarchical model. We � rst relate

h
i
s to the covariates X. We assume that the vector h 5 (h

1
, . . . , h

n
) has a multivariate

log-normal distribution, i.e. h~log-normal[Xb, V (s2, r)], where b are regression
coe� cients, s2 is the variance of log(h

i
) at each location i and r is a measure of

spatial dependence. Also, the (i, j)-th element of the covariance matrix V is given
by s2rd(i, j), where d(i, j) is the distance between locations i and j, (i, j) 5 1, . . . , n. This
covariance structure entails some assumptions. First, we assume that the hs have
the same variance at all locations. Second, covariance of the process between any
two locations is assumed to be isotropic, which means that it just depends on the
distance between those two locations. These assumptions are standard in spatial
statistics (Cressie 1993, p. 105). Note that, although r is restricted to be positive for
this particular model, any other structure for V (s2, r) with r<0, can also be accom-
modated. The speci� cation of a log-normal distribution for the hs properly forces
the abundance rates to be positive. This model also implicitly assumes that the
association between h and the covariates X can be adequately characterized by a
linear relationship in the logarithmic scale. However, other forms of relationship
may also be entertained quite easily.

In the next stage of modelling, we relate the vector of observed counts Y to h,
the underlying population abundance, by assuming that (Y

i
|h

i
, D

i
)~Poisson (D

i
h
i
),

independent of each other (i 5 1, . . . , n). Thus, the average number of deer ticks is
D

i
h
i
, number of hunted deer times the underlying abundance.

This two-step hierarchical model has several advantages . First, it models the
observed number of ticks as Poisson random variables, which is appropriate for
count data. Second, it allows for both positive and negative spatial dependence, as
well as over-dispersion in the data (Breslow and Clayton 1993, Yasui and Lele 1997).
Third, it uses the regression framework, which enables the extrapolation of the
response through the � tted model.

Interpretation of regression parameters b in the above Poisson-log normal mixed
model is the same as in standard Poisson regression. For any particular covariate,
the associated regression coe� cient b captures the magnitude and direction of the
eŒect of that covariate on tick abundance. Speci� cally, exp(b) is the factor by which
abundance of female ticks is expected to increase, for a unit increase in the value of
that covariate. This quantity is frequently referred to as a ‘rate ratio’ (RR) because
it is the units-free ratio of two (expected) abundance rates (Breslow and Day 1980).

Point estimates of the regression parameters are expected to be similar to those
produced by Poisson regression. However, the Poisson-log normal model has a more
general covariance structure that allows for the presence of spatial auto-correlation
and over-dispersion in the data. Hence, estimates of the precision of the regression
coe� cients (i.e. con� dence intervals) and predicted disease risk at new locations (i.e.
prediction intervals) would be more accurate.

2.2. Estimation: T he Monte Carlo Newton Raphson (MCNR) procedure
The hierarchical model we have presented here belongs to the class of Generalized

Linear Mixed Models (GLMM) (Breslow and Clayton 1993). There are several
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diŒerent approaches for obtaining estimates of model parameters in a GLMM.
Clayton and Kaldor (1987) use the EM Algorithm (Dempster et al. 1977), Breslow
and Clayton (1993) develop a quasi-likelihood-base d approach, while Yasui and Lele
(1997) use estimating functions. A fully Bayesian treatment of such models through
the use of Markov Chain Monte Carlo (MCMC) techniques, is given by Diggle
et al. (1998 ).

A straightforward EM approach for our model entails the calculation of some
complicated integrals. Since the Penalized Quasi-Likelihood (PQL) method does
not seem to perform well, especially for sparse data (McCulloch 1997), and an
estimating functions approach also has similar problems (Yasui and Lele 1997), in
this study, we use the Monte Carlo Newton Raphson (MCNR) method proposed
by McCulloch (1997) to estimate the model parameters (b, s2, r).

In this section we provide a brief overview of the MCNR estimation procedure.
To do this, � rst note that the model presented here can be equivalently expressed as
(Y

i
|h

i
) being independently distributed Poisson random variables with mean D

i
ehi ,

i 5 1, 2, . . . , n, where the vector h has a multivariate normal distribution with mean
Xb and covariance V (s2, r). Estimation is then based on the likelihood function for
the observed Y s, which is given by

L (b, s2, r |Y ) 5 P
h

f
b,s2,r

(Y , h) dh 5 P
h
Gan

i=1
f
Di

(Y
i
|h

i
)H f

b,s2 ,r
(h) dh (1)

where the distributions of (Y
i
|h

i
) and h are as above. Since multidimensional integrals

can be di� cult to work with, we use the full data likelihood instead. Given the full
data W 5 (Y , h), the complete data likelihood is

L (b, s2, r |W ) 5 Gan
i=1

f
Di

(Y
i
|h

i
)H f

b,s2,r
(h)

In the spirit of the EM algorithm (Dempster et al. 1977), our estimates of the
parameters Q 5 (b, s2, r) would be those values of Q which maximize E[ ln L (Q |W ) |Y ],
the conditional expectation of the complete data log likelihood, given the available
data. In order to use a Newton-Raphson scoring type algorithm for estimating Q,
we � rst note that the maximum likelihood score equations for Q would be

EC ‚ ln L (Q |W )
‚ Q

|YD 5 0

Taking Q 5 b, and expanding the quantity inside the conditional expectation as a
function of b around the value b0 gives a scoring-type algorithm of the form

‚ ln L (b |W )
‚ b

#X ¾ V Õ 1 (h Õ Xb
0
) Õ X ¾ V Õ 1X(b Õ b

0
)

This gives the stage-m ( m 5 0, 1, . . .) iterative equation

b
m+1

5 b
m

1 (X ¾ V Õ 1X) Õ 1 (X ¾ V Õ 1E[(h Õ Xb) |Y ]). (2)

Since the conditional expectation above may be di� cult to evaluate, at each step of
iteration we generate B values (h(1) , h(2) , . . . , h(B)) from the conditional distribution of
(h |Y , Q

m
) using the Metropolis Algorithm (Hastings 1970). We use McCulloch’s

recommendation for using the marginal distribution of h as a proposal distribution
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to generate candidate values of h in the Metropolis sampling, since it considerably
simpli� es the acceptance function for the Metropolis Algorithm (McCulloch 1997).

Once we have (h(1) , h(2) , . . . , h(B)), we then use SB
j=1

(h(j) Õ Xb
m

)B as an approxi-
mation to E[(h Õ Xb

m
)|Y ]. Similarly, we estimate s2 and r by choosing values

for (s2
m+1

, r
m+1

) that maximize E[ log L (Q |W ) |Y ]. In practice, this conditional
expectation is again approximated by its Monte Carlo equivalent
SB

j=1
log L (s2

m
, r

m
|W (j))B, where W (j) 5 (h(j) , Y ). For a fuller discussion of the MCNR

estimation procedure, see McCulloch (1997).
The algorithm for MCNR estimation of the parameters for the Poisson log

normal model is thus given by:

1. Set initial parameter estimates Q0 . Let m 5 0.
2. Generate B values (h(1), h(2) , . . . , h(B) ) from the conditional distribution of

(h |Y , Q
m

) using the Metropolis Algorithm.
3. Calculate b

m+1
using (1 ). Choose (s2

m+1
, r

m+1
) to maximize

SB
j=1

ln L (s2
m

, r
m
|W (j))B, where W (j) 5 (h(j) , Y ).

4. Set m 5 1. Repeat steps 2 to 4. Repeat until convergence.

In our study, we used B 5 1000, and the MCNR routine usually converged in less
than 10 iterations.

2.3. Selection of covariates
The selection of covariates to be included in a model is an important issue in

any regression approach. This is particularly relevant when GIS databases can
provide a plethora of information on any number of environmental factors. We
propose a new procedure for selecting covariates in the spatial context. The logic
behind our proposal is as follows.

Geographical clustering in spatial data is often due to the presence of some
common underlying ecological factors, such as land use patterns, degree of urbaniza-
tion, etc. that are spatial in nature. In this sense, spatial correlation in the observed
data exists because some underlying factor or factors have not been accounted for
in the model. As a consequence, explicit inclusion of covariates in the model should
reduce spatial dependence. This provides motivation for an intuitive method for
selecting covariates for the analysis of spatial data. To identify the factors that are
most in� uential on the observed response, we rank the importance of the covariates
by the amount of reduction in spatial dependence it facilitates. Suppose all p available
covariates are numbered 1, 2, . . . , p. Then we use the following algorithm to select
covariates:

Step 1. Fit the Poisson-log normal model to the data without covariates (Model 0)
and estimate spatial correlation r

M0
. If this is very small, the data has

negligible spatial correlation. If the spatial correlation is substantial, we go
to Step 2.

Step 2. Add only covariate 1 to Model 0. Re-estimate the spatial correlation (say,
r1 ). Repeat Step 2, ( pÕ 1) times, successively for covariates 2, 3, . . . , p,
obtaining correlation estimates r2 , r3 , . . . , r

p
.

Step 3. Add to the model, covariate j for which the reduction in spatial dependence
r

M0
Õ r

j
( j 5 1, 2, . . . , p) is the largest. Call this model, Model 1 and obtain

an estimate for spatial correlation r
M1

under this model. Number the
remaining covariates 1, 2, . . . , pÕ 1.
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Step 4. Repeat steps 2 to 4 for Model 1, for the remaining p Õ 1 covariates, adding
that covariate j to the model, for which r

M1
Õ r

j
( j 5 1, 2, . . . , pÕ 1 ) is the

highest.

Continue this process until the estimate of r
Mj

, j 5 0, 1, . . . , p, is negligibly small, or
all covariates have been added to the model ( j 5 p). If the spatial correlation is still
signi� cant even after considering all the available covariates, it implies that we should
be searching for additional covariates, as well as looking for interactions among the
existing ones. To identify the covariates that reduce over-dispersion, we can start
with the � nal model obtained here and repeat all the above steps with s2 as the
focus of attention.

The method for selecting environmental covariates described above identi� es
those factors that best explain the spatial structure, or small-scale variation, in the
data. By contrast, traditional methods of covariate selection in statistics such as the
likelihood ratio (LR), AIC or deviance function, rank the importance of each covari-
ate by the extent to which it reduces overall variability, or large-scale variation in
the data, regardless of any embedded spatial structure. Thus, in order to identify
covariates that best explain an observed process, both in terms of spatial structure
and overall, these two methods may have to be used in conjunction for covariate
selection in spatial studies. So, we look upon our method as complementary to the
traditional stepwise covariate selection methods. In addition, it provides a tool to
distinguish between factors that explain the spatial structure in the data, versus
factors that best explain the large-scale variation.

The ultimate objective of our model-building exercise is to extrapolate disease
risk/tick abundance at new locations. The principal barrier to such spatial extrapola-
tion outside the study area is the presence of spatial correlation, which is essentially
a local phenomenon. This motivates our covariate selection approach. We want to
identify the environmental risk factors that best explain the spatial structure in the
data, and can be used later for prediction of disease risk at a new location. Thus,
our step-wise selection algorithm � rst concentrates on identifying covariates that
reduce the spatial correlation r, and then addresses reduction of the over-dispersion
parameter s2. These methods are illustrated in the next section in the analysis of
I. scapularis data. A further re� nement of our approach that is the subject of ongoing
research by the authors would include, at each step of the selection process, a
procedure for checking the utility of covariates previously added to the model, and
removing those that do not explain spatial correlation or over-dispersion once newer
covariates have been introduced. Such an improvement would make this algorithm
a truly stepwise (as opposed to forward) selection process.

On a cautionary note, we observe that this method of covariate selection would
not be appropriate if the underlying spatial process has intrinsic spatial correlation.
For example, a spatial process that models the geographic or familial spread of
infectious diseases or agents would have strong intrinsic correlation that is itself of
scienti� c interest (Houwing-Duistermaat et al. 1998). However, this is not the case
with abundance of I. scapularis ticks. The method is, thus, suitable for identifying
covariates in this or similar situations.

2.4. Prediction and model validation
One of the goals of our study is to use the data to predict tick abundance h at

new locations and provide quantitative measures of the accuracy of such predictions,
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i.e. prediction intervals. However, before using the model to predict the abundance
h at a new location, it should be validated for the observed data Y . We can do this
by predicting tick counts Y for each of the sampled locations based on data from
all the other locations. The procedures for calculating point predictors and prediction
intervals for both tick abundance h and tick count Y are presented in the following
discussion.

A fuller treatment of the prediction techniques for obtaining point and interval
predictions for tick abundance h and tick count Y is presented in Das (1998). Here
we � rst note that the prediction techniques for tick abundance h are diŒerent,
depending on whether one is interpolating in the study area (where tick counts Y
have been observed), or spatially extrapolating in a new area for which tick counts
are unavailable. First, we present prediction techniques for interpolation. In this
situation, since hs are themselves unobservable, point and interval predictions for
the abundance rate h

0
at a new location s

0
within the study area should be based

on the expected value of h
0
, conditional on the observed data Y , i.e. E (h

0
|Y ). Further,

to get 95% prediction intervals for h
0
, we need to � nd (h

1
, h

u
) such that the conditional

probability Pr(h
1
< h

0
< h

u
|Y ) 5 0.95. In fact, a Monte Carlo approach can avoid

tedious calculations for conditional expectations and probabilities. We use the
Metropolis Algorithm (Hastings 1970) to generate a batch of realizations of h

0
from

its conditional probability distribution (h
0
|Y ), � xing (b, s2 , r) at their estimated

values. If we denote this batch by h
G

5 (h(1)
0

, h(2)
0

, . . . , h(B)
0

), for a su� ciently large B,

E(h0 |Y )#
1
B

�
B

j=1
h(j)
0

,

which is our point predictor for h
0
. Similarly, as h

G
are realizations from the

distribution of (h
0
|Y ), 95% prediction intervals (h

1
, h

u
) for h

0
can be approximated

by the 2.5 and 97.5 percentile values of the batch h
G

.
Spatial extrapolation of tick abundance outside the study area is feasible only

when the inclusion of relevant covariates has reduced spatial correlation to negligible
levels. (Note that, in such a situation, we can use the same method for interpolation
as for extrapolation. ) Since no tick counts are available, here we focus on the marginal
distribution of h. Then, the abundance rate h

*
at a new location s

*
outside the study

area would be predicted by

hÃ
*

5 x ¾
*

bÃ

where x* is the vector of known environmental covariates for location s
*

. The
associated prediction error would be estimated by

E(h
*

Õ hÃ
*

)2 5 var (h
*

)1 x ¾
*

var (bÃ )x
*

.

Note that var(h
*

) can be estimated by sÃ 2 and var(bÃ ) by
Õ E[( ‚ 2 ln L (b |Y , h)/ ‚ b2 ) |Y ], where L (b |Y , h) is the likelihood function for the
joint distribution of (Y , h), Y denoting tick counts from the original study area used
to � t the model. The latter quantity can be approximated using a Monte Carlo
procedure.

To get point predictors for tick counts Y , note that, under the Poisson-log normal
model,

E (Y
i
) 5 E[E(Y

i
|h

i
)] 5 E(D

i
h
i
) 5 D

i
exp(x

i
b 1 s2/2). (3)

Suppose Y
0

is the tick count at a new location s
0

with covariates x
0
. Then, since
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given h, the Y
i
s are independent,

E(Y 0 |Y ) 5 E(E[(Y 0 |Y )|h]) 5 E[E(Y 0 |h)] 5 D0 exp(x0b 1 s2/2). (4)

We predict Y
0

by plugging in the estimated values of b and s2 in equation (4).
Calculation of prediction intervals for the tick counts is trickier, as the precise

form of the marginal distribution of Y is di� cult to evaluate. We use the following
procedure to get prediction intervals for Y

0
, given the observed Y s. First, note that,

to get these prediction intervals we need to evaluate the conditional probability

Pr(Y 0 < y |Y ) 5 E[I(Y 0 < y) |Y ]

(where I (Y
0
< y) is an indicator function that has a value of 1 when Y

0
< y, and 0,

otherwise)

5 E[E(I(Y 0 < y) |Y |h0 )] 5 E[Pr (Y 0 < y |Y , h0 )] 5 E[Pr(Y 0 < y |h0 )]

since, given h
0
, Y

0
is distributed as a Poisson (D

0
h
0
) random variable, independently

of Y . So,

PR(Y
0
< y |h

0
) 5 �

y

k=0
exp(Õ D

0
h
0
)
(D

0
h
0
)k

k !
. (5)

We can again approximate the mean value of this probability through a
Monte Carlo procedure. Thus

E[Pr(Y
0
< y |h

0
)] 5

1
B

�
B

j=1

Pr(Y
0
< y |h(j)

0
),

where the form of Pr(Y
0
< y |h(j)

0
) is given by equation (5), and h(1)0 , h(2)

0
, . . . , h(B)

0
are

as before. Once the probabilities Pr(Y
0
< y |Y ) have been estimated in this way, the

approximate lower and upper 95% prediction intervals of Y
0

are those integer values
of y, for which this probability exceeds 0.025 and 0.975, respectively.

We can use the spatial interpolation procedures described here for cross-valida-
tion, by obtaining 95% prediction intervals of tick counts for each location, based
on data from every other location, and � nding the proportion of these prediction
intervals that actually cover the observed counts. If our model is sensible, this should
be close to 95%, or whatever the nominal level of coverage is chosen to be.

3. Tick abundance on deer—a case study
3.1. T he study data

The purpose of this example is to demonstrate application of the proposed
modelling approach to predict adult female I. scapularis abundance. The study area
covered approximately 6400 km2, in � ve counties (Harford, Baltimore, Carroll,
Howard and Anne Arundel ) along the north-western shore of the Chesapeake Bay
in Maryland. Deer killed by hunters during the � rearms season of 1991 were exam-
ined at hunting check stations for the presence and abundance of ticks by visual
examination. Collection methods are described in Glass et al. (1994). Brie� y, the
head, neck, chest and legs of deer were examined using a standardized protocol and
ticks from each deer were removed and stored separately. Collected ticks were
brought to the laboratory, and identi� ed to species and developmental stage. Hunters
were asked to identify the geographic location where each deer was collected.
Locations were identi� ed on Maryland State Department of Transportation maps
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(1:24 000) and the coordinates determined using the Maryland State Plane
Coordinate System (North America Datum 1983).

3.2. Environmental covariates
Environmental data related to land use/land cover, soils, watersheds, elevation,

slope, aspect and forest distributions were used as predictor variables in the Poisson-
log normal model. These data were imported as separate layers in a raster-based
geographical information system (GIS) (Eastman 1993). Information on soils was
derived from the US Geological Survey’s State Soil Geographic database with a
reported minimal mapping unit of 625 ha. Land-use and land-cover information was
derived from 1985 data from the Maryland O� ce of Planning as an Anderson level
II classi� cation, providing 13 categories of land use (Glass et al. 1994). Watersheds
were categorized to the sub-basin level. Elevation, slope and aspect were extracted
from 7.5-min digital elevation maps produced by the US Geological Survey. Forest
distributions were determined from the land-use/land-cover database, modi� ed
with Landsat Thematic Mapper images obtained in 1991, using a supervised
classi� cation procedure.

We characterized each environmental covariate by creating a 10 km buŒer around
the collection site of each deer. Although the buŒer size was somewhat arbitrary it
corresponds to the reported home range of white-tailed deer during this time of year
(Swihart et al. 1994) and using smaller buŒers (5 km) had little impact on the resulting
analyses. The GIS was used to determine the amount of the area within the 10 km
buŒer that corresponded to each class of the recorded environmental covariates.
These data were then exported from the GIS to an Splus (MathSoft Inc. 1996)
database for statistical analyses.

The major environmental factors ( land-use patterns, soil types, etc.) were categor-
ized as percentages (e.g. percentage of land within the buŒer of soil type 1, 2, etc.).
For example, a particular buŒer could have three diŒerent land-use patterns, the
percentage in each category adding up to 100. Then, as the percentage of land under
one category wholly depends on that under the other two (and vice versa) , including
all three in the model is super� uous, and could cause problems in � tting the model.
In this study we have used simple exploratory analyses to avoid such collinearity
problems. For each environmental feature, we examined all the diŒerent categories
that it was divided into, and excluded those that were totally determined by the
others. For instance, if we had three land-use categories, we would drop the third
since the proportion of land falling under that category can be determined by the
information on the other two categories.

4. Results
A total of 574 adult female I. scapularis ticks, ranging from 0 to 11 per deer,

were collected from 210 deer killed at 119 locations within the 6400 km2 study area
(� gure 1). Typically only a single deer was sampled from each site (range 1–5).
Generally, most deer were collected in the west and north of the study area, the
regions with the lowest human population densities. Exploratory analysis revealed
that an unusually large number of deer had been killed in a military base at Fort
Meade in Anne Arundel County. Though Fort Meade covers approximately 100 km2,
no details were available as to the precise location of the kills within the Fort area.
For this reason, data from this military area were excluded from the analysis.
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Figure 1. Contour plots showing the geographic distribution of observed number of adult
female Ixodes scapularis ticks per deer in Howard, Carroll, Baltimore and Harford
counties of Maryland in 1991 (on the left), compared to predicted tick abundances
for the same areas (on the right). Extraction of relevant covariate information from a
GIS makes predictions for neighboring Ann Arundel county and Baltimore City
possible, even though no reliable tick counts are available from these places.

4.1. Selection of environmental factors
A total of 54 environmental covariates were extracted from the GIS. An ordinary

Poisson model was � rst � t to the data. The relative magnitude of deviance for the
model, which is a measure of the excess variability in the data not explained by
Poisson regression (McCullagh and Nelder 1989), was about 1.5, indicating the
presence of over-dispersion in the data. This failure of the Poisson model assumption
is compounded by the likely presence of spatial correlation in the data. As discussed
earlier, con� dence intervals and prediction intervals based on Poisson regression are
thus incorrect. Hence we decided to use the Poisson-log normal model approach to
model this data.

We used the algorithm presented in the previous section for selection of covariates.
Without any environmental covariates, there was signi� cant spatial correlation
(estimated r 5 0.78) in tick abundance. The greatest reduction in spatial correlation
of tick abundance (estimated r 5 0.47) was achieved by incorporating the land-use
variable measuring the proportion of agricultural land in the 10 km buŒer (table 1).
The other factor that further reduced the correlation to 0.31 was the land-use variable
that measured the proportion of low-density residential housing in the buŒer.

Table 1. Stepwise selection of covariates for the Lyme disease tick data: at each step, inclusion
of the given covariates caused the maximum reduction in estimated values of, � rst,
the spatial correlation r and then, the over-dispersion s2.

Covariates1 Estimated r Estimated s2

None 0.78
Agricultural land(A) 0.47
(A)1 low density residential housing(B) 0.31 1.9
(B) 1 � at land(C) 0.31 1.89
(C)1 inside forest(D) 0.31 1.85
(D)1 slope (0–4 ß )(E) 0.31 1.84
(E) 1 forest edge 0 1.71

1Percentage of land area having said features (agriculture, low density residential housing,
etc.) in a 10 km2 circle around tick collection site.
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The remaining environmental variables failed to reduce the spatial correlation
further; so, we concentrated on identifying variables associated with over-dispersion
in the data. The environmental variables relating to over-dispersion were land use
( low-density housing), slope of the land (� at, and 0–4 ß ), and forest edge (amount of
forest edge, and area inside the forest). Inclusion of the proportion of � at land at
each location was most eŒective in reducing the over-dispersion. Finally, when all
the above covariates were included in the model, addition of the proportion of land
that represented the edge of forested areas reduced the spatial correlation to zero
(table 1). No other environmental factor had any appreciable eŒect on reducing the
over-dispersion. Thus, the � nal model had no remaining spatial correlation (as all
the important covariates that could induce spatial dependence had been included)
but extra-Poisson variability (estimated s2 5 1.71) remained in the data (table 1).

4.2. Interpretation of regression coeYcients
Estimates of the rate ratios for the environmental covariates in our model (table 2)

indicated that tick abundance was positively related to the slope of the landscape.
Abundance nearly doubled for a one-point increase in the percentage of moderately
sloping land within the buŒer (rate ratio (RR) 5 1.95; 95% con� dence interval (CI)
0.91 to 4.2). The amount of forest edge within the buŒer also was associated with
increased abundance of female ticks (RR 5 1.3; 95% CI 0.98 to 1.76). Both factors
were marginally statistically signi� cant at the 5% level, and the latter accounted for
a large degree of the spatial correlation in the data (table 1).

Conversely, the proportion of land that was � at was negatively associated with
tick density; for every point decrease in the percentage of � at land, tick abundance
rates increased by almost 50% (RR 5 0.67, 95% CI 0.49 to 0.92). Similarly, agricultural
land had an inverse relationship with tick abundance. A unit decrease in the percent-
age of agricultural land in the buŒer was associated with a 7% increase in female
tick abundance (RR 5 0.93; 95% CI 0.875 to 0.98). Increasing amounts of contiguous
forest within the buŒer (or, area inside forest, as opposed to forest edge), also was
associated with a somewhat lower tick abundance (RR 5 0.88; 95% CI 0.75 to 1.03),
as were more areas with low density residential housing (RR 5 0.80; 95% CI 0.66
to 0.98 ).

The results obtained here are biologically plausible and intuitively appealing.

Table 2. EŒect of environmental factors on tick abundance: estimates of regression coe� cients
and their precision for the Lyme disease tick data.

Covariates1 Rate ratio2 Standard error 95% con� dence intervals

Agricultural land 0.93 0.03 (0.875, 0.98)
Low residential housing 0.8 0.1 (0.66, 0.98)
Flat land 0.67 0.16 (0.49, 0.92)
Inside forest 0.88 0.08 (0.75, 1.03)
Slope (0–4 ß ) 1.95 0.39 (0.91, 4.2)
Forest edge 1.31 0.15 (0.98, 1.76)

1Percentage of land area having said features (agriculture, low density residential housing,
etc.) in a 10 km2 circle around tick collection site.

2The Rate Ratio is given by exp(b), where b is the regression coe� cient. Being the factor
by which abundance of female ticks increases, per unit increase in the value of a covariate, it
is free of units.
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Published literature on the epidemiology of Lyme disease and the biology of
I. scapularis is consistent with the patterns identi� ed by the model. Maupin et al.
(1991) showed that tick abundance decreased signi� cantly within the suburban
landscape along transects as one moves from the forest edge to ornamental vegetation
and lawns. Similarly, agricultural land has been found to be unsuitable for
I. scapularis populations (Kitron et al. 1992, Glass et al. 1994). The basis for this
may be related to environmental eŒects, which increase the rate of mortality through
desiccation (Bertrand and Wilson 1996) and physical disturbance of the habitat in
these areas. The marked diŒerence in the eŒect of forest edge (ecotone) and interior
forest area on adult tick abundance is striking. The biological mechanism for this is
unclear; however, ecotonal habitat is well recognized as a critical factor in the
abundance of white-tailed deer (Nixon et al. 1991) which in� uences tick abundance
(Wilson et al. 1985). Additionally, Goddard (1992) found that I.scapularis was absent
from habitat in which there was either ‘. . . no shade or in totally shaded areas’
(p. 503), while ticks tended to reside in areas with 30–80% mixed shade, which occurs
along the forest edge. Thus, the amount of completely forested area, as opposed to
forest ecotone, may be associated with lower numbers of adult I. scapularis. The
eŒect of the steepness of land on adult tick abundance is not evident but has been
previously noted by other authors (Glass et al. 1995 ).

4.3. Cross-Validation and Prediction
To cross-validate our model, we predicted tick counts for each of the 118 sampled

locations, based on data from the remaining 117 locations. The 95% prediction
intervals included the observed values at these locations in over 94% (112/118) of
the cases, thus satisfactorily validating the model in this region. We note that this
method of cross-validation may be very computer intensive for large data. In our
case, for a sample size of 118, it took about 10 hours on a UNIX machine. For large
data sets, an alternative would be to set aside a portion of the data for prediction.
The model � tted on the reduced data can then be validated on the prediction subset
by examining the proportion of data points in this subset that were included in the
calculated 95% prediction intervals.

An important advantage of our modelling approach is that we can use the � tted
model for extrapolating tick abundance in a diŒerent area. Since spatial correlation
is absent in the � tted model, this does not require tick counts from such an area,
only information on the environmental features that were previously identi� ed as
crucial in explaining the spatial structure of the data. In � gure 1 we present contour
plots of the geographic distribution of observed tick counts per deer, and predicted
tick abundance in the whole study area, as well as Ann Arundel county and Baltimore
City. Extraction of relevant covariate information from a GIS made predictions for
Ann Arundel county and Baltimore City possible, even though no reliable tick counts
were available from these places. A comparison of the observed and predicted tick
abundance, for the regions where tick counts were actually observed, (� gure 1) shows
remarkable consistency between the two. Predictions for Ann Arundel county and
Baltimore City are generally low because both have a high preponderance of � at,
non-sloping land and the latter is an urban area with no forests in the vicinity.
Previously, we saw that both these factors are inversely related to tick abundance.

5. Conclusion
The geographical distribution of vector-borne diseases is determined by vector

abundance, which in turn is aŒected by environmental factors. Combining an
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environmental GIS with spatial analysis can therefore aid in predicting vector abund-
ance, which in turn can help in predicting disease risk. Public education remains
one essential means of preventing diseases; knowledge of the environmental factors
that help or hinder the distribution of vectors could enable public health professionals
to anticipate, take preventive steps and react quickly to new outbreaks. In this
context, it is important that we have the statistical tools to identify the risk factors
for vector abundance and use this knowledge for extrapolating disease risk. To this
end we have presented a regression-based approach for spatial modelling of count
data. There are some key advantages to this approach:

(a) Our method provides an alternative to the standard kriging and neighbour-
hood-based formulations of spatial statistics. This regression approach facilit-
ates reduction of spatial correlations by inclusion of proper environmental
covariates, and, in contrast to the standard methods, allows for extrapolation
of vector abundance to new areas.

(b) Our mixed models formulation avoids restrictive assumptions and provides
a � exible way of incorporating spatial correlations and over-dispersion.

(c) Though GIS can be a useful tool (Baker 1992, Pope et al. 1994, Dunning
et al. 1995), such databases contain a huge number of environmental factors.
It is thus essential to develop a procedure that identi� es factors that explain
the spatial structure in the data. We propose a stepwise procedure, where at
each step we include that covariate that best explains the spatial dependence
and variability in the data.

(d ) The principles underlying the modelling framework and inference procedures
used in this paper are applicable in more general settings. For example, if the
responses were presence/absence of species instead of tick counts, we could
have used a Binomial normal mixed model in place of our Poisson log-
normal model. Given the prevalence of spatial data in ecological studies that
are of the presence/absence variety, or counts, we believe the methods pro-
posed in this paper are of signi� cant importance to ecological research in
general.

Acknowledgements
This work was part of the PhD dissertation of the � rst author. Partial funding

support was provided by EPA cooperative agreement CR823143 to Jonathan Patz
and CDC Research Contract 200-94-0818 to Gregory E. Glass. The authors also
thank Professor Peter J. Diggle for helpful comments on an earlier version of the
manuscript.

References

Apperson, C. S., Levine, J. F., and Nicholson, W. L., 1990, Geograhic occurrence of Ixodes
scapularis and Amblyomma americanum (Acari: Ixodidae) infesting white-tailed deer in
North Carolina. Journal of W ildlife Diseases, 26, 550–553.

Baker, W. L., 1992, EŒects of settlement and � re suppression on landscape structure. Ecology,
73, 1879–1887.

Bertrand, M. R., and Wilson, M. L., 1996, Microclimate-dependent survival of unfed adult
Ixodes scapularis (Acari: Ixodidae) in nature: life cycle and study design implications.
Journal of Medical Entomology, 33, 619–627.

Besag, J. E., 1974, Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society, Series B, 35, 192–236.



Modelling a discrete spatial response 165

Breslow, N. E., 1984, Extra-Poisson variation in log-linear models. Applied Statistics, 33,
38–44.

Breslow, N. E., and Clayton, D. G., 1993, Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9–25.

Breslow, N. E., and Day, N. E., 1980, T he Design and Analysis of Cohort Studies (Lyon:
International Agency for Research on Cancer).

Clayton, D., and Kaldor J., 1987, Empirical Bayes estimates of age-standardized relative
risks for use in disease mapping. Biometrics, 43, 671–681.

Cressie, N., 1993, Statistics for Spatial Data (New York: John Wiley).
Cressie, N., and Chan, N. H., 1989, Spatial modeling of regional variables. Journal of the

American Statistical Association, 84, 393–401.
Das, A., 1998, Topics in Spatial Statistics. Ph.D. Dissertation, Department of Biostatistics,

Johns Hopkins University School of Hygiene & Public Health, Baltimore.
Dempster, A. P., Laird, N. M., and Rubin, D. B., 1977, Maximum likelihood for incomplete

data via the EM algorithm (with discussion). Journal of the Royal Statistical Society,
Series B, 44, 1–38.

Diggle, P. J., Tawn, J. A., and Moyeed, R. A., 1998, Model-based Geostatistics (with
discussion). Journal of the Royal Statistical Society, Series C, 47, 299–350.

Dunning, J. B., Stewart, D. J., Danielson, B. J., Noon, B. R., Root, T. L., Lamberson,
R. H., and Stevens, E. E., 1995, Spatially explicit population models: current forms
and future uses (in spatially explicit population models). Ecological Applications,
5, 3–11.

Eastman, J. R., 1993, IDRISI. Version 4.1 (Worcester, MA: Clark University).
Glass, G. E., Amerasinghe, F. P., Morgan, J. M., and Scott, T. W., 1994, Predicting Ixodes

scapularis abundance on white tailed deer using geographic information systems.
American Journal of T ropical Medicine and Hygiene, 51, 538–544.

Glass, G. E., Schwartz, B. S., Morgan, J. M. III, Johnson, D. T., Noy, P. M., and Israel,
E., 1995, Environmental risk factors for Lyme disease identi� ed with geographic
information systems. American Journal of Public Health, 85, 944–948.

Goddard, J., 1992, Ecological studies of adult Ixodes scapularis in central Mississippi: questing
activity in relation to time of year, vegetation type, and meterologic conditions. Journal
of Medical Entomology, 29, 501–506.

Hastings, W. K., 1970, Monte Carlo sampling methods using Marlov chains and their
applications. Biometrika, 57, 97–109.

Houwing-Duistermaat, J. J., Van Houwelingen, H. C., and Terhell, A., 1998, Modelling
the cause of dependency with application to � laria infection. Statistics in Medicine, 17,
2939–2954.

Kitron, U., Jones, C. J., Bouseman, J. K., and Baumgartner, D. L., 1992, Spatial analysis
of the distribution of Ixodes dammini (Acari: Ixodidae) on white-tailed deer in Ogle
county, Illinois. Journal of Medical Entomology, 29, 259–266.

Lastavica, C., Wilson, M. L., Berardi, V. P., Spielman, A., and Deblinger, R. D., 1989,
Rapid emergence of focal epidemic of Lyme disease in coastal Massachusetts. New
England Journal of Medicine, 320, 133–137.

MathSoft Inc., 1996, Splus Version 3.3.
Maupin, G. O., Fish, D., Zultowsky, J., Campos, E. G., and Piesman, J., 1991, Landscape

ecology of Lyme disease in a residential area of Westchester County, New York.
American Journal of Epidemiology, 133, 1105–1113.

McCullagh, P., and Nelder, J., 1989, Generalized L inear Models (London: Chapman and
Hall ).

McCulloch, C. E., 1997, Maximum likelihood algorithms for generalized linear mixed
models. Journal of the American Statistical Association, 92, 162–170.

Nixon, C. M., Hansen, L. P., Brewer, P. A., and Chelsvig, J. E., 1991, Ecology of the white-
tailed deer in an intensively farmed region of Illinois. W ildlife Monographs, 118.

Patz, J. A., Epstein, P. R., Burke, T. A., and Balbus, J. M., 1996, Global climate change
and emerging infectious diseases. Journal of the American Medical Association, 275,
217–223.

Pope, K. O., Rejmankova, E., Savage, H. M., Arredondo-Jimenez, J. I., Rodriguez, M. H.,
and Roberts, D. R., 1994, Remote sensing of tropical wetlands for malaria control in
Chiapas, Mexico. Ecological Applications, 4, 81–90.

http://pippo.catchword.com/nw=1/rpsv/0002-9637^28^2951L.538[aid=2051772]
http://pippo.catchword.com/nw=1/rpsv/0277-6715^28^2917L.2939[aid=2051774]
http://pippo.catchword.com/nw=1/rpsv/0022-2585^28^2929L.259[aid=2051775]
http://pippo.catchword.com/nw=1/rpsv/0028-4793^28^29320L.133[aid=2051776]
http://pippo.catchword.com/nw=1/rpsv/0277-6715^28^2917L.2939[aid=2051774]
http://pippo.catchword.com/nw=1/rpsv/0028-4793^28^29320L.133[aid=2051776]


Modelling a discrete spatial response166

Ribeiro, J. M., Seulu, F., Abose, T., Kidane, G., and Teklehaimanot, A., 1996, Temporal
and spatial distribution of anopheline mosquitoes in an Ethiopian village: implications
for malaria control strategies. Bulletin of the World Health Organization, 74, 299–305.

Solberg, V. B., Olson, J. G., Boobar, L. R., Burge, J. R., and Lawyer, P. G., 1995,
Prevalence of Ehrlichia chaVeensis, spotted fever group rickettsia, and Borrelia spp.
infections in ticks and rodents at Fort Bragg, North Carolina. Journal of Vector
Ecology, 21, 81–84.

Steere, A. C., 1989, Lyme Disease. New England Journal of Medicine, 321, 586–596.
Swihart, R. K., Picone, P. M., DeNicola, A. J., and Cornicelli, L., 1994, Ecology of urban

and suburban white tailed deer. In Urban Deer A Manageable Resource?, edited by
J. McAninch and L. P. Hansen (Berlin: Springer Verlag), pp. 35–44.

Wallis, R. C., Brown, S. E., Kloter, K. O., and Main, A. J., 1978, Erythema chronicum
migrans and Lyme arthritis: � eld study of ticks. American Journal of Epidemiology,
108, 322–327.

Wilson, M. L., Adler, G. H., and Spielman, A., 1985, Correlation between abundance of
deer and that of the deer tick Ixodes dammini (Acari: Ixodidae). Annals of the
Entomological Society of America, 78, 172–176.

Yasui, Y., and Lele, S., 1997, A regression method for spatial disease rates: an estimating
function approach. Journal of the American Statistical Association, 92, 21–32.

http://pippo.catchword.com/nw=1/rpsv/0042-9686^28^2974L.299[aid=2051777]
http://pippo.catchword.com/nw=1/rpsv/0002-9262^28^29108L.322[aid=2051780]
http://pippo.catchword.com/nw=1/rpsv/0002-9262^28^29108L.322[aid=2051780]

